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Additive increase multiplicative decrease (AIMD) algorithm is the prevailing algorithm for congestion 
avoidance and control in the Internet. Reducing the end-to-end delays and enhancement of the link 
utilization are the important goals of this algorithm. In this work, we continue to study the performance 
of the New-AIMD (additive increase multiplicative decrease) mechanism as one of the core protocols for 
TCP, to avoid and control the congestion. We want to evaluate the effect of using the AIMD algorithm 
after developing it, which we called the New-AIMD algorithm, to find a new approach to measure the 
end-to-end delay and bottleneck link utilization and use the NCTUns simulator to obtain the results after 
making the modification for the mechanism. We will use the DropTail mechanism as the active queue 
management mechanism (AQM) in the bottleneck router. After the implementation of our new approach 
with a different number of flows, we expect the end-to-end delay to be less when we measure the delay 
dependent on the throughput for the entire system. In addition, we will measure the bottleneck link 
utilization using this mechanism and expect to get high utilization for bottleneck link and avoid the 
collisions in the link. 
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INTRODUCTION 
 
End-to-end congestion avoidance and control, as well as 
fair network resource management would be of 
considerable benefit, if the TCP sender knows of the 
behaviour and any delay in the bottleneck queue. Several 
methodologies have been developed to estimate 
bandwidth and bottleneck queue, based on the temporary 
measurements of throughput, inter-packet gap or RTT. 
For example, TFRC (Handley et al., 2003) calculates 
throughput via a throughput equation that incorporates 
the loss event rate, round-trip time and packet size. TCP-
Vegas (Brakmo and Peterson, 1995) estimates the level 
of congestion using throughput-based measurements. 

TCP-Vegas   demonstrated   that   measurement-based  
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window adjustment is a viable mechanism; however, the 
corresponding estimators can be improved. In TCP-
Westwood (Casetti et al., 2002), the sender continuously 
measures the effective bandwidth used by monitoring the 
rate of returned ACKs. TCP-Real (Tsaoussidis and 
Zhang, 2002) uses wave patterns: a wave consists of a 
number of fixed-sized data segments sent back-to-back, 
matching the inherent characteristic of TCP to send 
packets back-to-back. The protocol computes the data-
receiving rate of a wave, which reflects the level of 
contention at the bottleneck link. Bimodal congestion 
avoidance and control mechanisms (Attie et al., 2003) 
compute the fair-share of the total bandwidth that should 
be allocated for each flow at any point during the 
system’s execution.  

Additive Increase/Multiplicative Decrease (AIMD) is the 
algorithm   that   controls   congestion    in    the    Internet  
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Figure 1. Throughput as a function of load (Chiu 
and Jain, 1998). 

 
 
 
(Chiu and Jain, 1998). It is coded into TCP and adjusts its 
sending rate mechanically, according to the ‘signals’ the 
TCP receives from the network. 

AIMD-based congestion avoidance and controls 
(Lahanas and Tsaoussidis, 2003) developed the AIMD 
algorithm to AIMD-FC to obtain greater efficiency and 
fairness than the AIMD algorithm. TCP-Jersey (Xu et al., 
2004) operates based on an “available bandwidth” 
estimator to optimize the window size when network 
congestion is detected. The Packet-Pair technique 
(Keshav, 1991) estimates the end-to-end capacity of a 
path, using the difference in the arrival times of two 
packets of the same size travelling from the same source 
to the same destination. The TCP-based New-AIMD 
congestion avoidance and control (Hayder et al., 2008) 
developed the AIMD algorithm into the New-AIMD, to 
obtain greater efficiency and fairness than the AIMD-FC+ 
algorithm and evaluated the efficiency compared to 
AIMD-FC+ in (Lahanas and Tsaoussidis, 2003; Lahanas 
and Tsaoussidis, 2002). 

In (Hayder et al., 2009; Hayder et al., 2010) the delay 
and utilization in various experiments for implementation 
of New-AIMD were investigated and evaluated and were 
found to be comparable to AIMD-FC+ (Lahanas and 
Tsaoussidis, 2003). In this work, we investigate and 
evaluate the implementation of the New-AIMD algorithm 
in TCP on the network, to avoid and control any 
congestion. We focused on delay and link utilization with 
different scenarios, and maintain a lower queue size, 
than that in the related work to reduce the delay for data 
transmission in the network system and to increase the 
link utilization. 
 
 
Congestion control 
 
It was not until 1988 that a widely accepted congestion 
control algorithm was finally suggested (Jacobson, 1988). 
This algorithm employed the additive increase 
multiplicative decrease (AIMD) principle. According to the 
AIMD, a protocol should increase its sending rate by a 
constant amount and decrease it by a fraction of its 
original value each time an adjustment is necessary. This  

 
 
 
 
mechanism is the base of virtually all TCP 
implementations used in the Internet today, as it is 
proven to converge both a desirable level of efficiency as 
well as a desirable level of fairness among competing 
flows (Chiu  and Jain, 1998). 

In the years that followed the establishment of AIMD as 
the standard algorithm used in TCP, the Internet 
underwent numerous changes and rapidly increasing 
popularity. With the availability of widespread services 
such as e-mail and the World Wide Web (WWW), the 
Internet became accessible to a wider range of people, 
including users lacking any particular familiarity with 
computers. Although, new competing technologies 
emerged and the demands from a transport layer 
protocol were greatly increased, experiencing only minor 
modifications, TCP not only survived but also became an 
integral constituent of the Internet. These modifications 
reflect the different TCP versions in-use (TCP-Tahoe, 
TCP-Reno, TCP-NewReno) (Jacobson, 1988; Allman et 
al., 1999; Floyd and Henderson, 1999), experimental 
TCP versions (TCP-SACK, TCP-Vegas) (Mathis et al., 
1996; Barkmo and Peterson, 1995), as well as special-
purpose TCP versions (T/TCP-TCP) (Braden, 1994). 
 
 
The AIMD principle 
 
As mentioned earlier, the basic concept of AIMD was 
proven to yield satisfactory results when the network 
infrastructure consisted of hard-wire connected 
components. One year after the appearance of AIMD in 
1988, the authors (Chiu and Jain, 1998) provided a 
detailed analysis of different congestion control 
strategies, as well as what makes the existence of such a 
strategy in a transport protocol crucial. Below, we provide 
a few of the important points made in this work. The 
major issue of concern to a transport protocol is its 
efficiency. On a network link crossed by a number of 
different flows running the same protocol, the ideal 
situation is to utilize as much of the available bandwidth 
without introducing congestion (that is, packets queuing 
up on the router). In Figure 1, we see the achieved 
throughput as a function of the network load. It becomes 
clear that we need to avoid overloading the link, as the 
achieved throughput will diminish. For a protocol to 
operate in the area between the points labelled as the 
Knee and Cliff, a congestion control mechanism is 
necessary.  
 
 
The AIMD system model  
 
Chiu and Jain (1998) formulated the congestion 
avoidance problem as a resource management problem 
and proposed a distributed congestion avoidance 
mechanism, named, ‘additive increase/multiplicative 
decrease’ (AIMD). In their work, as a network model, they 
used  a  “binary  feedback”  scheme  with  one bottleneck 



 

 
 
 
 

 
 
Figure 2. The control system model of m users 
sharing a network (Lahanas and Tsaoussidis, 2003). 

 
 
 
router (Ramakrishnan and Jain, 1990), as shown in 
Figures 2 and 3. It consists of a set of m users, each of 

which sends data in the network at a rate iw . The data 
sent by each user is aggregated in a single bottleneck 
and the network checks whether the total amount of data 
sent by users exceeds some network or bandwidth 
threshold  xgoal (we can assume that, xgoal  is a value 
between the knee and the cliff and is a characteristic of 
the network). The system sends a binary feedback to 
each user indicating whether the flows exceed the 
network threshold. The system response is 1 when 
bandwidth is available and 0 when bandwidth is 
exhausted. The feedback sent by the network is received 
at the same time by all users. The signal is the same for 
all users and they take the same action when the signal 
arrives. The next signal is not sent until the users have 
responded to the previous signal. Such a system is called 
a synchronous feedback system or simply a synchronous 
system. The time that elapses between the arrival of two 
consecutive signals is discrete and the same after every 
signal arrival. This time is referred to as RTT. The system 
behaviour can be defined using the following time units:  
 
i. A step (or round-trip time – RTT) is the time that 
elapses between the arrival of two consecutive signals.  
ii. A cycle or epoch is the time that elapses between two 
consecutive congestion events (that is, the time 
immediately after a system response 0 and ending at the 
next event of congestion when the system response is 
again 0).  
 
In practice, the parameter  xgoal is the network capacity 
(that is, the number of packets that the link and the router 
buffer can hold – or on-the-fly packets). When the 
aggregate flow rate exceeds the network capacity, the 
flows start to lose packets. If the transport protocol 
provides reliability mechanisms (e.g. as in TCP), it can 
detect the packet loss or congestion event. Since the 
majority of the applications use reliable transport 
protocols (e.g. TCP), the binary feedback mechanism has 
an implicit presence; a successful data transmission is 
interpreted as available bandwidth and a packet loss is 
interpreted as a congestion event (Jacobson, 1988).  
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Algorithmically, the AIMD can be expressed using the 
following lines: 
 
AIMD (W) 

1) � i  : constant = packet-size (W) 
2) W: integer // congestion window 
3) repeat forever 
4) send W bytes in the network 
5) receive ACKs 
6)  If W bytes are ACKed 

7) W � W + � i  
8) else 
9)  W � W/2 
10) end 
END-AIMD 
 
In Lahanas work (Lahanas and Tsaoussidis, 2003), which 
is related to our work, we can see the improvement of the 
AIMD algorithm, when he developed the efficiency for this 
algorithm to 88.9%. Lahanas called the algorithm (AIMD-
FC+), we can see it algorithmically with the following 
lines: 
 
AIMD-FC+ (w,dw,q) 
1) 0←k  
2) while (feedback is 1) 
3) process (w+k) 

4) iakk +←  
5) end 

6) 
)(

2
1

dwkwdwdw −++←
 

7) )(qfdww +←  
END 
 
When w  is the window size, dw  is the variable to record 

the decreasing window, and )(qf is 
2−= jkq  

when 2/)(0 qqf ≤≤ , as described in detail in (Lahanas 
and Tsaoussidis, 2003). 
 
 
Delays 
 
Delay and latency are similar terms that refer to the 
amount of time it takes a bit to be transmitted from the 
source to its destination (Welzl, 2005). Jitter is the delay 
that varies over time. One way to view latency is how 
long a system holds on to a packet. The system may be a 
single device like a router, or a complete communication 
system including routers and links (Welzl, 2005; Ravi, 
2008). Closely related topics include bandwidth and 
throughput. These are illustrated in Figure 4. Bandwidth 
is often used to refer to the data rate of a system; 
however, it also refers to the width of the frequency band 
that  a  system  operates in. Data rate and wire speed are  
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Figure 3. The AIMD system model within Layered Architecture in the Internet environment. 

 
 
 

 
 
Figure 4. The relationships between bandwidth, delay, and throughput. 

 
 
 
better terms when discussing transmitting digital 
information. The speed of the system is affected by 
congestion and delays. Throughput refers to the actual 
measured performance of a system when delay is 
considered. 

Delays are caused by distance, errors and error 
recovery, congestion, the processing capabilities of 
systems involved in the transmission and other factors. 
The delay of distance (called propagation delays) is 
especially critical when transmitting data to more distant 
destinations. Most communications require a round-trip 
exchange of data, especially if the sender is waiting for 
an acknowledgement of receipt from the receiver. 
Increasing data rates allows more bits to be sent in the 
same amount of time; however, it does not help improve 
delay. Excessive delay may cause a receiving system to 
time out and request a retransmission. The delay factor 
has to be adjusted when excessive delay exists (Welzl, 
2005). Delay is problematic for real-time traffic such as 
interactive voice calls and live video. Delay can also be  a 

problem with time-sensitive transaction processing 
systems. Delay caused by congestion must be avoided; 
therefore, bandwidth management, priority queuing and 
QoS are important to ensure that enough packets get 
through on time. Variation in delay (jitter) is more 
disruptive to a voice call than the delay itself (Brakmo and 
Peterson, 1995; Johari and Tan, 2001).  
 
 
Causes of delay  
 
Delay is caused by hardware and software inefficiencies, 
as well as network congestion and transmission problems 
that cause errors. Delay may be caused by the following: 
 
i. Network congestion, caused by excessive traffic. 
ii. Processing delays, caused by inefficient hardware. 
iii. Queuing delays, which may occur when buffers in the 
network devices are flooded. 
iv. Propagation  delays,  which  are  related  to  how  long   



 

 
 
 
 
it takes a signal to travel across a physical medium 
(Welzl, 2005). 
 
In this work, we will investigate and focus on the network 
congestion delay and queuing delay from the different 
causes of delays. 
 
 
Congestion delay  
 
As traffic increases on the network, congestion increases. 
Congestion occurs at routers and switches, causing delay 
that is variable (jitter). Ethernet shared mediums are 
prone to congestion. A user must wait if the cable is 
being used and collisions occur if two people try 
transmitting at the same time. Both users wait and then 
try again, causing further delay for the end-user 
application (end-to-end delay) (Jahwan et al., 2005; 
Wang et al., 2006). When a TCP/IP host begins to 
transmit, it has no way to monitor the network for 
downstream congestion problems. The host cannot 
immediately detect that a router is becoming 
overburdened. Only when the sender is forced into 
retransmitting dropped packets, does it sense that the 
network must be busy and then start to slow down its 
transmissions. Several techniques (Welzl, 2005) have 
been developed to resolve congestion problems on 
TCP/IP networks, such as slow start and congestion 
avoidance. Congestion controls help hosts adapt to traffic 
conditions. A transmission starts slowly and builds up 
until congestion is detected. 
 
 
Network utilization 
 
Network utilization is the ratio of current network traffic to 
the maximum traffic that the port can handle. It indicates 
the bandwidth used in the network. While high network 
utilization indicates the network is busy, low network 
utilization indicates the network is idle. When network 
utilization exceeds the threshold under normal conditions, 
it will cause low transmission speed, intermittence, 
request delay and so on. Networks of different types or in 
different topology have different theoretical peek values 
under general conditions. However, this does not mean 
that the higher network utilization is better. We must 
make sure there is no packet loss when network 
utilization reaches a certain value. For a switched 
Ethernet, 50% network utilization can be considered as 
high efficiency. If using a router or hub as a core switch 
device in the network, the network utilization should be 
lower than the link bandwidth capacity to avoid the 
increasing collisions. Through monitoring network 
utilization, we can understand whether the network is 
idle, normal or busy (Welzl, 2005; Ravi, 2008; Lin et al., 
2005). 

Furthermore, a file of size f with a total transfer time of  
�  on  a  TCP   connection   results   in   a   TCP   transfer  
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throughput denoted by r and obtained from Equation (5) 
 
r = f / �                                                         (5) 
 
We can also derive the bandwidth utilization, pu, 
assuming that the link bandwidth is B, by Equation (6) 
 
pu = r / B                                                        (6) 
 
In our approach, when we implement the New-AIMD 
mechanism, we try to get high bottleneck link utilization 
for link capacity (network resources) and conduct many 
experiments, that depend on the number of flows, using 
the link at the same time, to show the difference between 
them. 
 
 
Drop tail AQM algorithm 
 
Drop Tail (DT) is the simplest and most commonly used 
algorithm in the current Internet gateways, which drops 
packets from the tail of the full queue buffer (Aun et al., 
2002). Its main advantages are simplicity, suitability to 
heterogeneity and its decentralized nature. 

However, this approach has some serious disadvan-
tages, such as no protection against the misbehaving or 
non-responsive flows (that is, flows which do not reduce 
their sending rate after receiving the congestion signals 
from gateway routers) and no relative Quality of Service 
(QoS). 

The QoS is ideal in the traditional “best effort” Internet, 
in which we have some guarantees of transmission rates, 
error rates and other characteristics in advance. QoS is 
of particular concern for the continuous transmission of 
high-bandwidth video and multimedia information. 
Transmitting this kind of content is difficult using the 
present Internet with DT.  

Generally, DT is used as a baseline case for assessing 
the performance of all the newly proposed gateway 
algorithms (Eitan et al., 2005; Aun et al., 2003). 
 
 
MATERIALS AND METHODS  
 
National Chiao Tung University network simulator 
 
The NCTU network simulator is a high-fidelity extensible network 
simulator and emulator, capable of simulating various protocols 
used in both wired and wireless IP networks. The NCTUns can be 
used as an emulator, which directly uses the Linux TCP/IP protocol 
stack to generate high-fidelity simulation results and has many 
other interesting qualities. It can simulate various networking 
devices. For example, Ethernet hubs, switches, routers, hosts, 
IEEE 802.11 wireless stations and access points, WAN (for 
purposely delaying/dropping/reordering packets), optical circuit 
switch, optical burst switch, QoS DiffServ interior and boundary 
routers. It can simulate various protocols, for example, IEEE 802.3 
CSMA/CD MAC, IEEE 802.11 (b) CSMA/CA MAC, learning bridge 
protocol, spanning tree protocol, IP, mobile IP, Diffserv (QoS), RIP, 
OSPF,  UDP,   TCP,   RTP/RTCP/SDP,   HTTP,   FTP   and    telnet  
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(Wang et al. 2007). 
 
 
The new approach of algorithm (New-AIMD) 
 
Theorem: Let us assume that the capacity for the network (Window 
size or goalX ) is W. For simplicity, we will suppose that we have 

two flows, f1 and f2. Initially, let flows f1 and f2 include 1x  and 2x  
windows sequentially. To maintain the generality we will assume 

that, 1x  < 2x  and 1x  + 2x < W; moreover, we are supposing that 
the system converges to ‘fair’ in ‘m’ cycle. Induction proof: When we 
prove the correctness we will make it for two flows, and similarly it 
can be generalized for many flows. In the 1st cycle, the 
pseudocode is given by the total flow: 
 

1x  + 2x  + 2 1k                                                             (1) 
 

And in the AIMD it is 1x  + 2x  + 2 1k  
 

It is clear that in the 1st cycle, the system has 1k +1 Round Trip 

Time (RTTs) or steps. Let 1x + 2x + 2 1k  � W, then congestion 
occurs and the system will give 0 as feedback. Now we will use the 
decrease step. In the 2nd cycle pseudocode is given by total flow: 
 

21
21 22

22
kk

xx +++
                                                           (2) 

 

But in the AIMD it is 
21

21 2
22

kk
xx +++

  
 

It is clear that the 2nd cycle includes 12 +k  RTT. Let 

Wkk
xx ≥+++ 21

21 22
22  then the system will give 0 as feedback. 

It is clear that we will use the decrease step again. In the 3rd cycle 
(RTT) pseudocode is given by the total flow: 
 
 

3212
2

2
1 222

22
kkk

xx ++++
                                                           (3) 

 

But in the AIMD it is 
3212

2
2
1 2

22
kkk

xx ++++
 

 

Now here the 3rd cycle includes 
13 +k

 RTTs. Let 

Wkkk
xx ≥++++ 3212

2
2
1 222

22  then the system will give 0 as 
feedback. It is clear, we will use the decrease step also. In the 

same way, at 
thm  cycle we will have total flow: 

 

mmm kkk
xx

2...22
22 211

2
1

1 +++ −−
                           (4) 

 
 
 
 

But in the AIMD, it is 
mmm kkk

xx
2...

22 211
2

1
1 +++ −−

 
 

We will expect 
thm  cycle, indicates equilibrium, that is, all flows 

share a fair allocation of the network resources. The algorithmical 
approach, when the initial window size of two flows and the window 

size are Wxx ,, 21 , respectively, is given by: 
 

New-AIMD ( Wxx ,, 21 ) 

1) 21 xxz +←   

2) 1←k   

3) 1←t  
4) while (feedback is 1) 

5) 1+← kk  

6) txxz 221 ++←  

7) 1+← tt  
8) if (z >= W) 

9) 2
1

1
x

x ←
 

11) 2
2

2
x

x ←
 

12) txxz 221 ++←  

13) 1+← kk  
14) end if 
15) end 
END-AIMD 
 
We used the following notation: 
 
Z indicates used network capacity 
K indicates numbers of RTTs 
t is the number of steps 
m Integer, to represent the number of cycles 
w the window size 

1x , 2x  indicates the two flows that use the resources 
 
The total number of packets in different cycles: 
 
In the 1st cycle, the total number of packets is produced 

by )2)(1( 1211 kxxk +++ , but from the 1st cycle we 

have Wkxx =++ 121 2 , So 1121 kWkxx −=++ . 
Thus, the total number of packets is produced 

by ))(1( 11 kWk −+ . 
In the 2nd cycle, the total number of packets is produced 

by
)2

22
)(1( 21

21
2 kk

xx
k ++++

. 

But from the 2nd cycle we have:
Wkk

xx =+++ )22
22

( 21
21

, 

So
221

21 2
22

kWkk
xx −=+++

. 
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Figure 5. Multiple flow experimental set-up for AIMD evaluation. 

 
 
 
Thus, the total number of packets is produced by 

))(1( 22 kWk −+ . 
In the same way for the 3rd cycle, the total number of packets is 

produced by
))(1( 33 kWk −+

. 

In the same way in the 
thm  cycle, the total number of packets is 

produced by
))(1( mm kWk −+

. 
And so on; the total number of packets in all cycles is produced 

by ))(1( 11 kWk −+  + ))(1( 22 kWk −+  + 
))(1( 33 kWk −+

 + 

…+
))(1( mm kWk −+

. 

But from the 1st equation we have 4/)2( 12 kWk −= . 

And from 2nd and 3rd equations we have
23 2

1
kk =

. 

And from 3rd and 4th equations we have
34 2

1
kk =

, 
224 )

2
1

( kk =
 

and so 
22 )

2
1

( kk mm −=
 for m=3. 

The efficiency of New-AIMD is more than 99%; this means it is 11% 
higher than the efficiency of AIMD-FC+ in (Lahanas and 
Tsaoussidis, 2003). 

The Additive Increase/Multiplicative Decrease (AIMD) and (New-
AIMD) algorithms are described in detail in (Lahanas and 
Tsaoussidis, 2003; Hayder et al., 2008; Hayder et al., 2009; Hayder 
et al., 2010), respectively. 
 
 
Experimental set-up and network topology 
 
When we implement our evaluation plan on the NCTUns network 
simulator, multiple flows share a bottleneck link. The network 
topology used as a test-bed is the typical single-bottleneck two 
dumbbells, as shown in Figure 5. For the simulation scenario, as a 
general case, we use the following setup details: 
 
The time for the experiment is fixed at 100 s. The link's capacity at 
the senders, receivers and bottleneck link is (full-duplex) 100Mbps 
and the maximum load for data transmission will be 12000 KB per 

time, in this bandwidth capacity for link. The mechanism of active 
queue management (AQM) in the gateways queues is the DropTail 
mechanism (DT). We used an equal number of senders and 
receivers nodes. The traffic for each source is generated by FTP 
application when the TCP flow runs in each node. We suppose that, 
all the flows are sent at the same time. All DT queues have 100-
packet lengths. Furthermore, we used the TCP-SACK as one 
variant of TCP versions with AIMD, AIMD-FC+ and New-AIMD, to 
evaluate the performance of the new algorithm compared with the 
algorithms in the related work (Lahanas and Tsaoussidis, 2003). 
 
 
RESULTS 
 
In the following Figures (6, 7 and 8), we supposed that 
the maximum data size that we want to transmit from one 
of the senders to the receiver is equal to 100 MB. After 
complete data transmission to the receiver, we can 
calculate the total time taken to do the data transmission; 
we mentioned above, about the relation between the 
throughput and delay. In addition, we have different 
cases for calculating the time and the results will depend 
on the number of flows in the bottleneck link at the same 
time. 

In Figures 7 and 8, we show the comparison between 
our mechanism New-AIMD with AIMD and AIMD-FC+, as 
in the previous related work (Lahanas and Tsaoussidis, 
2003). In Figure 9 we can see the comparison between 
using our approach New-AIMD algorithm and the AIMD, 
AIMD-FC+ algorithms in previous related work. 
 
 
DISCUSSION 
 
In this evaluation we found new results when using the 
New-AIMD algorithm within TCP-SACK. First, and for 
evaluating the end-to-end delay with the implementation 
of this new approach (New-AIMD) in TCP-SACK, and 
after the implementation of this experiment, we found that  
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Figure 6. Throughput (KB) vs. time (s) for transmit 100 MB with varying number of flows of 
TCP-SACK with New-AIMD. 
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Figure 7. The time (sec) needed to transmit the 100 MB depending on the number of flows 
(1, 2, 3, 4 and 5) of TCP-SACK with AIMD, AIMD-FC+ and New-AIMD algorithms. 

 
 
 

 No. of flows  
 
Figure 8. The time (sec) needed to transmit the 100MB depending on the number of flows 
(2, 4, 8, 16 and 32) of TCP-SACK with AIMD, AIMD-FC+ and New-AIMD algorithms. 
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Figure 9. Link utilization for bottleneck link using AIMD, AIMD-FC+ and New-AIMD within TCP-
SACK. 

 
 
 

AIMD algorithms  
 
Figure 10. The averages of time need to transmit (100MB) with AIMD, AIMD-FC+ and 
New-AIMD algorithms within TCP-SACK. 

 
 
 
the time that the network needs to transmit the complete 
data that we want to send (100 MB) from the sender to 
the receiver will be less than the time that the other AIMD 
algorithms need, to transmit the same data by around 
12% less. This is because in this approach we solved the 
problem of congestion delay, which led to a reduction in 
the waiting time in the queues, thereby reducing the time 
required to transfer the data. 

Second, we achieved more than 94% utilization for the 
bottleneck link; this means we achieved 11% higher 
utilization than in the previous related work (Lahanas and 
Tsaoussidis, 2003). In the utilization in this evaluation, we 
can observe  the  difference  between  the  link  utilization 

when we add new numbers of flows to the experiment. 
This is because of the full-duplex links between the 
nodes of the network. Additionally, the utilization will be 
less when we add more flows, as the ACK of 
Transmission Control Protocol (TCP) from the receivers 
also need space in the link to send it to, the senders at 
the same time as the senders send other data to the 
receivers. 

Figures 10 and 11, show the difference between the 
averages of the performance for the algorithms and the 
value of evaluation for enhancement of the algorithm. 
Figure 10 is dependent on the evaluation of delay for 
different  number  of flows. Figure 11 is dependent on the  
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Figure 11. The average Link Utilization for AIMD, AIMD-FC+ and New-AIMD algorithms within TCP-
SACK. 

 
 
 
evaluation of link utilization. The average is from 20 
experiments with minimal statistical deviation. The 
number of flows in these experiments is (2, 4, 8, 16 and 
32). 
 
 
Conclusion 
 
In the experiments for this work, we investigated two 
types of performance metrics, the first one is end-to-end 
congestion delay; in which we found that, the results after 
implementing the New-AIMD algorithm were better than 
the results in the previous work, because the delay was 
less when we measured the delay depending on the 
throughput for the entire system and we obtained end-to-
end delay of approximately 12% less than the delay with 
AIMD-FC+ (Lahanas and Tsaoussidis, 2003). 

In addition, in these experiments we have evaluated 
the utilization of bottleneck link for the New-AIMD 
mechanism. We found the results after implementing the 
New-AIMD algorithm and achieved high utilization (more 
than 94%) for the link and avoided the congestion in this 
experiment for multi flows, using the same link at the 
same time. This means we achieve 11% higher utilization 
than the utilization with the AIMD-FC+ (Lahanas and 
Tsaoussidis, 2003). 

It can be said that this mechanism works well under the 
conditions for the network experiments above. In 
addition, the benefit from implementing the New-AIMD 
algorithm in this study is that, it reduces the average 
queue length, thereby decreasing the end-to-end delay 
and increasing the link utilization, as well as avoiding the 
network congestion. This can be deemed to be the major 
contribution in this work for this algorithm. 
 
 
REFERENCES 
 
Allman M, Paxson V, Stevens W (1999). TCP Congestion Control. RFC 

2581. 

Attie P C, Lahanas A,  Tsaoussidis V (2003). Beyond AIMD Explicit fair-
share calculation. In Proceedings of ISCC 2003. 

Aun H, Harsha S, Krzysztof P, Michael JF (2003). Congestion Control 
Algorithms in High Speed Telcommunication Networks. Department 
of Electrical and Electronic Engineering. 

Braden RT (1994). T/TCP-TCP Extensions for Transactions, Functional 
Specification. RFC 1644. 

Brakmo L, Peterson L (1995). TCP Vegas: End to end congestion 
avoidance on a global Internet. IEEE J. on Selected Areas in 
communi. 13(8):1465-1480. 

Casetti C, Gerla M, Mascolo S, Sansadidi MY, and Wang R (2002). 
TCP Westwood: End-to-End Congestion Control for Wired/Wireless 
Networks. Wireless Networks J., 8: 467-479. 

Chiu D, Jain R (1998). Analysis of the Increase/Decrease Algorithms for 
Congestion Avoidance in Computer Networks. J. Comput. Networks 
and ISDN. 17(1): 1-14. 

Eitan A, Chadi B, Victor MR (2005). Analysis of AIMD Protocol Over 
Path With Variable Delay. J. Comput. Networks, 48(6): 960-971. 

Floyd S, Henderson T (1999). The New Reno Modification to TCP’s 
Fast Recovery Algorithm. RFC 2582. 

Handley M, Floyd S, Pahdye J, Widmer J (2003). TCP Friendly Rate 
Control (TFRC): Protocol Specification. RFC 3448.  

Hayder NJ, Zuriati A, Mohamed O, Shamala S (2008). The TCP-Based 
New AIMD Congestion Control Algorithm. Int.ernational  J. Comput. 
Sci. Network Security, 8(10): 331-338. 

Hayder NJ, Zuriati AZ, Mohamed O, Shamala S (2009). Experimental 
Evaluation of Bottleneak Link Utilization with the New-Additive 
Increase Multiplicative Decrease Congestion Avoidance and Control 
Algorithm. J. Comput. Sci., 5(12): 1058-1062. 

Hayder NJ, Zuriati AZ, Mohamed O, Shamala S (2010). The Delay with 
New-Additive Increase Multiplicative Decrease Congestion 
Avoidance and Control Algorithm. Inf. Technol. J., 4: 1327-1335. 

Jacobson V (1988). Congestion avoidance and control. in Proceeding of 
ACM SIGCOMM 88. 

Jahwan K, Seongjin A, Jin WC (2005). A Comparative Study of Queue, 
Delay, and Loss Characteristics of AQM Schemes in QoS-Enabled 
Networks. Comput. Inf. J., 22: 1001-1019. 

Johari R, Tan DKH (2001). End-to-end congestion control for the 
Internet: delays and stability. IEEE/ACM Transactions on Networking, 
9(6): 818-832. 

Keshav S (1991). Congestion Control in Computer Networks. Ph.D. 
Thesis, UC Berkeley, published as UCB TR 91/649. 

Lahanas A, Tsaoussidis V (2002). Additive Increase Multiplicative 
Decrease-Fast Convergence (AIMD-FC). In Proceedings of the 
Networks 2002. August, Atlanta, Georgia. 

Lahanas A, Tsaoussidis V (2003). Exploiting the Efficiency and Fairness  
Potential of AIMD-based Congestion Avoidance and Control. J. 

Comput.  Networks, 43: 227-245. 
Lin C,  Xuemin  S, Jon WM, Jianping P (2005). Performance Analysis of 



 

 
 
 
 
AIMD-Controlled Multimedia Flows in Wireless/IP Networks. 

Department of Electrical & Computer Engineering, University of 
Waterloo. 

Mathis M, Mahdavi J, Floyd S, Romanow A (1996). TCP Selective 
Acknowledgement Options. RFC 2018. 

Ramakrishnan K, Jain R (1990). A Binary Feedback Scheme for 
Congestion Avoidance in Computer Networks with a Connectionless 
Network Layer. ACM Transactions on Comput. Syst., 8(2): 158-181. 

Ravi SP (2008). An Evolutionary Approach to Improve End-to-End 
Performance in Tcp/Ip Networks. Ph.D. Thesis, College of 
Computing, Georgia Institute of Technology. 

Tsaoussidis V, Zhang C (2002). TCP-Real: Receiver-Oriented 
Congestion Control. Comput. Networks J. (Elsevier), 40(4): 1-15. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jasem et al.       3729 
 
 
 
Wang L, Cai L, Liu X, Shen X (2006). AIMD Congestion Control: 

Stability, TCP-friendliness, Delay Performance. Tech. Rep. 1-11. 
Wang SY, Chou CL, Lin CC (2007). The design and implementation of 

the NCTUns network simulation engine. Science Direct, Simul. 
Modeling Pract. Theory, 15: 57-81. 

Welzl M (2005). Network Congestion Control Managing Internet Traffic. 
1st edition, John Wiley and Sons Ltd, ISBN-10: 0-470-02528-X. 

Xu K, Tian Y, Ansari N (2004). TCP-Jersey for wireless IP 
communications. IEEE JSAC, 22(4): 747-756. 

 
 
 
 
 


