
Scientific Research and Essays Vol. 7(45), pp. 3848 -3859, 19 November, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.1487
ISSN 1992-2248 ©2012 Academic Journals

Full Length Research Paper

Effectiveness of control flow test coverage criteria
using mutation analysis: An experimental study

Hossein Keramati* and Seyed-Hassan Mirian-Hosseinabadi

Computer Engineering Department, Sharif University of Technology, Tehran, Iran.

Accepted 12 November, 2012

Empirical studies play an important role in measuring the effectiveness of software testing methods and
coverage criteria. This has led us to develop an experimental research to study four major test coverage
criteria based on the Control Flow Graphs extracted from the source code of programs. In this study,
different implementations of an industrial problem are selected as subject programs and the
effectiveness of Edge, Edge-Pair, Prime-Path and All-Path coverage criteria are measured for them by
means of mutation analysis. Generating and evaluating large number of mutants without random
selection in one hand, and running the experiment against entire input domain on the other hand,
increased accuracy of the results and removed effect of using random mutants and test case pools in
similar experimental studies. Analyzing the results, we discuss the effectiveness of these four coverage
criteria, the effect of employing Sidetrip and Detour touring, and the reliability and maximum power of
graph-based coverage criteria.

Key words: Software testing, control flow coverage criteria, mutation analysis, empirical study.

INTRODUCTION

In unit testing, which is the primary method for testing
software elements and components, test cases are
designed to be executed against the system under test
and to evaluate whether the software is working as it is
expected or not. In this respect, test engineers need
methods and techniques to design test suites as effective
as possible. Trying to fulfill this requirement, graph
coverage is a category of model-based software testing
criteria that is based on Control Flow Graphs (CFG)
extracted from the software artifacts (for example, source
code). Based on source code graph coverage criteria,
including control flow and data flow criteria, the source
code of a program should be first modeled as a graph,
and lots of paths can then be derived from that graph as
test requirements. These test requirements could be
called path-based requirements. Each test requirement
should be satisfied by at least one test case. Coverage
level of test suites indicates the number of satisfied test

*Corresponding author. E-mail: keramati@ce.sharif.edu. Tel:
+98 21 66166679. Fax: +98 21 66019246.

requirements via the test suite against the whole number
of extracted requirements for a specific criterion. In other
words, these criteria are to guide test engineers seeking
for effective test cases and to help them when to stop
augmenting test suites. Edge, Edge-Pair, Prime-Path and
All-Path coverage criteria are four control flow graph
coverage criteria (Ammann and Offutt, 2008) which are
studied in this experimental research. Due to diversity in
effectiveness, complexity and cost of employing these
criteria, empirical studies are being employed to evaluate
the effectiveness of coverage criteria. In this approach,
some programs are selected as subject programs and
are designed to measure the effectiveness of criteria-
covering test suites on detecting faults in the programs.
Faults could be real historical bugs found in subject
programs or seeded faults.

Mutation analysis is an automatic fault seeding
technique which uses a variety of mutation operators to
change original source code of programs and evaluates
the power of test suites on revealing the seeded faults.
Mutation analysis assumes that the seeded faults, called
mutants are representatives of real faults in subject
programs; therefore, mutation score is taken as fault

detection rate in studies based on this evaluation
technique. This assumption has been validated and
confirmed empirically in some studies (Andrews et al.,
2005, 2006) on programs which have history of real
faults. They “suggest that mutants, when using carefully
selected mutation operators and after removing
equivalent mutants can provide a good indication of the
fault detection ability of test suites” (Andrews et al.,
2005).

Motivation

Numerous studies have been done aiming at evaluating
the effectiveness of control flow graph coverage criteria.
Major works are reviewed in the “related works” sub-
section. Most of these works use mutation analysis
technique for evaluation. But, because of the wide range
of the input domain of their subject programs, we cannot
see any result discussing the maximum power of path-
based coverage criteria which can be achieved through
applying All-Path as selected coverage criterion. This
evaluation requires detecting all infeasible paths in the
extracted control flow graph model and generating test
suites that cover all feasible test requirements. Another
inaccuracy in such studies is using approximation in
detecting equivalent mutants, where mutants have the
same behavior as the original program and cannot be
killed through any test case. Even though equivalent
mutants should be detected and removed from the
experiments, most studies use approximation or random
techniques for detection. It is because detecting all
equivalent mutants needs to run the program against the
entire input domain which is not possible for their subject
programs. Remaining equivalent mutants undetected
injects a bias into the results of fault detection rate of test
suites and decreases the accuracy of these experiments.
Selecting subject programs with finite input domain lets
us to perform such experiments more accurately.

In addition to measuring maximum effectiveness of
path-based coverage criteria, which is achieved through
evaluating mutant detection rate of All-Path covering test
suites, it also lets us to compare the effectiveness of
weaker criteria with respect to All-Path criterion
empirically. In this study, 10 programs from the same
problem domain are selected as subject programs. These
are used in evaluating the effectiveness of the four graph
coverage criteria: Edge, Edge-Pair, Prima Path and All-
Path on revealing seeded faults in the programs. The
experimental evaluation is based on mutation analysis.
Selecting the entire input domain of the programs and
detecting equivalent mutants completely and all infeasible
test requirements as well, lets us to measure the
effectiveness of these four criteria precisely in addition to
comparative evaluation of their effectiveness. In addition,
maximum power of path-based coverage criteria is
reported for our subject programs and discussed. It is

Keramati and Mirian-Hosseinabadi 3849

due to building test suites that traverse all feasible paths
within control flow graph of the programs. Applying
Prime-Path as a control flow graph coverage criterion in
the experiment, which has been studied in a few number
of previous works (Li et al., 2009), is another motivation
for this empirical study. In addition, removing the negative
effect of easy to find faults through detecting easy-to-kill
mutants makes the comparative results more expressive
and meaningful. According to regression testing
challenges, effectiveness evaluation of cross test suites,
which is studying the effectiveness of test suites
generated for a program under test on detecting faults in
another implementation of that program, makes the
experiment and its results more motivated. Another
contribution of this study is presenting results of applying
indirect touring methods such as Sidetrip and Detour
(Ammann and Offutt, 2008), on satisfying infeasible test
requirements of control flow graph based coverage
criteria.

This paper is constructed as follows: A brief review of
works related to empirical analysis of software testing
methods is first presented. Thereafter the design of the
experiment is described. Results of the experiment and
their analysis are discussed and lastly, the study is
concluded and future works recommended.

Related works

Using mutant analysis in software testing was initially
introduced by Budd and Sayward (1977), Hamlet (1977),
DeMillo et al. (1978) and continued by other researchers
subsequently. Offutt et al. (1996) proposed a subset of
mutant operators that are sufficient for mutation testing
and made this process less expensive than before. Jia
and Harman (2011) provide a recent comprehensive
analysis and survey on mutation testing. In addition to
using mutation analysis as a test adequacy criterion,
some empirical studies employ mutation analysis as a
tool for evaluating the effectiveness of test suites which
are generated to satisfy other coverage criteria. Many
researches such as works that have been done by
Thévenod-Fosse et al. (2002), Kim et al. (2001), Andrews
and Zhang (2003) and Andrews et al. (2006) use
mutation analysis for this purpose. All of these empirical
studies are based on the assumption that automatically
seeded faults are representatives of real faults in
programs. Andrews et al. (2005) validated this
assumption and suggested to use mutation analysis in
empirical studies on evaluating the effectiveness of test
suites generated with other software testing methods.

Li et al. (2009) reported the results of their experimental
study on comparison of Edge-Pair, All-Uses and Prime-
Path coverage criteria in addition to mutation analysis
over a set of small programs. To our knowledge, this is
the only study that has directly examined the
effectiveness of Prime-Path coverage criterion.

3850 Sci. Res. Essays

Table 1. Summary information on the subject programs.

Program LoC # of methods ∑ CCN CFG nodes CFG edges

P1 86 1 16 17 22

P2 75 3 25 30 37

P3 56 2 16 13 17

P4 125 5 38 38 45

P5j 162 5 42 69 83

P5p 139 5 36 56 67

P6 50 2 13 10 10

P7 141 6 402 40 42

P7a 144 7 35 42 45

P8 670 7 297 157 267

Total 1648 43 920 472 635

EXPERIMENTAL DESIGN

Subject programs

Ten programs are selected as subject programs in this study. They
are different implementations of the same problem, converting Jalali
calendar dates to Gregorian calendar dates. Calendar converter is
an essential component in applications implemented for countries

that use calendars other than built-in Gregorian calendar in
computing machines. One of them is Jalali calendar. Since all
transactions, business logics, and user interfaces of these
applications, especially information systems are based on dates
and times, reliability and accuracy of the date converter component
is essential. Because of the complexity of date conversion for Jalali
calendar (Borkowski, 1996), there are several implementations of
this problem. Some use simple algorithms with a little code and
some others implement more accurate and complex date-
conversion algorithms. In this study, we have selected 8 different
industrial implementations of this problem from the Internet and all
are in Java. One of them (P5) has two versions that are different in
only one method. We also duplicated one of these programs (P7)
and changed a small part of it to see its consequence on the
effectiveness of testing methods. Finally, we converted
programming interface of all programs into a common interface, a
class with a public method with three integer values as its input

parameters and a return value indicating the converted Jalali date.
Table 1 shows the list of the programs, their lines of code

measured by the CLOC (Northrop Grumman Corporation, 2010)
tool, and cyclomatic complexity number (CCN) (McCabe, 1976) of
them which are measured by both CyVis (Selvaraj and Iyer, 2006)
and JavaNCSS (Lee, 2009) tools. In addition, the number of edges
and nodes in extracted control flow graphs of the programs are
listed in this table.

Input domain

In general, date converter programs should convert all dates from
the source calendar system to appropriate dates in the target
calendar. But, this assumption is not true in practice. It is due to the
complexity of conversion algorithms, lack of precise and reliable

knowledge about entire history of the calendars and need for
making decision on some future years according to whether or not it
is a leap year. As a result, there are various implementations of the

date conversion problem with different properties. Most Jalali to
Gregorian date converters are implemented for years between 475
Jalali and 1468. The upper range is limited, because year 1469 has
to be decided by governments to be a leap year or not. Accordingly,
we restrict input domain to years in this range. The exception is
program P8, which is implemented for years between 1 and 474
and due to this difference, we cannot use it in cross test suites
effectiveness evaluation. All programs rely on a defined
precondition which limits days between 1 and 31, months between

1 to 12, and years in the specified range. In addition, we added a
few code to all programs to control this precondition.

According to this defined input domain, first nine programs have
369,768 and P8 has 176,328 different input values which make test
inputs pool. We also added a lot of test inputs to have test cases for
the injected precondition checking codes. This defined pool of
inputs is large in size but it is finite and reasonable and lets us to
employ the entire input domain in the experimental process with a
plausible cost.

Mutants

We used MuJava (Ma et al., 2005) to generate mutants for the
subject programs. All 15 mutation operators supported by MuJava
were applied on all subject programs. It generated 16,056 mutant
programs totally. Table 2 shows detailed information on the number

of generated mutants for each program. In mutation analysis
process, a lot of generated mutant programs are equivalent to the
original program and cannot be killed by any test case in problem
domain. Considering equivalent mutants in evaluating the fault
detection rate of test suites underestimates effectiveness of these
suites and makes the results unreliable. Using random subsets from
input domain on detecting equivalent mutants makes mutation
analysis inaccurate and may incorrectly mark some mutants as
equivalent. Some studies such as Andrews et al. (2006) use

historical test inputs plus test inputs generated to satisfy some
coverage criteria in addition to random-generated suites to detect
equivalent mutants. It makes the experiment more accurate but
does not completely solve the problem. Results of our study, as
discussed in „reliability of path-based testing methods‟, show that
even if we select enough test inputs to traverse all feasible paths in
the subject program, there are a lot of mutants that will remain alive.
They will be considered as equivalent to the original program but
are not actually equal; there are some test inputs that can kill them
and these mutants are expected to be killed by effective test suites.

In this study, to detect and remove equivalent mutants, all test

Keramati and Mirian-Hosseinabadi 3851

Table 2. Summary of mutants in mutation analysis.

Program All mutants Equivalent Easy-to-kill Final set

P1 456 53 261 142

P2 442 65 157 220

P3 770 168 449 153

P4 756 211 366 179

P5j 666 187 374 105

P5p 659 185 379 95

P6 323 79 198 46

P7 5,890 1,386 419 4,085

P7a 751 113 398 240

P8 5,343 707 171 4,465

Total 16,056 3,154 3,172 9,730

inputs from the pool have been executed against all generated
mutants. In this process, after about 5 billion test case executions,
3154 out of 16056 mutants were marked as equivalent mutants.
Since the whole input domain is applied, all remained mutants are
expected to be killed by an effective test suite and makes results of
the experiment more precise. Another issue is mutants which are
being killed by nearly all of test inputs from the input domain. They
increase mutation score of test suites but killing them should not be
considered as a success for test suites generated for a coverage
criterion because all other small test suites, even random suites, will

kill them. In this experiment, easy-to-kill mutants have been
removed from the mutation analysis by detecting mutants which are
being killed by 80% of randomly selected test cases. Number of
detected equivalent and easy-to-kill mutants of subject programs is
listed in Table 2. All non-equivalent and non-easy-to-kill mutants
make the final set of mutant programs to be used in the mutation
analysis process.

Model extraction and test requirements

Control flow graphs of subject programs have been extracted by
hand from their source code. Each node represents a basic block
and we have considered an edge for each decision. Also, to track
the execution path of programs against input test cases,
instrumented version of each program also has been created
according to its extracted control flow graph. Considering summary
information on programs in Table 1, one may point out the
inconsistency between the numbers given and the definition of
Cyclomatic Complexity Number:

CCN = E – N + 2P

where E is the number of edges of the graph, N is the number of
nodes of the graph and P is the number of connected components

(P is considered as zero here).
When we have multiple predicate decision statements, there are

two approaches on extracting CFGs from the source codes of such
programs. McCabe‟s Cyclomatic Complexity assumes that in each
decision statements, each clause of the predicate should be
considered as a separate decision and an edge is required.
Because this approach is not feasible in practice and dramatically
decreases the maintainability of the source codes (Ammann and
Offutt, 2008) and when we have combined non-decisional logical

statements, it does not solve the problem totally; this problem is
classified in logic coverage class of software testing criteria.
Multiple-condition coverage criterion (Myers et al., 2004) and all

other logic-based coverage criteria (Ammann and Offutt, 2008) are
trying to cover these situations effectively. We have chosen the
practical and more recommended approach to leave multiple-
condition decision statements unchanged in the source codes and
draw a branch edge for each decision. This is the reason behind
the aforementioned inconsistent numbers.

To prepare test requirements, we took advantage of Control Flow
Graph Web Application (Ammann et al., 2010), supporting tool of
Ammann and Offutt‟s textbook (Ammann and Offutt, 2008), in
extracting requirements of Edge, Edge-Pair and Prime-Path

coverage criteria. Totally, 635, 814 and 1340 test requirements
were extracted for Edge, Edge-Pair and Prime-Path criteria.

Execution paths and test requirements feasibility problem

In generating test suites to satisfy coverage criteria, a major
problem is test requirements that cannot be satisfied by any test

case. These are infeasible test requirements. “The detection of
infeasible test requirements is formally undecidable for most
coverage criteria, and even though some researchers have tried to
find partial solutions, they have had only limited success” (Ammann
and Offutt, 2008). Dealing with the problem of detecting infeasible
test requirements, we have generated all feasible execution paths
of the subject programs. Each program in the study generates a
relatively small number of unique execution paths against the entire
input domain. Each of the first nine programs does not generate
more than 1,000 unique paths out of 369,773 execution paths. P8
generates 12,442 different execution paths.

Test suites

Test suite is a set of test cases which are generated according to a
test selection strategy. In this study, we have three types of test

suites: coverage criteria suites, all paths covering suites and
random suites. Coverage criteria suites are generated to cover test
requirements of Edge, Edge-Pair and Prime-Path coverage criteria
with a specified percentage as their goal. For each criterion, a lot of
test suites are generated to cover the requirements of that criterion
from 5% up to maximum feasible coverage with the step of five. In
addition, five redundant test suites are generated for each coverage
level of each criterion. For example, for program P8, 90 test suites
are generated to cover 18 different coverage levels (5 to 90%) of

Edge-Pair coverage criterion. Test cases are selected randomly
from the inputs pool to incrementally augment a test suite up to its
specified coverage goal. When all feasible test requirements are

3852 Sci. Res. Essays

100

90

80

70

60

50

40

30

20

10

0

M
e

a
n

 m
u

ta
ti

o
n

 s
c
o

re
 (

%
)

Figure 1. Mean of the mutation scores of high coverage test suites generated for each criterion.

covered but test suites do not reach their goal, Sidetrip and then
Detour touring (Ammann and Offutt, 2008) are used to add more
test cases to those suites to cover remained test requirement
indirectly as much as possible. In addition to coverage criteria test
suites, random suites are generated with suite size 1 up to 31
(maximum size of criteria suites) for programs P1 to P7a and up to
124 test cases for P8.

All-Path covering suites are generated to cover all feasible paths
in the programs. Since each execution path may be covered by
more than one test input, 5 redundant All-Path covering suites are
generated for each program. Test cases to cover each feasible path
are selected randomly for these suites too.

RESULTS AND ANALYSIS

Coverage criteria effectiveness

Here, we analyze the effectiveness of the three test
coverage criteria on detecting seeded faults in the
programs. To see the maximum power of each coverage
criterion on detecting faults, we study results of mutation
analysis on test suites which are generated to satisfy all
feasible test requirements of the criterion under study. As
mentioned in Test Suites, five test suites are generated
for each specific coverage level of each criterion per
subject program. Figure 1 shows the results as a bar
chart indicating average mutation scores of five test
suites with highest coverage level. Results for Edge,
Edge-Pair and Prime- Path criteria are shown in order
from left to right for each program. Also, the mean of
mutation scores of test suites that are covering all

feasible paths is presented as the most right bar of each
column. Since all equivalent mutants have been removed
from the mutation analysis process, all mutants are
expected to be killed and effective test suites are
expected to detect all faults and reach 100% mutation
score. The first question is how many faults are detected
by each coverage criteria? Results show that the
effectiveness of coverage criteria is different in each
program. For some programs (for example P1, P2 and
P8), Prime-Path is relatively successful and detects
almost 90% of the faults. But for other programs, all three
coverage criteria leave out 20 to 80% of seeded faults.
We will discuss the reasons of these low fault detection
rates in „results and analysis‟. Shortly, it highly depends
on the programs under test.

On the other hand, in comparison between the
effectiveness of All-Path and other three criteria, we see
that the average fault detection rates of all of these three
criteria are significantly below the detection rate of All-
Path criterion covering test suites. In most of the
programs, except P1, P2, P8, there is a large difference
between mutation scores of All-Path coverage suites and
the scores of Edge, Edge-Pair and Prime-Path criteria.
Although, this is an expected result, it means that even a
powerful criterion like Prime-Path cannot reach the fault
detection rate that is achievable by path-based criteria.
Even in P1, P2 and P8 that these three criteria are
successful compared to the All-Path, they find that about
90% of seeded faults and 10% of detectable faults are
remained undetected in the programs. This leads us to

Keramati and Mirian-Hosseinabadi 3853

100

90

80

70

60

50

40

30

20

10

0

M
u

ta
ti

o
n

 s
c
o

re
 (

%
)

Coverage (%)

Figure 2. Mutation scores versus coverage levels for P4.

combine these criteria with other software testing
methods such as logic-based criteria when we need
higher levels of fault detection rates. Comparing
maximum effectiveness of Edge, Edge-Pair and Prime-
Path coverage criteria, they detect almost the same
number of faults in the programs P4 and P8. But in
general, it is observable that Prime-Path coverage
criterion is more effective than the other two criteria.
Edge-Pair reveals more faults than Edge coverage
criteria. This result is consistent with what the
subsumption relationships say about these three criteria
(Ammann and Offutt, 2008).

Exceptions are because of the moderately or highly
deviated values from the mean. This makes these results
unreliable. As we will discuss in „reliability of path-based
testing methods‟, whereas we have high dispersion in the
results of some programs, average of mutation scores of
test suites for these programs is not representative of
fault detection power of the evaluated criteria. In these
cases, we have test suites with the same level of
coverage but with significantly different mutation scores.
Pearson correlation analysis shows weak positive
correlation between mutation scores and criteria
coverage levels for these test suites. In practice,
generating test suites to cover all feasible test
requirements is not possible because recognizing
infeasible requirements is an undecidable problem

(Ammann and Offutt, 2008) and test engineers do not
know about most achievable coverage level. In addition,
finding test inputs for all feasible requirements is a very
expensive process. Thus, comparing the effectiveness of
test suites with lower coverage levels is important too.
Figure 2 demonstrates mutation scores of test suites
generated to satisfy coverage criteria for the program P4.
Polynomial regression lines estimate results well (R

2
 >

0.9).
It shows that achieving the same level of coverage

leads to significantly different fault detection rate for each
criterion compared to the others. Prime-Path covering
test suites are significantly more effective than Edge and
Edge-Pair suites. It also shows that only high level
coverage of Edge-Pair and Edge is effective for these two
criteria but Prime-Path reaches its maximum power near
the last one third of its feasible coverage level. Except P6
and P7 that are discussed in the following section, similar
results have been attained for other subject programs.

Reliability of path-based testing methods

Graph coverage criteria, such as those studied in this
paper, guide test engineers to select a lot of paths as test
requirement from extracted control flow graph and try to
find test inputs to satisfy these test requirements.

3854 Sci. Res. Essays

100

90

80

70

60

50

40

30

20

10

0

M
u

ta
ti

o
n

 s
c
o

re
 (

%
)

Coverage (%)

Figure 3. Mutation scores of coverage criteria on P5p.

“Formally, given a set TR of test requirements for a
graph coverage criterion C, a test set T satisfies C on
graph G if and only if for every test requirement tr in TR,
there is at least one test path p in path (T) such that p
meets tr” (Ammann and Offutt, 2008). This includes
structural and data flow criteria in general. On the other
hand, we know that All-Path coverage criterion subsumes
all other graph coverage criteria. This statement implies
that if our test suite covers all feasible paths in the CFG,
such a test suite will reach maximum fault detection rate
that is expected for a graph (path-based) coverage
criterion. Results of the experiment here confirm this
statement. Figure 1 shows that mutation scores of the All-
Path covering test suites are higher than any other
criteria for all programs. The result holds for all test suites
with low standard deviations from the mean. However,
the problem is where we observe that for most programs,
All-Path covering test suites are unable to detect high
rates of seeded faults. They leave about 10% of faults
undetected for programs P1 and P7a, about 20% for P3,
P5j, and P5p, and up to 50% for P7. Since there is no
other pure graph coverage criterion to be more powerful
than All-Path, this is the maximum effectiveness of such
criteria for these programs.

Studying the results from another point of view will
guide us to the underlying reason. For some programs in
this experiment, we observe high levels of deviation from
the mean of mutation scores for test suites with the same
criterion coverage percentage. As illustrated in Figure 3,
test suites generated for the program P5p not only have

low mutation score, but also suffer from high dispersion
and unreliability. Results cannot be correlated around a
regression line with an acceptable confidence level. For
example, test suites which are covering Edge-Pair test
requirements have mutation scores between 17 and 57%
and we cannot see any convergence in the results. This
is also true for two other criteria and for some other
programs such as P3, P5j and P6. P7 also demonstrates
similar results but its test suites converge when they
reach near the maximum feasible coverage level. These
results are also because of the same reason: traversing
the same execution paths does not mean killing the same
mutants and revealing the same set of faults. Therefore,
selecting only one test input to satisfy each feasible path
in the graph will not detect all faults in the program.

In this paper, we cannot discuss all aspects of this non-
deterministic behavior but we will show the reason with
two simple examples. Suppose that the correct version
for a part of our program is as follows:

int remainder Five (int year) {return year % 5}

and the faulty code is:

int remainder Five (int year) {return + year % 5}

If we select {year = 3} as test input, it will not reveal the
fault in the faulty code, but test input {year = 4} detects
the fault. These two test cases traverse the same path in
the graph. One of them is effective on revealing seeded

Keramati and Mirian-Hosseinabadi 3855

M
u

ta
ti

o
n

 s
c
o

re
 (

%
)

Coverage (%)

Figure 4. Mutation score dispersion of Edge-Pair covering suites generated for program P5j.

fault but the other one is not. As another example,
assume that the correct version of another code should
be:

if (c1 & c2) {do something}
else {do another thing}

where c1 and c2 are its boolean inputs. We also have an
implemented code with a fault as follow:

if (c1 || c2) {do something}
else {do another thing}

A test case with {c1 = true, c2 = true} as its inputs will not
detect the fault and the program acts as the correct
version. However, the test input {c1 = true, c2 = false} will
reveal the fault in the implemented code. These two test
cases also cover the same execution path in the graph of
the implemented code but they are different in fault
detection. In this example, this is the cause for the
existence of multiple-condition decision statements in the
program. This issue was discussed in „input domain‟.
However, this type of problems is not limited to branches
and decision-statements; all logical expressions may
have this non-deterministic behavior on fault detection
when we select test cases with graph coverage criteria.
Similar parts of code exist in the source code of the
programs in this study and lead to results mentioned

earlier for some programs. Figure 4, as an example,
demonstrates mutation scores dispersion of test suites
generated for Edge-Pair coverage criteria for program
P5j, using box plot diagram. It shows high dispersion in
the results even for mutation scores that cover all feasible
test requirements (73% coverage). In addition, running
Pearson correlation analysis on these data shows
significant (p-value < 0.001) but weak correlation
between coverage level and mutation score variables
(correlation coefficient r = 0.41). This result is also valid
for Edge and relatively Prime-Path coverage criteria of
this program and similar results have been observed for
programs P3, P5p, P6 and P7. The exception is Prime-
Path covering test suites in programs P5j and P5p which
have higher correlation coefficients (r > 0.8).

In such cases that we have test inputs that traverse the
same execution path but detect different set of faults in
the program, using path-based criteria prevents test
engineers from selecting test cases to reveal a lot of
faults. Graph coverage criteria such as Edge and Prime-
Path motivate test engineers to efficiently select only one
test case to satisfy each test requirement which is a path
in the extracted control flow graph. In these situations,
relying on such criteria may have negative impact on the
effectiveness of software testing process. Because of this
issue, as discussed in „competitive random test suites‟,
even random test suites may be more effective than
using graph coverage criteria in programs with such

3856 Sci. Res. Essays

property. This fact raises the need for some metrics and
criteria to check whether or not a coverage criterion is
expected to be effective for a program under test?

Cost-effectiveness of coverage criteria

Since achieving high levels of coverage criteria is
expensive, cost-effectiveness analysis expresses which
criterion is more effective according to the cost of building
test suites. Because measuring real cost of building test
suites to satisfy each criterion is a complex problem, like
similar studies (Andrews et al., 2006), we take the size of
test suites as the cost of building the suites. Using this
assumption in comparing test suites with the same size
(cost), which are generated for two coverage criteria, a
criterion which gains higher mutation score is more cost-
effective than the other one. Figure 5a shows relationship
between mutation score and the size of test suites for the
program P2 as an example. In this diagram, results are
estimated well with logarithmic regression lines (R

2
 >

0.8). We can see that Edge coverage is more cost-
effective than Edge-Pair, and Edge-Pair is more cost-
effective than Prime-Path coverage criterion. But, Prime-
Path continues its way to achieve higher mutation score
at the end.

Except where the results are not reliable and highly
deviate from the mean, this result is consistent among all
subject programs, especially for small size test suites.
The difference between cost-effectiveness of these three
criteria is statistically significant for all subject programs,
but the difference is small in practice and cannot be
considered practically significant. For program P8, the
difference reaches zero in the middle of the way and
continues vice versa. Prime-Path overcomes the two
other criteria when the size of test suites is greater than
60 in this program (Figure 5b).

Competitive random test suites

Studying mutation score of random-generated test suites
shows that these test suites are not successful in
detecting lots of seeded faults in the programs. In
analyzing the cost-effectiveness of random test suites
with respect to coverage criteria suites, it is observed that
in all programs, random suites are less effective than the
criteria-based generated suites (Figures 5a and b). In
other words, when we select random test suites with the
same size of suites generated to satisfy coverage criteria,
their fault detection rates are significantly lower than the
rates of the criteria-covering suites. But, when we
increase the size of random suites (up to 31 test cases in
this experiment for P1 to P7a), their mutation scores are
comparable to the maximum achieved mutation score of
some coverage criteria suites. One reason for this
success of random test suites in this experiment is the

nature of the subject programs and their input domain
distribution. Their input domain is relatively symmetric
and has about normal distribution on traversing execution
paths in the programs. Thus, random-generated test
suites will cover a lot of paths in the graph and can
achieve a competitive mutation score compared to
coverage criteria suites. However, random test suites
cannot reach high levels of fault detection rate.

Using coverage criteria helps test engineer to select
test cases such that they cover paths that would be
traversed rarely by random inputs. For example, using
coverage criteria in program P8 significantly raises their
mutation score upon the mutation scores of random
suites with similar size (Figure 5b). Another observation
for a number of programs is where random-generated
test suites attain higher mutation scores than the test
suites generated to satisfy our three coverage criteria.
For programs P3, P5j, P5p and P6, some random test
suites reach higher mutation scores than criteria-based
generated suites. Analyzing this case leads us to the
same conclusion made in „reliability of path-based testing
methods‟; when the program under test has several paths
and each path needs more than one test case or a
special test case to detect its hidden faults, using graph-
coverage criteria such as Edge, Edge-Pair or Prime-Path
may show satisfaction of the test requirement, but faults
still remain in the code. It is particularly likely for paths
that traverse a wide subset of the input domain. In this
case, random test suites may select more than one test
case traversing this path and have more chance to detect
faults than test suites with only one test case for the path.

Although, random-generated test suites cannot reveal
faults in exceptional and rarely traversing paths, selecting
more test cases to traverse primary paths of the program
may improve their fault detection rate. Their fault
detection rate may be increased to a level even higher
than that of the criteria-covering suites, which try to select
only one test case for each path to be efficient and cost-
effective.

Applying Sidetrip and Detour

Whereas, there are so many infeasible test requirements
for some coverage criteria, it is recommended to cover
these requirements with other touring methods like
Sidetrip and Detour (Ammann and Offutt, 2008).
Analyzing the results in this study shows that for most
programs, although adding more test cases to tour
infeasible test requirements with Sidetrip and Detour
increases criteria-coverage level of test suites, it does not
increase mutation score of them significantly. For Edge
and Edge-Pair criteria, Sidetrip and Detour were not
applicable. It is true for all of the programs. For Prime-
Path coverage criterion, Sidetrip and then Detour help the
criterion to select more test cases to cover infeasible test
requirements, but they are not significantly useful in

Keramati and Mirian-Hosseinabadi 3857

100

90

80

70

60

50

40

30

20

10

0

M
u

ta
ti

o
n

 s
c
o

re
 (

%
)

(a)

100

90

80

70

60

50

40

30

20

10

0

M
u

ta
ti

o
n

 s
c
o

re
 (

%
)

(b)

Figure 5. Mutation score versus test suite size for programs a) P2 and b) P8.

increasing the mutation score of the suites for most
programs. For programs P3 and P5j, it seems that these
two touring methods are effective for Prime-Path
coverage criterion. However, the bad news is that adding

random test cases also increases the test suites‟
effectiveness with relatively the same rate for the
program P3. It means that indirect touring were not useful
in this case too. Thus, in our experimental study, Sidetrip

3858 Sci. Res. Essays

and Detour was significantly beneficial only for P5j, but
due to its small difference with respect to random suites,
it was not practically significant.

To conclude, we can report that these touring methods
were not advantageous for subject programs in this
experiment, but in general, they may be useful for other
types of programs.

Effectiveness of cross test suites

Since all subject programs in this experiment are
implementing the same problem, we can measure the
effectiveness of test suites generated for one
implementation on detecting faults of another
implementation. The goal of this analysis is to observe
whether previously generated test suites are still effective
on detecting fault when developers change or re-
implement it again. This part of the experiment has been
done for programs P1 to P7a due to their equivalent input
domain. According to the results, test suites of programs
P1 and P2 are effective on almost all programs (except
P7) compared to the effectiveness of test suites of the
programs themselves. Mutation scores of these test
suites on other programs are almost equal or above the
mutation scores of self-generated test suites. However,
test suites of P3 to P7a are not significantly effective on
other programs. In general, results show that we cannot
rely on test suites designed for one implementation of a
program to test another one.

When a development team decides to make a major
change or implement a unit of a program again, test
engineers also have to derive new test suites for the new
implementation, or at least measure the effectiveness of
the previously extracted test suites on the newly
implemented unit.

Threats to validity

Looking for validity issues is a critical analysis of every
empirical research in software testing (Briand, 2007).
Here, we discuss briefly the external, internal, construct
and conclusion validity issues in this study. Although, the
selected subject programs are industrial components, but
they belong to the same domain, and this is an external
threat to the validity of the study. So, it is important to
repeat this experiment on other subject programs from
other domains. Another threat is in measuring the cost of
testing which is assumed to be related to the size of
generated test suites. This is a construct validity issue
similar to some other related studies (Andrews et al.,
2005). In this study, it is tried to mitigate internal and
construct validity issues by means of employing all
mutation operators supported by MuJava (Ma et al.,
2005), using all inputs as test inputs pool, detecting all
equivalent mutants, removing easy-to-kill mutants and

building several criteria-covering test suites through
guided random selection of path-covering test cases from
the pool.

CONCLUSIONS AND FUTURE WORK

This paper reports results of an experimental study on
evaluating the effectiveness of four graph-based
coverage criteria which are Edge, Edge-Pair, Prime-Path
and All-Path for 10 subject programs from a single
domain. Employing the entire input domain of the
programs in detecting equivalent mutants and infeasible
test requirements makes the results more accurate and
dependable in the study. Our results show that for all
selected graph coverage criteria, the effectiveness of test
suites generated to satisfy them highly depends on the
program under test. These criteria are effective for some
programs, but criteria generated test suites failed to
achieve acceptable mutation score for some other
programs. The fault detection rate of the Edge, Edge-Pair
and Prime-Path coverage criteria are significantly lower
than the fault detection rate of the All-Path criterion.
Furthermore, employing Sidetrip and Detour methods for
indirectly covering infeasible test requirements did not
significantly improve the effectiveness of criteria-
generated test suites in the experiment. It also shows that
only high coverage levels are effective for the Edge and
Edge-Pair criteria. However, Prime-Path reaches its
maximum power near the last one third of its feasible
coverage level. Even though All-Path coverage criterion,
as the superior of other graph coverage criteria is
expected to reveal significant number of faults, results
show that it cannot reach the maximum feasible mutation
score. It is due to the fact that test cases which traverse
the same path in control flow graph of programs do not
kill same set of mutants on that path. Graph coverage
criteria, which are based on satisfying path-based test
requirements, may stop test engineers to select more
than one test case to cover each execution path.
Therefore, in some cases, relying on these criteria may
have negative impact on the effectiveness of criteria-
generated test suites in a software testing process.

According to the results, the difference in the cost-
effectiveness of Edge, Edge-Pair and Prime-Path criteria
is not practically significant. All of them are more cost-
effective than random-generated suites. However,
coverage criteria will stop adding more test cases to test
suites but random suites continue their way and rapidly
reach to competitive mutation scores in some cases.
Another experience in this study was selecting different
implementations of the same problem as subject
programs. It made several advantages. First, the results
were more comparable. Secondly, it let us to evaluate
cross test suite effectiveness, which is studying whether
test suites generated to satisfy a coverage criterion for a
program are effective in revealing fault of another

implementation of the same problem. Thirdly, test oracle
problem could be solved by means of selecting one of the
programs as oracle function and applying the majority
selection approach to use it as the expected output, or
detect variances among their outputs and search for the
correct output only for only a small set of test inputs.
Finally, ease of experimental automation was another
benefit in this manner. Results show that test suites
which are effective on detecting faults in one
implementation of a problem are not necessarily effective
on revealing faults in another implementation of the same
problem. Thus, when developers do vast changes in a
program or re-implement a unit of the program, based on
the results, it is recommended not to rely on test cases
generated for the previous implementation.

Further studies are required to confirm the results in
this study with subject programs from other problem
domains. Since the effectiveness of test suite generated
for coverage criteria highly depends on the program
under test, we are to find some metrics to recommend
how to choose a coverage criterion and also which level
of fault detection rate is expected to achieve for a
criterion in different situations.

ACKNOWLEDGEMENTS

The authors acknowledge Jeff Offutt, Paul Ammann and
Nan Li for sharing their resources and tools for this study
with us. Also thanks to Mostafa Hashemi for sharing the
source code of his proprietary calendar-converter
component.

REFERENCES

Ammann P, Offutt J (2008). Introduction to software testing. Cambridge

University Press.
Ammann P, Offutt J, Xu W, Li N (2010). Graph Coverage Web

Application. Internet:

http://cs.gmu.edu:8080/offutt/coverage/GraphCoverage. version Feb.
2010.

Keramati and Mirian-Hosseinabadi 3859

Andrews J, Briand L, Labiche Y (2005). Is mutation an appropriate tool

for testing experiments? In Proceedings of the 27th International
Conference on Software Engineering (ICSE-27), pp. 402-411.

Andrews J, Briand L, Labiche Y, Namin A (2006). Using Mutation

Analysis for Assessing and Comparing Testing Coverage Criteria.
IEEE Trans. Softw. Eng. 32:608-624.

Andrews J, Zhang Y (2003). General test result checking with log file

analysis. IEEE Trans. Softw. Eng. 29(7):634-648.
Borkowski K (1996). The Persian calendar for 3000 years. Earth Moon

Planets 74(3):223-230.

Briand L (2007). A critical analysis of empirical research in software
testing. First International Symposium on Empirical Software
Engineering and Measurement, pp. 1-8.

Budd T, Sayward F (1977). Users guide to the Pilot mutation system.
Department of Computer Science, Yale University, Technical Report
114.

DeMillo R, Lipton R, Sayward F (1978). Hints on test data selection:

Help for the practicing programmer. Computer 11(4):34-41.
Hamlet R (1977). Testing programs with the aid of a compiler. IEEE

Trans. Softw. Eng. 3(4):279-290.

Jia Y, Harman M (2011). An Analysis and Survey of the Development of
Mutation Testing. IEEE Trans. Softw. Eng. 37(5):649-678.

Kim S, Clark J, McDermid J (2001). Investigating the effectiveness of

object-oriented testing strategies using the mutation method. Softw.
Test. Verification Reliab. 11(4):207-225.

Lee CC (2009). JavaNCSS: A Source Measurement Suite for Java.

Internet: http://javancss.codehaus.org.
Li N, Praphamontripong U, Offutt J (2009). An Experimental

Comparison of Four Unit Test Criteria: Mutation, Edge-Pair, All-Uses

and Prime-Path Coverage. In Proceeding of International Conference
on Software Testing, Verification, and Validation (ICST) Workshops
pp. 220-229.

Ma Y, Offutt J, Kwon YR (2005). MuJava: An automated class mutation
system. Softw. Test. Verification Reliab. 15(2):97-133.

McCabe T (1976). A Complexity Measure. IEEE Trans. Softw. Eng.

2(4):308-320.
Myers GJ, Badgett T, Sandler C, Thomas TM (2004). The art of

software testing. John Wiley and Sons.

Northrop Grumman Corporation (2010). Count Lines of Code Tool
(CLOC). Internet: http://cloc.sourceforge.net.

Offutt A, Lee A, Rothermel G, Untch R, Zapf C (1996). An experimental

determination of sufficient mutant operators. ACM Trans. Softw. Eng.
Methodol. 5(2):99-118.

Selvaraj P, Iyer V (2006). Software Complexity Visualiser (CyVis).

Internet: http://cyvis.sourceforge.net.
Thévenod-Fosse P, Waeselynck H, Crouzet Y (2002). An experimental

study on software structural testing: Deterministic versus random

input generation. In Proceedings of 21st International Symposium on
Fault-Tolerant Computing (FTCS-21) pp. 410-417.

