

Scientific Research and Essays Vol. 5(23), pp. 3719-3729, 4 December, 2010
Available online at http://www.academicjournals.org/SRE
ISSN 1992-2248 ©2010 Academic Journals

Full Length Research Paper

On the delay and link utilization with the new-additive
increase multiplicative decrease congestion avoidance

and control algorithm

Hayder Natiq Jasem1,2*, Zuriati Ahmad Zukarnain1, Mohamed Othman1 and
Shamala Subramaniam1

1Department of Communication Technology and Networks, Faculty of Computer Science and Information Technology,

University Putra Malaysia.
2Department of Computer Science, Faculty of Science for Woman, University of Baghdad, Iraq.

Accepted 15 November, 2010

Additive increase multiplicative decrease (AIMD) algorithm is the prevailing algorithm for congestion
avoidance and control in the Internet. Reducing the end-to-end delays and enhancement of the link
utilization are the important goals of this algorithm. In this work, we continue to study the performance
of the New-AIMD (additive increase multiplicative decrease) mechanism as one of the core protocols for
TCP, to avoid and control the congestion. We want to evaluate the effect of using the AIMD algorithm
after developing it, which we called the New-AIMD algorithm, to find a new approach to measure the
end-to-end delay and bottleneck link utilization and use the NCTUns simulator to obtain the results after
making the modification for the mechanism. We will use the DropTail mechanism as the active queue
management mechanism (AQM) in the bottleneck router. After the implementation of our new approach
with a different number of flows, we expect the end-to-end delay to be less when we measure the delay
dependent on the throughput for the entire system. In addition, we will measure the bottleneck link
utilization using this mechanism and expect to get high utilization for bottleneck link and avoid the
collisions in the link.

Key words: Congestion control, TCP, AIMD, delay, link utilization.

INTRODUCTION

End-to-end congestion avoidance and control, as well as
fair network resource management would be of
considerable benefit, if the TCP sender knows of the
behaviour and any delay in the bottleneck queue. Several
methodologies have been developed to estimate
bandwidth and bottleneck queue, based on the temporary
measurements of throughput, inter-packet gap or RTT.
For example, TFRC (Handley et al., 2003) calculates
throughput via a throughput equation that incorporates
the loss event rate, round-trip time and packet size. TCP-
Vegas (Brakmo and Peterson, 1995) estimates the level
of congestion using throughput-based measurements.

TCP-Vegas demonstrated that measurement-based

*Corresponding author. E-mail: hayder_n@yahoo.com.

window adjustment is a viable mechanism; however, the
corresponding estimators can be improved. In TCP-
Westwood (Casetti et al., 2002), the sender continuously
measures the effective bandwidth used by monitoring the
rate of returned ACKs. TCP-Real (Tsaoussidis and
Zhang, 2002) uses wave patterns: a wave consists of a
number of fixed-sized data segments sent back-to-back,
matching the inherent characteristic of TCP to send
packets back-to-back. The protocol computes the data-
receiving rate of a wave, which reflects the level of
contention at the bottleneck link. Bimodal congestion
avoidance and control mechanisms (Attie et al., 2003)
compute the fair-share of the total bandwidth that should
be allocated for each flow at any point during the
system’s execution.

Additive Increase/Multiplicative Decrease (AIMD) is the
algorithm that controls congestion in the Internet

3720 Sci. Res. Essays

Th
ro

ug
hp

ut

Load

Figure 1. Throughput as a function of load (Chiu
and Jain, 1998).

(Chiu and Jain, 1998). It is coded into TCP and adjusts its
sending rate mechanically, according to the ‘signals’ the
TCP receives from the network.

AIMD-based congestion avoidance and controls
(Lahanas and Tsaoussidis, 2003) developed the AIMD
algorithm to AIMD-FC to obtain greater efficiency and
fairness than the AIMD algorithm. TCP-Jersey (Xu et al.,
2004) operates based on an “available bandwidth”
estimator to optimize the window size when network
congestion is detected. The Packet-Pair technique
(Keshav, 1991) estimates the end-to-end capacity of a
path, using the difference in the arrival times of two
packets of the same size travelling from the same source
to the same destination. The TCP-based New-AIMD
congestion avoidance and control (Hayder et al., 2008)
developed the AIMD algorithm into the New-AIMD, to
obtain greater efficiency and fairness than the AIMD-FC+
algorithm and evaluated the efficiency compared to
AIMD-FC+ in (Lahanas and Tsaoussidis, 2003; Lahanas
and Tsaoussidis, 2002).

In (Hayder et al., 2009; Hayder et al., 2010) the delay
and utilization in various experiments for implementation
of New-AIMD were investigated and evaluated and were
found to be comparable to AIMD-FC+ (Lahanas and
Tsaoussidis, 2003). In this work, we investigate and
evaluate the implementation of the New-AIMD algorithm
in TCP on the network, to avoid and control any
congestion. We focused on delay and link utilization with
different scenarios, and maintain a lower queue size,
than that in the related work to reduce the delay for data
transmission in the network system and to increase the
link utilization.

Congestion control

It was not until 1988 that a widely accepted congestion
control algorithm was finally suggested (Jacobson, 1988).
This algorithm employed the additive increase
multiplicative decrease (AIMD) principle. According to the
AIMD, a protocol should increase its sending rate by a
constant amount and decrease it by a fraction of its
original value each time an adjustment is necessary. This

mechanism is the base of virtually all TCP
implementations used in the Internet today, as it is
proven to converge both a desirable level of efficiency as
well as a desirable level of fairness among competing
flows (Chiu and Jain, 1998).

In the years that followed the establishment of AIMD as
the standard algorithm used in TCP, the Internet
underwent numerous changes and rapidly increasing
popularity. With the availability of widespread services
such as e-mail and the World Wide Web (WWW), the
Internet became accessible to a wider range of people,
including users lacking any particular familiarity with
computers. Although, new competing technologies
emerged and the demands from a transport layer
protocol were greatly increased, experiencing only minor
modifications, TCP not only survived but also became an
integral constituent of the Internet. These modifications
reflect the different TCP versions in-use (TCP-Tahoe,
TCP-Reno, TCP-NewReno) (Jacobson, 1988; Allman et
al., 1999; Floyd and Henderson, 1999), experimental
TCP versions (TCP-SACK, TCP-Vegas) (Mathis et al.,
1996; Barkmo and Peterson, 1995), as well as special-
purpose TCP versions (T/TCP-TCP) (Braden, 1994).

The AIMD principle

As mentioned earlier, the basic concept of AIMD was
proven to yield satisfactory results when the network
infrastructure consisted of hard-wire connected
components. One year after the appearance of AIMD in
1988, the authors (Chiu and Jain, 1998) provided a
detailed analysis of different congestion control
strategies, as well as what makes the existence of such a
strategy in a transport protocol crucial. Below, we provide
a few of the important points made in this work. The
major issue of concern to a transport protocol is its
efficiency. On a network link crossed by a number of
different flows running the same protocol, the ideal
situation is to utilize as much of the available bandwidth
without introducing congestion (that is, packets queuing
up on the router). In Figure 1, we see the achieved
throughput as a function of the network load. It becomes
clear that we need to avoid overloading the link, as the
achieved throughput will diminish. For a protocol to
operate in the area between the points labelled as the
Knee and Cliff, a congestion control mechanism is
necessary.

The AIMD system model

Chiu and Jain (1998) formulated the congestion
avoidance problem as a resource management problem
and proposed a distributed congestion avoidance
mechanism, named, ‘additive increase/multiplicative
decrease’ (AIMD). In their work, as a network model, they
used a “binary feedback” scheme with one bottleneck

Figure 2. The control system model of m users
sharing a network (Lahanas and Tsaoussidis, 2003).

router (Ramakrishnan and Jain, 1990), as shown in
Figures 2 and 3. It consists of a set of m users, each of

which sends data in the network at a rate iw . The data
sent by each user is aggregated in a single bottleneck
and the network checks whether the total amount of data
sent by users exceeds some network or bandwidth
threshold xgoal (we can assume that, xgoal is a value
between the knee and the cliff and is a characteristic of
the network). The system sends a binary feedback to
each user indicating whether the flows exceed the
network threshold. The system response is 1 when
bandwidth is available and 0 when bandwidth is
exhausted. The feedback sent by the network is received
at the same time by all users. The signal is the same for
all users and they take the same action when the signal
arrives. The next signal is not sent until the users have
responded to the previous signal. Such a system is called
a synchronous feedback system or simply a synchronous
system. The time that elapses between the arrival of two
consecutive signals is discrete and the same after every
signal arrival. This time is referred to as RTT. The system
behaviour can be defined using the following time units:

i. A step (or round-trip time – RTT) is the time that
elapses between the arrival of two consecutive signals.
ii. A cycle or epoch is the time that elapses between two
consecutive congestion events (that is, the time
immediately after a system response 0 and ending at the
next event of congestion when the system response is
again 0).

In practice, the parameter xgoal is the network capacity
(that is, the number of packets that the link and the router
buffer can hold – or on-the-fly packets). When the
aggregate flow rate exceeds the network capacity, the
flows start to lose packets. If the transport protocol
provides reliability mechanisms (e.g. as in TCP), it can
detect the packet loss or congestion event. Since the
majority of the applications use reliable transport
protocols (e.g. TCP), the binary feedback mechanism has
an implicit presence; a successful data transmission is
interpreted as available bandwidth and a packet loss is
interpreted as a congestion event (Jacobson, 1988).

Jasem et al. 3721

Algorithmically, the AIMD can be expressed using the
following lines:

AIMD (W)

1) � i : constant = packet-size (W)
2) W: integer // congestion window
3) repeat forever
4) send W bytes in the network
5) receive ACKs
6) If W bytes are ACKed

7) W � W + � i
8) else
9) W � W/2
10) end
END-AIMD

In Lahanas work (Lahanas and Tsaoussidis, 2003), which
is related to our work, we can see the improvement of the
AIMD algorithm, when he developed the efficiency for this
algorithm to 88.9%. Lahanas called the algorithm (AIMD-
FC+), we can see it algorithmically with the following
lines:

AIMD-FC+ (w,dw,q)
1) 0←k
2) while (feedback is 1)
3) process (w+k)

4) iakk +←
5) end

6)
)(

2
1

dwkwdwdw −++←

7))(qfdww +←
END

When w is the window size, dw is the variable to record

the decreasing window, and)(qf is
2−= jkq

when 2/)(0 qqf ≤≤ , as described in detail in (Lahanas
and Tsaoussidis, 2003).

Delays

Delay and latency are similar terms that refer to the
amount of time it takes a bit to be transmitted from the
source to its destination (Welzl, 2005). Jitter is the delay
that varies over time. One way to view latency is how
long a system holds on to a packet. The system may be a
single device like a router, or a complete communication
system including routers and links (Welzl, 2005; Ravi,
2008). Closely related topics include bandwidth and
throughput. These are illustrated in Figure 4. Bandwidth
is often used to refer to the data rate of a system;
however, it also refers to the width of the frequency band
that a system operates in. Data rate and wire speed are

3722 Sci. Res. Essays

Figure 3. The AIMD system model within Layered Architecture in the Internet environment.

Figure 4. The relationships between bandwidth, delay, and throughput.

better terms when discussing transmitting digital
information. The speed of the system is affected by
congestion and delays. Throughput refers to the actual
measured performance of a system when delay is
considered.

Delays are caused by distance, errors and error
recovery, congestion, the processing capabilities of
systems involved in the transmission and other factors.
The delay of distance (called propagation delays) is
especially critical when transmitting data to more distant
destinations. Most communications require a round-trip
exchange of data, especially if the sender is waiting for
an acknowledgement of receipt from the receiver.
Increasing data rates allows more bits to be sent in the
same amount of time; however, it does not help improve
delay. Excessive delay may cause a receiving system to
time out and request a retransmission. The delay factor
has to be adjusted when excessive delay exists (Welzl,
2005). Delay is problematic for real-time traffic such as
interactive voice calls and live video. Delay can also be a

problem with time-sensitive transaction processing
systems. Delay caused by congestion must be avoided;
therefore, bandwidth management, priority queuing and
QoS are important to ensure that enough packets get
through on time. Variation in delay (jitter) is more
disruptive to a voice call than the delay itself (Brakmo and
Peterson, 1995; Johari and Tan, 2001).

Causes of delay

Delay is caused by hardware and software inefficiencies,
as well as network congestion and transmission problems
that cause errors. Delay may be caused by the following:

i. Network congestion, caused by excessive traffic.
ii. Processing delays, caused by inefficient hardware.
iii. Queuing delays, which may occur when buffers in the
network devices are flooded.
iv. Propagation delays, which are related to how long

it takes a signal to travel across a physical medium
(Welzl, 2005).

In this work, we will investigate and focus on the network
congestion delay and queuing delay from the different
causes of delays.

Congestion delay

As traffic increases on the network, congestion increases.
Congestion occurs at routers and switches, causing delay
that is variable (jitter). Ethernet shared mediums are
prone to congestion. A user must wait if the cable is
being used and collisions occur if two people try
transmitting at the same time. Both users wait and then
try again, causing further delay for the end-user
application (end-to-end delay) (Jahwan et al., 2005;
Wang et al., 2006). When a TCP/IP host begins to
transmit, it has no way to monitor the network for
downstream congestion problems. The host cannot
immediately detect that a router is becoming
overburdened. Only when the sender is forced into
retransmitting dropped packets, does it sense that the
network must be busy and then start to slow down its
transmissions. Several techniques (Welzl, 2005) have
been developed to resolve congestion problems on
TCP/IP networks, such as slow start and congestion
avoidance. Congestion controls help hosts adapt to traffic
conditions. A transmission starts slowly and builds up
until congestion is detected.

Network utilization

Network utilization is the ratio of current network traffic to
the maximum traffic that the port can handle. It indicates
the bandwidth used in the network. While high network
utilization indicates the network is busy, low network
utilization indicates the network is idle. When network
utilization exceeds the threshold under normal conditions,
it will cause low transmission speed, intermittence,
request delay and so on. Networks of different types or in
different topology have different theoretical peek values
under general conditions. However, this does not mean
that the higher network utilization is better. We must
make sure there is no packet loss when network
utilization reaches a certain value. For a switched
Ethernet, 50% network utilization can be considered as
high efficiency. If using a router or hub as a core switch
device in the network, the network utilization should be
lower than the link bandwidth capacity to avoid the
increasing collisions. Through monitoring network
utilization, we can understand whether the network is
idle, normal or busy (Welzl, 2005; Ravi, 2008; Lin et al.,
2005).

Furthermore, a file of size f with a total transfer time of
� on a TCP connection results in a TCP transfer

Jasem et al. 3723

throughput denoted by r and obtained from Equation (5)

r = f / � (5)

We can also derive the bandwidth utilization, pu,
assuming that the link bandwidth is B, by Equation (6)

pu = r / B (6)

In our approach, when we implement the New-AIMD
mechanism, we try to get high bottleneck link utilization
for link capacity (network resources) and conduct many
experiments, that depend on the number of flows, using
the link at the same time, to show the difference between
them.

Drop tail AQM algorithm

Drop Tail (DT) is the simplest and most commonly used
algorithm in the current Internet gateways, which drops
packets from the tail of the full queue buffer (Aun et al.,
2002). Its main advantages are simplicity, suitability to
heterogeneity and its decentralized nature.

However, this approach has some serious disadvan-
tages, such as no protection against the misbehaving or
non-responsive flows (that is, flows which do not reduce
their sending rate after receiving the congestion signals
from gateway routers) and no relative Quality of Service
(QoS).

The QoS is ideal in the traditional “best effort” Internet,
in which we have some guarantees of transmission rates,
error rates and other characteristics in advance. QoS is
of particular concern for the continuous transmission of
high-bandwidth video and multimedia information.
Transmitting this kind of content is difficult using the
present Internet with DT.

Generally, DT is used as a baseline case for assessing
the performance of all the newly proposed gateway
algorithms (Eitan et al., 2005; Aun et al., 2003).

MATERIALS AND METHODS

National Chiao Tung University network simulator

The NCTU network simulator is a high-fidelity extensible network
simulator and emulator, capable of simulating various protocols
used in both wired and wireless IP networks. The NCTUns can be
used as an emulator, which directly uses the Linux TCP/IP protocol
stack to generate high-fidelity simulation results and has many
other interesting qualities. It can simulate various networking
devices. For example, Ethernet hubs, switches, routers, hosts,
IEEE 802.11 wireless stations and access points, WAN (for
purposely delaying/dropping/reordering packets), optical circuit
switch, optical burst switch, QoS DiffServ interior and boundary
routers. It can simulate various protocols, for example, IEEE 802.3
CSMA/CD MAC, IEEE 802.11 (b) CSMA/CA MAC, learning bridge
protocol, spanning tree protocol, IP, mobile IP, Diffserv (QoS), RIP,
OSPF, UDP, TCP, RTP/RTCP/SDP, HTTP, FTP and telnet

3724 Sci. Res. Essays

(Wang et al. 2007).

The new approach of algorithm (New-AIMD)

Theorem: Let us assume that the capacity for the network (Window
size or goalX) is W. For simplicity, we will suppose that we have

two flows, f1 and f2. Initially, let flows f1 and f2 include 1x and 2x
windows sequentially. To maintain the generality we will assume

that, 1x < 2x and 1x + 2x < W; moreover, we are supposing that
the system converges to ‘fair’ in ‘m’ cycle. Induction proof: When we
prove the correctness we will make it for two flows, and similarly it
can be generalized for many flows. In the 1st cycle, the
pseudocode is given by the total flow:

1x + 2x + 2 1k (1)

And in the AIMD it is 1x + 2x + 2 1k

It is clear that in the 1st cycle, the system has 1k +1 Round Trip

Time (RTTs) or steps. Let 1x + 2x + 2 1k � W, then congestion
occurs and the system will give 0 as feedback. Now we will use the
decrease step. In the 2nd cycle pseudocode is given by total flow:

21
21 22

22
kk

xx +++
 (2)

But in the AIMD it is
21

21 2
22

kk
xx +++

It is clear that the 2nd cycle includes 12 +k RTT. Let

Wkk
xx ≥+++ 21

21 22
22 then the system will give 0 as feedback.

It is clear that we will use the decrease step again. In the 3rd cycle
(RTT) pseudocode is given by the total flow:

3212
2

2
1 222

22
kkk

xx ++++
 (3)

But in the AIMD it is
3212

2
2
1 2

22
kkk

xx ++++

Now here the 3rd cycle includes
13 +k

 RTTs. Let

Wkkk
xx ≥++++ 3212

2
2
1 222

22 then the system will give 0 as
feedback. It is clear, we will use the decrease step also. In the

same way, at
thm cycle we will have total flow:

mmm kkk
xx

2...22
22 211

2
1

1 +++ −−
 (4)

But in the AIMD, it is
mmm kkk

xx
2...

22 211
2

1
1 +++ −−

We will expect
thm cycle, indicates equilibrium, that is, all flows

share a fair allocation of the network resources. The algorithmical
approach, when the initial window size of two flows and the window

size are Wxx ,, 21 , respectively, is given by:

New-AIMD (Wxx ,, 21)

1) 21 xxz +←

2) 1←k

3) 1←t
4) while (feedback is 1)

5) 1+← kk

6) txxz 221 ++←

7) 1+← tt
8) if (z >= W)

9) 2
1

1
x

x ←

11) 2
2

2
x

x ←

12) txxz 221 ++←

13) 1+← kk
14) end if
15) end
END-AIMD

We used the following notation:

Z indicates used network capacity
K indicates numbers of RTTs
t is the number of steps
m Integer, to represent the number of cycles
w the window size

1x , 2x indicates the two flows that use the resources

The total number of packets in different cycles:

In the 1st cycle, the total number of packets is produced

by)2)(1(1211 kxxk +++ , but from the 1st cycle we

have Wkxx =++ 121 2 , So 1121 kWkxx −=++ .
Thus, the total number of packets is produced

by))(1(11 kWk −+ .
In the 2nd cycle, the total number of packets is produced

by
)2

22
)(1(21

21
2 kk

xx
k ++++

.

But from the 2nd cycle we have:
Wkk

xx =+++)22
22

(21
21

,

So
221

21 2
22

kWkk
xx −=+++

.

Jasem et al. 3725

Figure 5. Multiple flow experimental set-up for AIMD evaluation.

Thus, the total number of packets is produced by

))(1(22 kWk −+ .
In the same way for the 3rd cycle, the total number of packets is

produced by
))(1(33 kWk −+

.

In the same way in the
thm cycle, the total number of packets is

produced by
))(1(mm kWk −+

.
And so on; the total number of packets in all cycles is produced

by))(1(11 kWk −+ +))(1(22 kWk −+ +
))(1(33 kWk −+

 +

…+
))(1(mm kWk −+

.

But from the 1st equation we have 4/)2(12 kWk −= .

And from 2nd and 3rd equations we have
23 2

1
kk =

.

And from 3rd and 4th equations we have
34 2

1
kk =

,
224)

2
1

(kk =

and so
22)

2
1

(kk mm −=
 for m=3.

The efficiency of New-AIMD is more than 99%; this means it is 11%
higher than the efficiency of AIMD-FC+ in (Lahanas and
Tsaoussidis, 2003).

The Additive Increase/Multiplicative Decrease (AIMD) and (New-
AIMD) algorithms are described in detail in (Lahanas and
Tsaoussidis, 2003; Hayder et al., 2008; Hayder et al., 2009; Hayder
et al., 2010), respectively.

Experimental set-up and network topology

When we implement our evaluation plan on the NCTUns network
simulator, multiple flows share a bottleneck link. The network
topology used as a test-bed is the typical single-bottleneck two
dumbbells, as shown in Figure 5. For the simulation scenario, as a
general case, we use the following setup details:

The time for the experiment is fixed at 100 s. The link's capacity at
the senders, receivers and bottleneck link is (full-duplex) 100Mbps
and the maximum load for data transmission will be 12000 KB per

time, in this bandwidth capacity for link. The mechanism of active
queue management (AQM) in the gateways queues is the DropTail
mechanism (DT). We used an equal number of senders and
receivers nodes. The traffic for each source is generated by FTP
application when the TCP flow runs in each node. We suppose that,
all the flows are sent at the same time. All DT queues have 100-
packet lengths. Furthermore, we used the TCP-SACK as one
variant of TCP versions with AIMD, AIMD-FC+ and New-AIMD, to
evaluate the performance of the new algorithm compared with the
algorithms in the related work (Lahanas and Tsaoussidis, 2003).

RESULTS

In the following Figures (6, 7 and 8), we supposed that
the maximum data size that we want to transmit from one
of the senders to the receiver is equal to 100 MB. After
complete data transmission to the receiver, we can
calculate the total time taken to do the data transmission;
we mentioned above, about the relation between the
throughput and delay. In addition, we have different
cases for calculating the time and the results will depend
on the number of flows in the bottleneck link at the same
time.

In Figures 7 and 8, we show the comparison between
our mechanism New-AIMD with AIMD and AIMD-FC+, as
in the previous related work (Lahanas and Tsaoussidis,
2003). In Figure 9 we can see the comparison between
using our approach New-AIMD algorithm and the AIMD,
AIMD-FC+ algorithms in previous related work.

DISCUSSION

In this evaluation we found new results when using the
New-AIMD algorithm within TCP-SACK. First, and for
evaluating the end-to-end delay with the implementation
of this new approach (New-AIMD) in TCP-SACK, and
after the implementation of this experiment, we found that

3726 Sci. Res. Essays

0

2000

4000

6000

8000

10000

12000

14000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Time (s)

R
at

e
o

f s
en

d
in

g
 (K

B
)

Sending with one flow
Sending with two flows
Sending with three flows
Sending with four flows
Sending with five flow

Figure 6. Throughput (KB) vs. time (s) for transmit 100 MB with varying number of flows of
TCP-SACK with New-AIMD.

0

5

10

15

20

25

30

35

40

45

50

55

60

1 2 3 4 5

No. of Flows

Ti
m

e
(s

) SACK-AIMD

SACK-FC+

SACK-New

 No. of flows

Figure 7. The time (sec) needed to transmit the 100 MB depending on the number of flows
(1, 2, 3, 4 and 5) of TCP-SACK with AIMD, AIMD-FC+ and New-AIMD algorithms.

 No. of flows

Figure 8. The time (sec) needed to transmit the 100MB depending on the number of flows
(2, 4, 8, 16 and 32) of TCP-SACK with AIMD, AIMD-FC+ and New-AIMD algorithms.

Jasem et al. 3727

 No. of flow

Figure 9. Link utilization for bottleneck link using AIMD, AIMD-FC+ and New-AIMD within TCP-
SACK.

AIMD algorithms

Figure 10. The averages of time need to transmit (100MB) with AIMD, AIMD-FC+ and
New-AIMD algorithms within TCP-SACK.

the time that the network needs to transmit the complete
data that we want to send (100 MB) from the sender to
the receiver will be less than the time that the other AIMD
algorithms need, to transmit the same data by around
12% less. This is because in this approach we solved the
problem of congestion delay, which led to a reduction in
the waiting time in the queues, thereby reducing the time
required to transfer the data.

Second, we achieved more than 94% utilization for the
bottleneck link; this means we achieved 11% higher
utilization than in the previous related work (Lahanas and
Tsaoussidis, 2003). In the utilization in this evaluation, we
can observe the difference between the link utilization

when we add new numbers of flows to the experiment.
This is because of the full-duplex links between the
nodes of the network. Additionally, the utilization will be
less when we add more flows, as the ACK of
Transmission Control Protocol (TCP) from the receivers
also need space in the link to send it to, the senders at
the same time as the senders send other data to the
receivers.

Figures 10 and 11, show the difference between the
averages of the performance for the algorithms and the
value of evaluation for enhancement of the algorithm.
Figure 10 is dependent on the evaluation of delay for
different number of flows. Figure 11 is dependent on the

3728 Sci. Res. Essays

AIMD algorithms

Figure 11. The average Link Utilization for AIMD, AIMD-FC+ and New-AIMD algorithms within TCP-
SACK.

evaluation of link utilization. The average is from 20
experiments with minimal statistical deviation. The
number of flows in these experiments is (2, 4, 8, 16 and
32).

Conclusion

In the experiments for this work, we investigated two
types of performance metrics, the first one is end-to-end
congestion delay; in which we found that, the results after
implementing the New-AIMD algorithm were better than
the results in the previous work, because the delay was
less when we measured the delay depending on the
throughput for the entire system and we obtained end-to-
end delay of approximately 12% less than the delay with
AIMD-FC+ (Lahanas and Tsaoussidis, 2003).

In addition, in these experiments we have evaluated
the utilization of bottleneck link for the New-AIMD
mechanism. We found the results after implementing the
New-AIMD algorithm and achieved high utilization (more
than 94%) for the link and avoided the congestion in this
experiment for multi flows, using the same link at the
same time. This means we achieve 11% higher utilization
than the utilization with the AIMD-FC+ (Lahanas and
Tsaoussidis, 2003).

It can be said that this mechanism works well under the
conditions for the network experiments above. In
addition, the benefit from implementing the New-AIMD
algorithm in this study is that, it reduces the average
queue length, thereby decreasing the end-to-end delay
and increasing the link utilization, as well as avoiding the
network congestion. This can be deemed to be the major
contribution in this work for this algorithm.

REFERENCES

Allman M, Paxson V, Stevens W (1999). TCP Congestion Control. RFC

2581.

Attie P C, Lahanas A, Tsaoussidis V (2003). Beyond AIMD Explicit fair-
share calculation. In Proceedings of ISCC 2003.

Aun H, Harsha S, Krzysztof P, Michael JF (2003). Congestion Control
Algorithms in High Speed Telcommunication Networks. Department
of Electrical and Electronic Engineering.

Braden RT (1994). T/TCP-TCP Extensions for Transactions, Functional
Specification. RFC 1644.

Brakmo L, Peterson L (1995). TCP Vegas: End to end congestion
avoidance on a global Internet. IEEE J. on Selected Areas in
communi. 13(8):1465-1480.

Casetti C, Gerla M, Mascolo S, Sansadidi MY, and Wang R (2002).
TCP Westwood: End-to-End Congestion Control for Wired/Wireless
Networks. Wireless Networks J., 8: 467-479.

Chiu D, Jain R (1998). Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks. J. Comput. Networks
and ISDN. 17(1): 1-14.

Eitan A, Chadi B, Victor MR (2005). Analysis of AIMD Protocol Over
Path With Variable Delay. J. Comput. Networks, 48(6): 960-971.

Floyd S, Henderson T (1999). The New Reno Modification to TCP’s
Fast Recovery Algorithm. RFC 2582.

Handley M, Floyd S, Pahdye J, Widmer J (2003). TCP Friendly Rate
Control (TFRC): Protocol Specification. RFC 3448.

Hayder NJ, Zuriati A, Mohamed O, Shamala S (2008). The TCP-Based
New AIMD Congestion Control Algorithm. Int.ernational J. Comput.
Sci. Network Security, 8(10): 331-338.

Hayder NJ, Zuriati AZ, Mohamed O, Shamala S (2009). Experimental
Evaluation of Bottleneak Link Utilization with the New-Additive
Increase Multiplicative Decrease Congestion Avoidance and Control
Algorithm. J. Comput. Sci., 5(12): 1058-1062.

Hayder NJ, Zuriati AZ, Mohamed O, Shamala S (2010). The Delay with
New-Additive Increase Multiplicative Decrease Congestion
Avoidance and Control Algorithm. Inf. Technol. J., 4: 1327-1335.

Jacobson V (1988). Congestion avoidance and control. in Proceeding of
ACM SIGCOMM 88.

Jahwan K, Seongjin A, Jin WC (2005). A Comparative Study of Queue,
Delay, and Loss Characteristics of AQM Schemes in QoS-Enabled
Networks. Comput. Inf. J., 22: 1001-1019.

Johari R, Tan DKH (2001). End-to-end congestion control for the
Internet: delays and stability. IEEE/ACM Transactions on Networking,
9(6): 818-832.

Keshav S (1991). Congestion Control in Computer Networks. Ph.D.
Thesis, UC Berkeley, published as UCB TR 91/649.

Lahanas A, Tsaoussidis V (2002). Additive Increase Multiplicative
Decrease-Fast Convergence (AIMD-FC). In Proceedings of the
Networks 2002. August, Atlanta, Georgia.

Lahanas A, Tsaoussidis V (2003). Exploiting the Efficiency and Fairness
Potential of AIMD-based Congestion Avoidance and Control. J.

Comput. Networks, 43: 227-245.
Lin C, Xuemin S, Jon WM, Jianping P (2005). Performance Analysis of

AIMD-Controlled Multimedia Flows in Wireless/IP Networks.

Department of Electrical & Computer Engineering, University of
Waterloo.

Mathis M, Mahdavi J, Floyd S, Romanow A (1996). TCP Selective
Acknowledgement Options. RFC 2018.

Ramakrishnan K, Jain R (1990). A Binary Feedback Scheme for
Congestion Avoidance in Computer Networks with a Connectionless
Network Layer. ACM Transactions on Comput. Syst., 8(2): 158-181.

Ravi SP (2008). An Evolutionary Approach to Improve End-to-End
Performance in Tcp/Ip Networks. Ph.D. Thesis, College of
Computing, Georgia Institute of Technology.

Tsaoussidis V, Zhang C (2002). TCP-Real: Receiver-Oriented
Congestion Control. Comput. Networks J. (Elsevier), 40(4): 1-15.

Jasem et al. 3729

Wang L, Cai L, Liu X, Shen X (2006). AIMD Congestion Control:

Stability, TCP-friendliness, Delay Performance. Tech. Rep. 1-11.
Wang SY, Chou CL, Lin CC (2007). The design and implementation of

the NCTUns network simulation engine. Science Direct, Simul.
Modeling Pract. Theory, 15: 57-81.

Welzl M (2005). Network Congestion Control Managing Internet Traffic.
1st edition, John Wiley and Sons Ltd, ISBN-10: 0-470-02528-X.

Xu K, Tian Y, Ansari N (2004). TCP-Jersey for wireless IP
communications. IEEE JSAC, 22(4): 747-756.

