Full Length Research Paper

Comparison of improved nonlinear static procedures for spatial steel trusses supported on steel columns

Zeki AY

Department of Civil Engineering, Suleyman Demirel University, Isparta, 32260, Turkey. E-mail: zekia@mmf.sdu.edu.tr. Tel: +90-246-211-1199. Fax: +90-246-237-0859.

Accepted 6 July, 2010

The most significant expectation for ages has been building structures which are as high as possible, without column and wide-spanned in architecture. Also it is vital to cover these structures as spatial trusses. Similarly; economic, rapid, safe and aesthetical solutions in space systems are possible by spatial steel structures. In last decades, ATC 40, FEMA 273, 274, 356 and recently 440 are the most commonly used resources for seismic analysis procedures enduring with computing in civil engineering. These procedures are defined as displacement based performance analysis. On the other hand, nonlinear static procedures as basic step of these methodologies still have some problems in theoretical background. Some of the researchers are not satisfied with the accuracy of current performance based design methodologies. There are some question marks on how accurate capacity and demand spectrums demonstrate the structural capacity and earthquake demand respectively. In this study, comparison of improved nonlinear static procedures in FEMA- 440 has been made for spatial steel trusses supported on steel columns. For this, numerical models which are set up by taking structural properties of evaluable structures are investigated by using improved nonlinear static procedures which are given in FEMA- 440. Differences and harmonies of methods are still been determined.

Key words: Spatial steel structures, nonlinear seismic procedures.

INTRODUCTION

The determination of the displacement demand of structures subjected to seismic actions is one of the most important steps in performance based design procedures. In last decades, significant progress was made in performance-based engineering methods that rely on non-linear static analysis procedures (NSPs). Nonlinear static procedures are one type of inelastic analysis that can be used to estimate the response of structures to seismic actions. In practice, the current procedures can result in estimates of maximum displacement that are significantly different from one another. The differences between the various approaches relate to the level of detail of the structural model and the characterization of the seismic ground shaking. This is one of the major areas of concern of practicing engineers. Current nonlinear static procedures are Coefficient Method in FEMA-356 (Applied Technology Council, 1996) and Capacity-Spectrum Method in ATC-40 (Federal Emergency Management Agency, 2000; Applied Technology Council,

2005). The two approaches are essentially the same when it comes to generating a "pushover" curve to represent the inelastic force-deformation behavior of a building. They differ, however, in the technique used to calculate the inelastic displacement demand for a given representation of ground motion. Various researchers and practicing engineers have found that in some cases, different inelastic analysis methods give substantially different estimates for displacement demand for the same ground motion and same SDOF oscillator or same building (Chopra and Goel, 2002, 2004, 1999; Chopra et al., 2004; Goel and Chopra, 2004; Aydinoglu, 2003). Recently, a new document was published about nonlinear static procedures. This document has proposed two new procedures instead of Capacity-Spectrum Method of ATC- 40 and Coefficient Method of FEMA-356 (Applied Technology Council, 1996). These new procedures are Displacement Modification and Equivalent Linearization methods (Applied Technology Council, 2005; UBC, 1997). The Capacity-Spectrum Method and Displacement Coefficient Method rely on different underlying relationships to estimate the response of nonlinear systems based on an elastic response spectrum. The Capacity-Spectrum Method relies on the concept of equivalent linearization while the Displacement Coefficient Method uses $R-\mu-T$ relationships. As presented and utilized currently; the graphical characteristics of the two procedures are also different.

However, these differences are not fundamental and results from either approach may be readily transformed into various graphical representations (Kalkan and Kunnath, 2007; Chintanapakdee and Chopra, 2003; Gupta and Kunnath, 2000; Kunnath and Kalkan, 2004; Bozorgina and Bertero, 2004 Fajfar and EERI, 2000 Naeim, 2003; Makowski, 1988). The peak displacement of a nonlinear system is estimated as the intersection of the capacity curve and an elastic response spectrum that is reduced to account for energy dissipated by the vielding structure. The underlying basis of the Capacity-Spectrum Method (CSM) is the concept of an "equivalent linear" system, wherein a linear system having reduced stiffness and increased damping proportional to hysteretic energy, is used to estimate the response of the nonlinear system. The CSM is documented thoroughly in ATC-40 (Applied Technology Council, 1996; Federal Emergency Management Agency, 2000; Applied Technology Council, 2005).

In wide-span structures, spatial steel trusses are preferred instead of classical steel roof constructions. They provide economic solutions in using the wide gaps in diverse geometries passing without columns as indoors. Spatial steel trusses are used in places such as industrial areas, factories, air-plane and helicopter hangars, swimming-pools, sport-centers, storerooms, theateropera saloons, cinemas, stands, shop, school buildings, laboratories and fair-departments and in addition, they are highly economic structures (Ay, 1994; Dikmen and Ay, 2006; Korkmaz et al., 2008; Ay and Durmuş, 2002; Fenkli and Ay, 2004: 24).

On the other hand, some of the researchers are not satisfied with the accuracy of current performance based design methodologies. Therefore, current nonlinear static procedures as basic step of these methodologies still have some problems in theoretical background. In other words, there are some question marks on how accurate capacity and demand spectrums demonstrate the structural capacity and earthquake demand, respectively. For this reason, it is very important that comparison of improved nonlinear static procedures in FEMA- 440 for spatial steel trusses supports the steel columns.

Definition of structural models

Steel spatial frames on the steel columns are used as closed

market area. Different than the residential buildings, snow, wind, and other roof weights are distributed to the foundations through columns. Lateral stability is responded by the columns in such onestory longer spanned spatial systems. Therefore, geometrical properties of roof and columns play an important role in structural behavior.

In the present study, 4 different soil classes were considered. Shear velocities for the soil classes are; 1000, 600, 300 and 150 m/sn for B, C, D, and E soil classes, respectively. Embedment e = 0 and damping is not considered for each model. Design earthquake is selected as an earthquake with exceeded probability of 10% in 50 years. Mapped short-period spectral response Acceleration Ss =1, for 1 s period, Mapped Spectral Response Acceleration at one-second period S1 = 0.4 for 1st earthquake zone and 0.3 for 2nd zone, 0.2 for 3rd zone and 0.1 for 4th zone. Hence, according to Turkish earthquake code (TEC), 4 different earthquake zones and 4 soil classes and 3 different structural models (Figure 1), nonlinear static procedure, were used according to FEMA 440 (Applied Technology Council, 2005). Table 1 presents seismic coefficients according to TEC'07 and UBC'97 (UBC, 1997; Turkish Earthquake Code, 2007).

The selected models in the study were; broken, flat model and vault. The area of the broken model is 48×48 m, weight is 1940 kN. The area of flat model is 66×53 m and the weight is 750kN. The area of Vault model is 32*48 m and the weight is 410 kN. Minimum column height is 5 m, column sections are HE400A. For steel roof, different types of steel sections were used. Used steel is A36. Earthquake loads were applied for only X direction.

RESULTS

Comparison of base shear, displacements and spectral acceleration graphs for broken model are given in Figures 2, 3 and 4, respectively. Same comparison for flat model can be seen in Figures 5, 6 and 7, respectively. Finally, Figures 8, 9 and 10 display vault model comparison. Tables 2 and 3 showed comparison results for Broken model for X and Y direction, respectively. In Tables 4 and 5, comparison of improved nonlinear static procedures for flat model can be seen for X and Y direction, respectively. Same comparison is given in Tables 6 and 7 for Vault model for X and Y direction, respectively.

CONCLUSION

In this paper, improved nonlinear static procedures according to FEMA 440 are compared for spatial steel trusses placed on steel columns. In the analysis of three structural models, SAP 2000 computer program was performed (Computer and Structures Inc., 2004). Performance points of models Displacement, acceleration, and base shear force were found by using Displacement Modification and Equivalent Linearization methods. Following conclusions were delineated as a result of numerical analysis:

1. In terms of base shear values, in the broken model,

Figure 1. Structural models.

Table 1.	Seismic Coefficients	C_a , C_v	v (TEC 2007 - UBC 97) TEC: Turkish Earthquake Code 2007.
----------	----------------------	---------------	--

Site class	UBC: ** TEC: 4 A₀=0,10 n=0.80		UBC : 2B TEC: 3 A ₀ =0,20 n=0.70		UBC: 3 TEC: 2 A₀=0,30 n=0.65		UBC : 4 TEC: 1 A₀=0,40 n=0.60	
	Ca	Cv	Ca	Cv	Ca	Cv	Ca	Cv
S _B (Z ₁)	0.10	0.10	0.20	0.20	0.30	0.30	0.40N _a	$0.40N_v$
S _C (Z ₂)	0.12	0.17	0.24	0.32	0.33	0.45	0.40Na	0.56Nv
S _D (Z ₃)	0.15	0.23	0.28	0.40	0.36	0.54	$0.44N_a$	$0.64N_{v}$
S _E (Z ₄)	0.23	0.34	0.34	0.64	0.36	0.84	0.36N _a	0.96N _v

A_{0 =} Effective Ground Acceleration Coefficient, n: Aproximate values of shear wave velocity reduction factor. Na and Nv:

Figure 2. Comparison of base shear for broken model. (a) X direction, (b) Y Direction.

Figure 4. Comparison of spectral acceleration for broken model direction. (a) X direction,(b) Y direction.

Figure 5. Comparison of base shear for flat model. (a) X direction, (b) Y direction.

Figure 6. Comparison of Displacement for Flat Model Y a ,b Direction

Figure 7. Comparison of Spectral Acceleration for Flat Model

Figure 8. Comparison of base shear for vault model. (a) X direction, (b) Y direction.

Figure 9. Comparison of Displacement for Vault Model

Figure 10. Comparison of Spectral Acceleration for Vault Model

Seismic	Site	Equiva	alent lineari	zation	Displacement modification			
zone	class	V (kN)	D (mm)	Sa	V _y (kN)	D _y (mm)	Sa	
	Z1	1450.68	45.84	0.848	1397.95	43.95	0.795	
D1	Z2	1732.98	56.45	0.918	1610.75	51.85	0.923	
	Z3	1837.64	63.26	0.975	1763.91	58.12	1.015	
	Z4	1534.91	49.01	0.869	1462.69	46.29	0.830	
	Z1	1088.62	33.91	0.646	1037.38	32.53	0.595	
DO	Z2	1390.96	43.72	0.825	1341.09	42.10	0.761	
DZ	Z3	1534.91	49.01	0.869	1462.69	46.29	0.830	
	Z4	1534.91	49.01	0.869	1462.69	46.29	0.831	
	Z1	725.75	22.13	0.430	336.21	10.54	0.199	
Da	Z2	1011.58	31.41	0.600	572.33	17.95	0.338	
D3	Z3	1180.18	36.88	0.700	812.11	25.46	0.477	
	Z4	1436.13	45.29	0.845	1219.53	38.24	0.695	
	Z1	362.87	10.35	0.215	336.21	10.54	0.199	
D4	Z2	505.79	14.99	0.300	466.66	14.63	0.277	
D4	Z3	632.24	19.10	0.375	620.01	19.44	0.369	
	Z4	969.43	30.04	0.575	995.84	31.22	0.577	

 Table 2. Broken (X) comparison of improved nonlinear static procedures (FEMA 440).

Table 3. Broken (Y) Comparison of Improved Nonlinear Static Procedures (FEMA 440).

Seismic	Site	Equivalent linearization Displacement mod					ification
zone	class	V (kN)	D (mm)	Sa	V _y (kN)	D _y (mm)	Sa
	Z1	1027.67	68.06	0.589	1013.91	65.55	0.595
	Z2	1173.48	94.59	0.671	1164.62	92.98	0.833
D1	Z3	1245.53	107.71	0.712	1249.77	108.48	0.952
	Z4	1238.32	106.39	0.708	1183.32	96.39	0.852
	Z1	822.67	51.36	0.471	774.39	48.36	0.446
Da	Z2	1073.48	76.40	0.615	1060.77	74.08	0.670
D2	Z3	1155.38	91.30	0.661	1148.73	90.09	0.804
	Z4	1238.32	106.39	0.708	1183.33	96.39	0.852
	Z1	548.44	34.21	0.314	243.61	15.21	0.149
D 2	Z2	877.51	54.79	0.503	419.92	26.23	0.253
D3	Z3	1027.67	68.06	0.589	602.48	37.63	0.357
	Z4	1198.46	99.14	0.685	915.68	57.19	0.521
D4	Z1	274.22	17.06	0.157	243.61	15.21	0.149
	Z2	466.18	29.06	0.267	419.92	26.23	0.253
	Z3	630.71	39.36	0.361	602.48	37.63	0.357
	Z4	932.35	58.23	0.534	915.68	57.19	0.521

results of each method are close to each other. For theother models, a significant difference is observed. This

shows that structural geometry is one of the important parameters.

Seismic	Site	Equivalent linearization Displacement modification					fication
zone	class	V(kN)	D(mm)	Sa	V _{y(} (kN)	D _y (mm)	Sa
	Z1	866.26	3.65	1.00	576.14	2.25	0.788
	Z2	866.26	3.65	1.00	523.37	2.04	0.788
D1	Z3	951.36	3.98	1.098	480.05	1.87	0.865
	Z4	566.32	2.50	0.654	278.51	1.09	0.515
	Z1	649.70	2.82	0.750	430.32	1.68	0.591
50	Z2	714.67	3.07	0.825	429.57	1.68	0.650
DZ	Z3	764.25	3.26	0.882	380.88	1.49	0.695
	Z4	602.68	2.64	0.696	297.11	1.16	0.548
	Z1	433.13	1.98	0.500	285.70	1.12	0.394
Da	Z2	519.76	2.32	0.600	310.35	1.21	0.472
D3	Z3	606.38	2.65	0.700	299.02	1.17	0.552
	Z4	635.00	2.76	0.733	366.28	1.43	0.670
D4	Z1	216.57	1.14	0.250	142.26	0.56	0.197
	Z2	259.88	1.31	0.300	153.80	0.60	0.236
D4	Z3	314.34	1.52	0.363	164.48	0.64	0.309
	Z4	492.52	2.21	0.569	265.81	1.04	0.492

Table 4. Flat (X) comparison of improved nonlinear static procedures (FEMA 440).

Table 5. Flat (Y) comparison of improved nonlinear static procedures (FEMA 440).

Seismic	Site	Equiv	alent lineariz	zation	Displacement modification			
zone	class	V(kN)	D(mm)	Sa	V _{y(} (kN)	D _y (mm)	Sa	
	Z1	866.26	7.63	1.00	584.82	4.93	0.788	
	Z2	866.26	7.63	1.00	538.88	4.54	0.788	
D1	Z3	952.89	8.35	1.10	513.52	4.33	0.866	
	Z4	685.03	6.12	0.791	356.10	3.00	0.623	
	Z1	649.70	5.83	0.75	434.73	3.66	0.591	
50	Z2	714.67	6.37	0.825	439.80	3.71	0.650	
DZ	Z3	779.64	6.91	0.900	410.53	3.46	0.709	
	Z4	738.34	6.56	0.852	386.62	3.26	0.672	
	Z1	433.13	4.03	0.500	287.26	2.42	0.394	
20	Z2	519.76	4.75	0.600	315.41	2.66	0.472	
03	Z3	606.38	5.47	0.700	311.82	2.63	0.552	
	Z4	736.32	6.55	0.850	385.46	3.25	0.670	
	Z1	216.57	2.23	0.250	142.36	1.2	0.197	
D4	Z2	259.88	2.59	0.300	154.75	1.30	0.236	
D4	Z3	324.85	3.13	0.375	171.77	1.45	0.315	
	Z4	498.10	4.57	0.575	275.91	2.32	0.493	

2. For Broken model, base shear, displacement and acceleration values were in harmony. However, in the

other axis (Y axis), especially for the 3rd earthquake zone, this harmony dissolves. This shows that earthquake zone

Seismic	Site	Equiva	alent lineariz	zation	Displacement modification			
zone	class	V(kN)	D(mm)	Sa	V _{y(} (kN)	D _y (mm)	Sa	
	Z1	331.84	3.37	1.00	196.72	1.91	0.788	
	Z2	322.22	3.28	0.971	172.96	1.68	0.765	
D1	Z3	346.62	3.52	1.045	154.31	1.49	0.823	
	Z4	208.99	2.19	0.630	90.90	0.88	0.496	
	Z1	248.88	2.57	0.750	146.76	1.42	0.591	
20	Z2	269.99	2.78	0.814	144.20	1.39	0.641	
DZ	Z3	278.63	2.86	0.840	122.63	1.19	0.662	
	Z4	221.78	2.31	0.668	96.67	0.94	0.527	
	Z1	165.92	1.77	0.500	97.32	0.94	0.394	
20	Z2	199.01	2.09	0.600	105.62	1.023	0.473	
03	Z3	222.89	2.32	0.672	101.43	0.98	0.552	
	Z4	232.61	2.42	0.701	124.21	1.203	0.670	
D4	Z1	82.96	0.97	0.250	48.40	0.47	0.197	
	Z2	96.00	1.10	0.289	50.42	0.49	0.228	
U4	Z3	114.65	1.28	0.346	53.08	0.51	0.294	
	Z4	179.51	1.90	0.541	87.48	0.85	0.478	

Table 6. Vault (X) comparison of improved nonlinear static procedures (FEMA 440).

 Table 7. Vault (Y) comparison of improved nonlinear static procedures (FEMA 440).

Seismic	Site	Equiv	Equivalent linearization			Displacement modification			
zone	Class	V(kN)	D(mm)	Sa	V _{y(} (kN)	D _y (mm)	Sa		
	Z1	334.04	15.54	1.00	241.78	10.52	0.825		
	Z2	334.04	15.54	1.00	230.52	10.03	0.825		
D1	Z3	367.44	16.93	1.10	238.60	10.38	0.907		
	Z4	300.64	14.15	0.90	190.15	8.27	0.742		
	Z1	250.53	12.06	0.75	179.08	7.80	0.619		
50	Z2	275.59	13.11	0.83	187.54	8.16	0.681		
D2	Z3	300.64	14.15	0.90	190.15	8.28	0.742		
	Z4	300.64	14.15	0.90	190.15	8.28	0.742		
	Z1	167.02	8.58	0.50	99.72	4.34	0.352		
D 2	Z2	200.43	9.97	0.60	133.96	5.83	0.495		
D3	Z3	233.83	11.37	0.70	143.98	6.27	0.578		
	Z4	283.94	13.45	0.85	178.39	7.76	0.701		
D4	Z1	83.51	5.10	0.25	57.94	2.52	0.207		
	Z2	100.21	5.80	0.30	65.39	2.85	0.247		
	Z3	125.27	6.84	0.38	78.95	3.44	0.330		
	Z4	192.07	9.63	0.58	127.25	5.54	0.516		

is one of the important parameters. 3. For Flat vault models, each result is significantly different.

4. Support conditions on top of the columns for spatial

structures were found very effective in earthquake behavior of the systems. Further research is necessary for this part.

As a result of the study, structural geometry, earthquake zone and soil class affect the analysis results in each method. Results with Displacement Modification and Equivalent Linearization defined in FEMA are different for each type of structural systems. Therefore, when designing these types of structures, designers should be aware of the structural details such as geometry, structural type and support conditions.

REFERENCES

- Applied Technology Council (1996). Seismic evaluation and retrofit of concrete buildings ATC-40. California;
- Applied Technology Council (2005). Improvements of nonlinear static seismic analysis procedures. Redwood City (CA): FEMA- p440;
- Ay Z (1994). Free Vibration and Dynamic Response of Spatial Steel Space Structures Subjected to Impulsive Excitations, PhD Thesis, Technical University of Istanbul. TR.
- Ay Z, Durmuş G (2002). "Issues of Prefabricated Steel Structures in Engineering Practice" Engineering News. 47/2002-2: 418.
- Aydinoglu MN (2003). An incremental response spectrum analysis procedure based on inelastic spectral displacements for multi-mode seismic performance evaluation. Bull. Earth. Eng., 1(1): 3-36.
- Bozorgina Y, Bertero VV (2004). Earthquake Engineering From Engineering Seismology to Performance- Based Engineering, Crc Press.
- Chintanapakdee C, Chopra AK (2003). Evaluation of modal pushover analysis using generic frames. Earthquake Eng. Structural Dynamics, 32: 417-442.
- Chopra AK, Goel RK (1999). Capacity Demand Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDOF Systems, report no. PEER- 1999/02
- Chopra AK, Goel RK (2002). A modal pushover procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 31: 561-82.
- Chopra AK, Goel RK (2004). A modal pushover procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Eng. Structural Dynamics, 33: 903-927.

- Chopra AK, Goel RK (2004). Chintanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands. Earthquake Spectra, 120(3): 757-778.
- CSI Computer, Structures Inc SAP (2000). Linear and nonlinear static and dynamic analysis of three-dimensional structures. Berkeley (CA): Computer and Structures, Inc.; 2004.
- Dikmen B, Ay Z (2006). Earthquake Response of Hall Structures with Steel Space Roof Systems", International Symposium on Advances in Civil Engineering, Ace06-486, Istanbul. TR.
- Fajfar P, EERI M (2000). A Nonlinear Analysis Method for Performance Based Design., Earthquake Spectra, 16(3): 573-592.
- Federal Emergency Management Agency (2000). Prestandard and commentary for the seismic evaluation of buildings. Washington (DC): FEMA- p.356.
- Fenkli M, Ay Z (2004). Earthquake response of Single Layer Steel Domes: Schwedler and Zeiss-Dywidag Domes", International Symposium on Advances in Civil Engineering, ACE04, Istanbul, Turkey.
- Goel RK, Chopra AK (2004). Evaluation of modal and FEMA pushover analysis: SAC buildings. Earthquake Spectra, 20(1): 225-254.
- Gupta B, Kunnath SK (2000) Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 16(2): 367-391.
- Kalkan E, Kunnath SK (2007). Assessment of current nonlinear static procedures for seismic evaluation of buildings. Eng. Struct., 29(3): 305-316.
- Korkmaz KA, Ay Z, Çelik ID (2008). Investigation of Inelastic Behavior of Concentric and Eccentric Braced Steel Building Type Structures, European Conference on Steel and Composite Structures, Graz, Avusturya, Eylül.
- Kunnath SK, Kalkan E (2004). Evaluation of seismic deformation demands using nonlinear procedures in multistory steel and concrete moment frames. ISET, J. Earth. Technol., 41(1): 159-182.
- Makowski ZS (1988), History of the Development of Braced Domes, Proceedings of IA.S-S.-M.S.U. Symposium, Istanbul. TR.
- Naeim F (2003). The Seismic Design Handbook (Second Edition), Kluwer Academic Publisher USA. Chilton J. (2000), Space Grid Structures, Architectural Pres, UK.
- Turkish Earthquake Code (2007). Ministry of Public Works and Settlement Government of Republic of Turkey, Ankara, Turkey.
- UBC (1997), Structural Engineering Design Provisions, Uniform Building Code. International Conference of Building Officials, California.