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The objective of the present study is to describe the results of research that has been conducted on the 
buckling behavior of rectangular laminated orthotropic plates that have a rectangular hole. As a result 
of using some geometrical holes which cause stress concentrations on laminated orthotropic plates, 
the analysis about the buckling coefficient of the elements become very important. This work deals with 
buckling analysis of laminated orthotropic plates with a central rectangular hole under in-plane static 
loading (uniaxial compression). Initially, the critical buckling coefficients of the laminated plates are 
obtained by finite elements method. However, as a new study, an other numerical method is applied to 
this work which is called “artificial neural networks” in order to obtain those buckling coefficients. A 
PASCAL computer program is used for training and testing procedure of neural networks, and finally 
good results are achieved. 
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INTRODUCTION 
 
The physical understanding and numerical simulation of 
the buckling of laminated plates have been the focus of 
intense efforts because of the extended use of fibrous 
composites in aerospace, automotive, ship building and 
other industries and the need to establish the practical 
limits of the load carrying capability of structures made 
from these materials (Jones, 1999). Summaries of the 
many buckling studies reported in the literature are given; 
a study of the buckling behavior of laminated plates with 
a central circular hole was presented by Lin and Kuo 
(1989). Finite element results were obtained for clamped 
and simply supported stress loaded plates loaded by 
uniaxial compression, biaxial compression or tension 
(compression biaxial loading). The effects of material 
parameter randomness on the initial buckling load of 
rectangular, specially orthotropic, composite laminates 
(Salim et al., 1998). The basic formulation for stability 
analysis   is   based  on   classical   laminate   theory.  An 

approximate analysis for buckling of a rectangular 
specially - orthotropic plate with a central hole is applied 
to symmetrically laminated angle - ply plates (Nemeth, 
1988). buckling loads and modes of flat composite 
laminates were measured and compared with theory 
(Tuttle et al., 1999). Laminates were subjected to simply 
supported boundary conditions and biaxial loading. The 
objective of this study is to give an overview of the finite 
element buckling analyses of laminated plates and to 
explore an other method to calculate the buckling values. 
Therefore, at the first part, the finite element method (FEM) 
is applied to obtain the buckling responses of laminated 
plates subjected to various combinations of mechanical 
loadings. The sensitivity of the responses to variations in 
material and lamination parameters is searched. 

At the second part, a new neural network program is 
performed to calculate the buckling coefficients of plates 
as an alternative method.  The  dimensions  of  the  holes
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 Fig.1 Geometry of the laminated rectangular plate. 
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Figure 1. Geometry of the laminated rectangular plate. 

 
 
 
and the number of lamina are used with the results of 
FEM for the training and testing phases of the neural 
network program. 
 
 
BUCKLING OF LAMINATED PLATES 
 
The laminated plates considered herein have rectangular 
platform and consist of a number of perfectly bonded 
laminates. Each lamina is assumed as a homogeneous 
anisotropic materials. Consider a rectangular laminated 
plate of length L central rectangular hole a and b in the x 
and y directions as shown in (Figure 1) and thickness t 
which consists of 2,4,6,8 orthotropic laminates.The plate 
is defined in the cartesian coordinates x, y and z with 
axes x and y lying on the middle surface of the plate, and 
is subjected to biaxial compressive forces N x and N y in 
the x and y directions, respectively, as shown in Figure 1. 
In the present study, a first-order shear deformable 
theory is employed to analyse the problem and the 
following displacement field is assumed 
 

u x, y, z uo x, y z ψ x x, y

v x, y, z vo x, y z ψ y x, y 

w x, y, z w x, y 
              (1) 

 
Where uo, vo and w are the displacements of the 
reference surface in the x, y and z direction, respectively, 
and ψ x ,ψ y are the rotations of the transverse normal 
about the x and y -axes (Turvey and Marshall, 1995). In 
the finite element formulation, the deformation variables 
within a typical element (e) are approximated as: 
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u Φa 
                          (2) 

 

Where []is the matrix of shape functions and {ae} 
generalized nodal displacements. For example, for the 
Reissner - Mindlin theory in which the deformation 
variable matrix {ae} includes uo, vo, w, ψx and ψy: 
 

a
euo, vo, w, ψx, ψy

T 
  
             (3) 

 

Using Equation 2, the strain energy can be expressed in 
the matrix form: 
 

U ∑e 1/2a
e


T
K

e
a

e
− a

e


T
F

e
 1/2a

T
Ka−a

T
F 

 (4) 
 

In which {a}, [K] and {F}represent the global displacement, 
stiffness and buckling load matrices, respectively. 
Likewise, the potential of the in-plane forces which 
develop during the prebuckling state, becomes: 
 

V = 1/2 ∑e a
e
 KG

e
a

e
 = 1/2 a


 KGa 

        (5) 
 

Where [KG] is the global geometrical stiffness matrix. 
For buckling loading, the equations governing the 

prebuckling equilibrium state are found by minimizing 
Equation 4 with respect to the nodal displacement vector 
{a}, with the result: 
 

K a F                 (6) 
 

Equation 6 is solved for the nodal displacements, after 
which the corresponding stress resultant distributions and 
the geometric stiffness matrix [KG] can be found. The 
eigenvalue problem governing subsequent buckling is 
then established by requiring that the increase in total 
potential Π = U + V be a minimum; this yields: 
 

K  λKG   0  
             (7) 

 

where the lowest eigenvalue λ corresponds to the 
amplitude of the critical buckling load (Bathe, 1982; 
Vasiliev and Jones, 1993; Vinson, 1975; Tung and 
Surdenas, 1987). 

At the next part of this work, the critical buckling 
coefficients which are obtained by FEM are aimed to be 
calculated by using an other computing method, artificial 
neural network. 
 
 

ARFICIAL NEURAL NETWORKS (ANN) 
 

Nowadays, engineers and scientists are trying to develop 
intelligent machines. Artificial neural systems are present-
day examples of such machines that have great potential 
to further improve the quality of our life.  It  is  well  known
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Figure  2. A multilayer perceptron architecture. 

 
 
 
that people and animals are much better and faster at 
recognising images than most advanced computers. 
Although computers outperform both biological and 
artificial neural systems for tasks based on precise and 
fast arithmetic operations, artificial neural systems 
represent the promising new generation of information 
processing networks. Advances have been made in 
applying such systems for problems found intractable or 
difficult for traditional computation Karadag and Akgobek 
(2008). Neural networks can supplement the enormous 
processing power of digital computer with the ability to 
make sensible decisions and to learn by ordinary 
experience, as human do. Network computation is 
performed by a dense mesh of computing nodes and 
connections. They operate collectively and 
simultaneously on most or all data and inputs. The basic 
processing elements of neural networks are called 
artificial neurons, or simply neurons. Often they are 
simply called nodes. Neurons perform as summing and 
non-linear mapping junctions. In some cases they can be 
considered as threshold units that fire when their total 
input exceeds certain bias levels. Neurons usually 
operate in parallel and are configured in regular 
architectures. They are often organised in layers, and 
feedback connections both  within  the  layer  and  toward 

adjacent layers are allowed. Connection strength is 
expressed by a numerical value called a weight, which 
can be modified. Among  the  Artificial  Neural  Networks, 
the elementary multilayer perceptrons (MLP) with 
sigmoidal transfer function had been successfully applied 
to solve some difficult and diverse problems as non-linear 
discriminant function classifiers. The feedforward network 
learns from the input data by the supervision of the output 
data creating single linear discriminant functions by each 
sigmoid hidden unit and combines them. Thus, this 
piecewise linear discriminant function works as a non-
linear discriminator (Zurada, 1993). 

Training the network in a supervised manner with a 
highly popular algorithm known as the error back-
propagation (BP) has become very popular. The back-
propagation is an optimisation technique for implementing 
gradient descent in weight space for multilayer 
feedforward networks. The basic idea of the technique is 
to efficiently compute partial derivatives of an 
approximating function F (w;x) realized by the network 
with respect to all the elements of the adjustable weight 
vector w for a given value of input vector x and output 
vector y. The weights are adjusted to fit linear piecewise 
discriminant functions to feature space for the best class 
separability. The difference between the network's output
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Table 1. Optimum parameters and % errors of programs. 
 

Program  No. Output variables ε Α Hidden layer node number Average % error 

1 Buckling coefficient (2 layers) 0.20 0.93 2 0.169 

2 Buckling coefficient (4 layers) 0.70 0.90 2 0.302 

3 Buckling coefficient (6 layers) 0.70 0.90 2 0.204 

4 Buckling coefficient (8 layers) 0.70 0.90 2 0.112 

 
 
 
and the supervisor output is minimized according to a 
predefined error function (performance criterion) such as 
mean square error (MSE). In this work, neural network 
system has been applied with multilayer perceptron 
(Figure 2), and backpropagation algorithm by supervised 
training (Çetinel et al., 2002). A computer program, which 
was written by the authors in PASCAL, has been used for 
this application. Obtained buckling coefficients produced 
as a function of orthotropic lamina numbers and the 
rectangular hole dimensions have been used for training 
operations. 
 
 
Training procedure 
 
The general aim of the training process is to teach the 
relations between input and output values to the program 
and get the results with the possible lowest errors. In this 
work, we have performed four separate programs due to 
the lamina numbers of plates which are 2, 4, 6 and 8 
laminates. In all four programs, the input variables are the 
dimensions of rectangular hole at x and y directions while 
the output variables are buckling coefficients. Therefore, 
there are two input variables and one output variable at 
each program in this application. In neural network 
procedure, the training values are supposed to be 
reduced between 0 and 1 which is called the 
normalization process. That must be done before training 
phase by dividing the input and output values by some 
appropriate numbers. 
 
 
NUMERICAL RESULTS AND DISCUSSION 
 
The FEM results previously obtained in this paper are 
used now as input and output data that consist of 36 
rows in each program (some of the input and output 
values were kept in order to be used for testing process 
after training). Many training iterations were made by 
changing the learning rates (α), momentum values (ε), 
and the node numbers of hidden layers. Training is 
completely a trial and error process and aims to get the 
appropriate network parameters to minimize the errors. 
These parameters are α, ε, and hidden layer node 
numbers. After many trials and performing numerous 
iterations, the optimum parameters and the final average 
errors of each program are obtained as shown in Table 1. 

As seen, the average % errors are less than 0.3 s which 
are clearly acceptable for neural network applications. 
The final error values are obtained by 50000 training 
iterations. As it was aforementioned, the training process 
takes much more time because of many trials by 
changing the parameters. But this process is terminated 
when the optimum parameters are determined. 
 
 
Testing 
 
The final and most important step of neural network 
applications is testing the designed programs with real 
values. The programs used for training in this study are 
also available for testing procedure. Testing process is 
carried out by using different input values which were not 
used for training previously. In Table 2, the testing results 
are presented together with the results of FEM. As it is 
obviously seen, ANN test outputs (results) have enough 
agreement with the ones of the FEM method. Finally, it 
can be said that, this method has been an alternative way 
to calculate the buckling coefficients of laminated plates. 
It should also be emphasized that, the neural network 
program is able to work for different input values (that 
were not used by FEM), and gives good results. And an 
other important point is that the testing process takes 
only milliseconds unlike the training procedure. So the 
results are able to be obtained in very short time. 
 
 
CONCLUSION 
 
In this work, critical buckling coefficients of rectangular 
laminated plates which carry rectangular holes are 
obtained by two different methods. At the beginning, the 
stress of the laminated plates is analyzed by considering 
stress concentrations for critical buckling. This work 
shows that there is an important decrease in the critical 
buckling coefficients of laminated orthotropic plates. So a 
finite element solution is performed in order to obtain 
those buckling coefficients due to the number of lamina 
and the hole dimensions of plates. Secondly, an 
alternative method is performed to do the same work. 
That is artificial neural networks, and it is used to obtain 
the critical buckling coefficients which were obtained by 
FEM. The results of FEM and ANN are compared, and 
little differences are determined. The error rates about  % 
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Table 2. The comparison between FEM and ANN results. 
 

 
1st 

Input 
(a/L) 

2nd
 
 

Input 
(b/L) 

Buckling coefficients 

FEM results ANN results 

2 laminate 

0.125 0.1 5.40 5.26 

0.475 0.1 4.81 4.71 

0.275 0.2 4.05 4.06 

0.375 0.2 4.01 3.99 

0.225 0.3 3.67 3.64 

0.425 0.3 3.52 3.51 

0.175 0.4 2.75 2.77 

0.325 0.4 2.60 2.60 

     

4 laminate 

0.225 0.1 2.60 2.61 

0.475 0.1 2.42 2.42 

0.125 0.2 2.64 2.62 

0.375 0.2 2.31 2.30 

0.125 0.3 2.37 2.36 

0.425 0.3 1.78 1.84 

0.175 0.4 1.83 1.83 

0.425 0.4 1.60 1.57 

     

6 laminate 

0.125 0.1 2.39 2.39 

0.425 0.1 2.09 2.10 

0.175 0.2 2.19 2.17 

0.275 0.2 2.05 2.01 

0.125 0.3 2.00 1.98 

0.375 0.3 1.52 1.54 

0.225 0.4 1.45 1.44 

0.325 0.4 1.27 1.30 

     

8 laminate 

0.125 0.1 2.25 2.25 

0.475 0.1 1.93 1.92 

0.225 0.2 1.95 1.94 

0.375 0.2 1.76 1.76 

0.175 0.3 1.84 1.88 

0.325 0.3 1.65 1.66 

0.225 0.4 1.74 1.72 

0.475 0.4 1.49 1.48 
 
 

 

0.2 s are fairly granted by neural network applications. 
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