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In this paper, for the purpose of simulating the mathematical model of adaptive neuro-fuzzy inference 
system (ANFIS), we use Matlab/Simulink environment with its powerful S-functions. The simulated 
model of ANFIS network can be then used to make the simulation of the identification and the control of 
linear or nonlinear systems. Created Simulink block of ANFIS give flexible exploitation of parameters of 
ANFIS network like learning rates and initial local parameters. We use the S-function of ANFIS to make 
the direct-inverse adaptive control of DC-motor. The obtained results of Direct-inverse control of DC-
motor are compared with these of a classical controller which is the simplest type of controller, 
selected only to check the effectiveness of the proposed intelligent controller in terms of control 
performances and disturbance rejection. 
 
Key words: Direct inverse control, adaptive neuro-fuzzy inference system (ANFIS) controller, S-function of 
Matlab. 
 

 
INTRODUCTION 
 
Jang (1993) proposed the famous adaptive neuro-fuzzy 
inference system (ANFIS), which is one of the best in 
function approximation among the several neuro-fuzzy 
models (Hiroki et al., 2009). It has been successfully 
applied in various fields (identification, prediction and 
control). To design ANFIS based controllers Matlab 
provides several tools, Simulink based ANFIS toolbox 
(Howard and Mark, 1997). These tools support offline 
simulation process. It means prior to use the ANFIS 
model we need to simulate and train the ANFIS by 
presenting the input and target data set. The main idea of 
this paper is to provide a custom tool to investigate better 
usage of ANFIS Networks. Most of the simulation tools 
suggest their own architecture and training algorithms 
which are fixed and uses offline training. The proposed 
Simulink model is implemented using S-function which 
allows   making  online  training  of  systems.  It   can   be 

applied to any linear or non-linear system. Moreover 
learning rates and step time can be easy modified. The 
created S-function of ANFIS is used to make the control 
of DC-motor. 
 
 
ADAPTIVE NEURO-FUZZY INFERENCE 
SYSTEM (ANFIS) ARCHITECTURE 
 
ANFIS (Figure 1) (Jang, 1993) makes use of a hybrid 
learning rule to optimize the fuzzy system parameters of 
a first order Sugeno system. The output of the nodes in 
each respective layer is represented by Oi, where i is the 
i
th
 node of layer l. The following is a layer by layer 

description of a two inputs first order Sugeno system 
(Jang, 1993; Hongxing et al., 2001). The 1

st
 layer is for 

fuzzification   of   the  input   variables.   It  generates  the
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Figure 1. ANFIS architecture 
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Figure 2. Block diagramme for on-line inverse learning using 
ANFIS. 

 
 
 
membership grades: 
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Where g; is the membership function (MFs) of adaptive 
neuro-fuzzy system. The second layer generates the 
firing strength: 
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The third layer normalizes the firing strengths. 
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Layer 4 calculate rule outputs based on the consequent 
parameters. 
 

)(4

iiiiiiii ryqxpwfwyO +⋅+⋅=⋅==                  (4) 

 
Layer 5 sums all the inputs from layer 4. This is the 
overall output of the ANFIS system. 
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The learning procedure of ANFIS network has got two 
steps (Jang, 1993; Carrano et al., 2008): In the 1

st
 step 

the input patterns are propagated, and the optimal 
consequent parameters are estimated by an iterative 
least mean square procedure (Xuan, 2006; Farzad et al., 
2005). In the 2

nd
 step the patterns are propaged again, 

and back-propagation is used to modify the local 
parameters (the values which compose each 
membership functions A1, A2, B1, B2). This procedure is 
then iterated until the error criterion is satisfied (Jang, 
1993). The consequent parameters thus identified, are 
optimal under the condition that the local parameters are 
fixed. The form of the last layer is: 
 

Y X W= ∗                                                 (6) 

 
Where X is a vector of predictors, and W is the vector of 
regression parameters to be estimated. To make the 
correction of local parameters of ANFIS network, ANFIS 
network uses the sum of the gradient of the error ey of the 
output. The signal of error is back-propagated and local 
parameters are updated. We have the formula of 
modification of the first local parameter of the first 
membership function of ANFIS network (Hongsheng and 
Feng, 2007); 
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Where h; is the learning rate for local parameter
i
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The following rule is used to calculate partial derivatives, 
employed for update of the parameters of membership 
function. 
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DIRECTE-INVERSE ADAPTIVE CONTROL ANFIS 
NETWORK 
 
Identification and control using adaptive neuro-fuzzy 
inference system (ANFIS) 
 
The training mode that will be used is the inverse model 
(Toha and Tokhi, 2009; Gonzalez-Gomez et al., 2011; 
Kasuan et al., 2011) of the DC-motor. In this case, The 
input of the ANFIS network will be the output y(t) of the 
DC-motor (its speed) and the output of the ANFIS 
network will be the estimation of the signal of the control 
of the motor eu(t), as shown in Figure 2. We know that the 
adaptive control of systems is constituted by two loops; 
one loop of control having a regulator with adjustable 
parameters,   and  a   second   loop   which   acts  on  the 
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Figure 3. Block diagram of the direct-inverse adaptive control 
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Figure 4. Topology of the ANFIS Network used in the DC 

Motor control. 
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Figure 5. Speed control of DCM with online identification of the 

inverse model based ANFIS Network. 

 
 
 
parameters of the regulator, to maintain parametric 
variations. The structure of this direct inverse control is 
shown by Figure 3. 
 
 
Choice of the model of the adaptive neuro-fuzzy 
inference system (ANFIS) controller 
 
To represent non-linear processes, several structures of 
models of type non-linear black boxes were developed 
as: FIR, NARX, NOE, NARMAX. These models can be 
used in order with the neuro-fuzzy network (Azeem et al., 
2000; Denai et al., 2004; Toha and Tokhi, 2009; Kasuan 
et al., 2011). To identify the inverse model  of  the  MAS, 
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we are going to use the model NARX (non-linear, 
autoregressive with exogenous input, which is the most 
used for its simplicity and its not-recursive structure. The 
predictor is given by the following formula: 
 

 ˆ ˆ ˆy(t) = (y(t-1), …, y(t-ny), u(t-1), …, u(t-nu)) φ    (9) 

 

 
ŷ  : output of ANFIS network, 

 u  : input of the ANFIS network 

 
The regression consists of outputs and the past inputs. 

The function (.)ϕ  is the nonlinear function which we 

want to approximate. The choice of the number of inputs 
of ANFIS is not deducted of a main rule, but by 
successive tries (Figure 4). 

The used ANFIS network for the Direct-inverse 
adaptive control contains 4 neurones in the input layer 
with triangular functions as membership function. The 
output of the ANFIS network is the signal of control u(t) of 
the DC-motor. The first input of the ANFIS network is the 
reference yd(t), the other inputs are; the output of the DC-
motor with a delay y(t+1), the output with two delay 
y(t+2), and the signal of control u(t+1). 
 
 
Adaptive neuro-fuzzy inference system (ANFIS) 
control of the DC-motor 
 
The control based on the adaptive ANFIS network uses 
the inverse model of the DC-motor (identified by an 
ANFIS), to control the speed of this motor. It is direct 
inverse control; the identified inverse model is directly 
used as controller. It can be a real-time identification or 
separate time identification. When the identification is real 
time made the control is adaptive. To control DC-motor 
MAS, we will use an adaptive control with identification of 
the inverse model of the system (Figure 5). The stability 
of the control of the DC-motor using the intelligent 
controller is ensured since the model DC-motor has a 
stable model, so, if the inverse model of the induction 
motor is a good estimation of this model, the total system 
(DC-motor and the inverse controller) must be a stable 
system. 
 
 
SIMULATION OF ADAPTIVE NEURO-FUZZY 
INFERENCE SYSTEM (ANFIS) NETWORK USING S-
FUNCTION 
 
For the simulation purpose, MATLAB/SIMULINK version 
6.5 is used. For the simulation ode15 s (stiff/NDF) solver 
is used. The simulation results were taken for 80 s. For 
each step time, ANFIS provided the value which make 
the learning of inverse model of the DC-motor to obtain 
the error eu (t), from which the signal of control u(t) is 
calculated by ANFIS controller. ANFIS is trained via  back
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Table 1. Parameters of DC-motor. 
 

Parameter Symbol Value 

Resistance Ra 0.65 Ω 

Inductance La 0.0117 H 

Inertia mass J 0.652 kg/m
2
 

Friction F 0.0587 N 

 
 
 

Perturb

DC Motor

Refs
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Figure 6. Simulink model of direct-inverse adaptive control based ANFIS Learning. 

 
 
 

propagation algorithm (Jang, 1993; Eleftherios, 2012). 
The direct-inverse control of the DC-motor based on 
ANFIS learning is designed to make the output speed 

track the reference Ω.ref and at the same time achieve the 
desired dynamic performance. To verify the effectiveness 
of the ANFIS controller we use the PID controller. The 
aim of using the PID controller is to validate the results of 
the ANFIS controller in terms of rapidity and precision as 
well as the disturbance rejection. The parameters of the 
DC-motor are given in Table 1. The parameters of the 
PID controller are arbitrarily chosen to have rapid 
response of the speed of the DC-motor. We take: Kp = 
150, Ki= 7, Kd=13. 

Figures 7 and 8 give the response of the speed of the 
DC-motor with direct-inverse adaptive control based 
ANFIS training and PID controller. Figure 8 shows the 
zoomed version of the Figure 7. Figures 9, 10 and 11 
show the evolution of consequent and local parameters 
during the control (and the training of the model) of the 
DC-motor. Figures 12 and 13 give the response of the 
speed of the DC-motor with direct-inverse control and 
PID controller with application of load torque  TL= 5 Nm at 
the instant t =47 s. Figures 14 and 15 give the response 
of the load torque of the DC-motor using the two 
controllers; direct-inverse controller and the PID 
controller. The convergence rate is mainly affected by the 
four Learning rates parameters, in the Simulink block 
(Figure 6) we can change these by  simply  changing  the 

gain values of the S-function block in Appendix. In 
present context it is set to 0.02. 

The simulation result obtained shows that the speed of 
DC-motor tracks rapidly its reference (Figures 7 and 12) 
with static error of tracking almost zero for the direct-
inverse control based ANFIS training, what is not the 
case of the PID controller which, in spite of we have 
chooses high gains does not allow the cancelation of the 
static error. Direct-inverse control based ANFIS learning 
keep very small static error (Figure 13) despite the 
application of the load torque. We noted small variation of 
local parameters of ANFIS (Figure 10 and 11) during the 
control of the DC-motor which is not the case of 
consequent parameters (Figure 9). Figures 14, 15, 16 
and 17 show that direct-inverse control based ANFIS 
learning give best response of load torque that these  
obtained  by PID controller which present high values of 
picks during the variation of speed references. 
 
 
CONCLUSION 
 
A direct-inverse adaptive control based ANFIS learning is 
proposed as Matlab-Tool for identification and control of 
dynamic systems. The proposed Simulink block is 
implemented as S-function of MATLAB software. The 
application of this block to control of speed of DC-motor 
gives good results of tracking of speed  and  load  torque.
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Figure 7. Matlab response of speed with direct-inverse control based ANFIS learning and PID controller. 
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Figure 8. Speed of the DC-motor with direct-inverse control and PID controller (zoomed). 
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Figure 9. Evolution of consequent parameters of ANFIS during the direct-inverse control of the DC-motor. 
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Figure 10. Evolution of the local parameters a3 of ANFIS during the control of the DC-motor. 
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Figure 11. Evolution of the load parameters c2 of ANFIS during the control of the DC-motor. 
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Figure 12. Simulink model of direct-inverse adaptive control based ANFIS Learning –application of load toruqe 
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Figure 13. Adjustment of parameters of the S-function Matlab block of ANFIS. 
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Figure 14. Speed of the DC-motor with direct-inverse control based ANFIS learning and PID controller 

-application of load torque at t=47 s. 
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Figure 15. Speed of the DC-motor with direct-inverse control and PID controller –application of load torque at 

t=47 s. (zoomed). 
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Figure 16.  Torque response of the DC-motor with direct-inverse control based ANFIS learning –application of 

load torque at t=47 s. 
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Figure 17. Torque response of the DC-motor with PID controller -application of load torque at t=47 s. 

 
 
 
The simulated results show improvement in the static 
error speed with maintenance of performances in the 
presence of load torque. The future work is to build an S-
function of ANFIS to control real systems. 
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