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The quality of the nasopharyngeal carcinoma (NPC) treatment plans evaluation using three types of 
artificial neural networks (ANNs) are instructed by three different training algorithms. Three ANNs 
including Elman (ANN-E), feed-forward (ANN-FF), and pattern recognition (ANN-PR) were trained by using 
three different models, that is, leave-one-out (Train-loo), random selection (Train-random), and user defined 
(Train-user) method. One hundred sets of NPC treatment plans were collected as the input data of the 
neural networks. The conformal index (CI) and homogeneity index (HI) were used as the characteristic 
values and also to train the neurons. Four grades (A, B, C, and D) were classified in degrading order. 
The over-training issue is considered between the train data and the number of neurons. The receiver 
operating characteristic (ROC) curves were obtained to evaluate the performed accuracies. The optimal 
numbers of neurons for ANN-E, ANN-FF, and ANN-PR, in the loo method are 6, 24, and 9; in the random-
selection method, they are 26, 22, and 4; and in the user-defined method they are 12, 8, and 11 neurons, 
respectively. The optimal size of train data is 92% of total inputs in the cases of ANN-E and ANN-FF and 
76% in the case of ANN-PR. The networks with higher accuracy are ANN-PR-loo (93.65 ± 3.60%), ANN-FF-loo 
(88.05 ± 5.84%), and ANN-E-loo (87.55 ± 5.86%), respectively. The networks with shorter training time are 
ANN-PR-random (0.55 ± 0.11 s), ANN-PR-user (0.59 ± 0.08 s), and ANN-PR-user (1.07 ± 0.16 s), respectively. The 
ROC curves show that the ANN-PR-loo approach has the highest sensitivity, which is 99%. ANN-PR-loo 
reduces the amount of trail-and-error during the iterative process of generating inverse treatment plans. 
It is concluded that the ANN-PR-loo is an excellent model among the three for classifying the quality of 
treatment plans for NPC.  
 
Key words: Artificial neural networks (ANNs), dose-volume histogram (DVH), intelligence system, 
nasopharyngeal carcinoma (NPC).  

 
 
INTRODUCTION 
 
Clinically, intensity modulated radiation therapy (IMRT) is 
the most common technique to deliver radiation doses to 
nasopharyngeal carcinoma (NPC) patients, because 
IMRT is capable of delivering a high dose to the irregular 
tumors, and prevents organs at risk (OARs) and normal 
tissues from being exposed  to  radiation.  However,  it  is 

usually difficult to complete a suitable IMRT plan at one 
time because both the patient’s condition and some 
complex formulas need to be considered simultaneously. 
The IMRT technique greatly benefits NPC patients, 
offering much higher treatment quality. The IMRT 
technique  combines  several  different  radiation  fields to  
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produce steep dose-volume histogram (DVH) and 
isodose curves for the planned target. These steep 
curves mean that the dose gradient at the border 
between cancerous and normal tissue varies rapidly. 
Usually the acceptable dose distribution can be produced 
by using seven to nine fields (Lee et al., 2008; Oldham et 
al., 2008). 

A treatment plan that results in a higher planning target 
volume (PTV) coverage and reduce the complications in 
normal tissues is preferred, and this may be done after 
several attempts using trial and error. The inverse 
calculation is one kind of algorithm that is embedded in 
treatment planning systems (TPS). It is generally used in 
the optimization procedure for IMRT. The inverse 
calculation adopts iterative operation and an optimal 
algorithm to produce varied intensity of treatment beams. 
This allows IMRT to find a dose that compromises 
between the PTV and critical organs (Webb, 2004; Leung 
et al., 2007). The interactive interface is also supported in 
modern planning systems. The dose-volume based 
weighting and the priority of the critical organs can be set. 
Therefore, planners can define some limits for PTV and 
OARs, which is called constraint-based optimization.  

In order to find the solution during the optimization 
procedure, three steps are performed: (1) determine the 
constraints and priority setting making up an objective 
function by the planner, (2) work out the objective 
function, and (3) evaluate the quality of the treatment 
plan with the prescribed dose and criteria. These three 
steps are executed sequentially or iteratively until an 
optimal solution is reached (Stieler et al., 2009). 
However, the quality of a final plan depends on the 
planners’ experiences, which may be learned from 
others’ experience or published journals (Deasy et al., 
2007; Wilkens et al., 2007). It is very time-consuming for 
a planner to fine-tune for individual optimal solutions. 
Technically the final result obtained is usually not an 
optimal solution, but a sub-optimal one. Generally, if we 
want to find an optimal solution, we have to consider not 
only a minimum objective function, but also the individual 
clinical conditions and many parameters not included in 
the objective function. If an expert knowledge-based 
system is applied to learn and to accumulate those 
experiences, then the time taken to create an optimal 
treatment plan will be reduced. This knowledge-based 
system is especially effective for complex treatment 
plans, such as NPC plans. 

Artificial neural networks (ANNs) are widely used in the 
modern   sciences  (Wu  et  al., 2009;  Bahi  et  al.,  2006;  
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Vasseur et al., 2008). There are some major researches 
on ANN models that were used to predict the side effects 
after   radiation therapy. For  instant,  the   leave-one-out 
(loo), random-selection, and user-defined methods were 
applied to train the feed-forward ANN model introduced 
by Su et al. (2005) which is used to predict the probability 
of pneumonitis after treatment. The sensitivity obtained 
by the three different methods are 0.95, 0.57, and 0.71 
and their respective accuracies are 0.94, 0.88, and 0.90. 
The ANN is also used to calculate the probability of 
developing radiation pneumonitis, as proposed by Chen 
et al. (2007). Based on Chen’s model, the receiver 
operating characteristic (ROC) curves show that the 
sensitivity is 0.67, the specificity is 0.69, p = 0.020. 
Obviously, involvement of the aforementioned non-dose 
characteristics makes ANNs more generalized. 
Moreover, Mathieu et al. (2005a) adopts an ANN to 
optimize the dose distribution. It is applied in treatment 
plans to make sure the time taken for calculation is 
acceptable and the error is less than 2%. Isaksson et al. 
(2005) also uses the feed-forward network to predict the 
motion of a tumor in the lung during radiation therapy. 
Results show that this method is better than the 
conventional one and the self-adaptive filter. Many kinds 
of treatment techniques introduced by Bortfeld and Webb 
(2009) are used to reduce the treatment time effectively. 
Our preliminary result (Chao et al., 2010) shows that a 
back-propagation model using dose parameters and 
dose indices can produce high accuracy in evaluating 
NPC plans. Some applications of ANNs were used in the 
past to implement 3DCRT plans effectively and 
efficiently, and a few of them were applied in the expert 
system of IMRT.  

Whether a treatment plan is acceptable or unaccept-
able, it usually depends on the planner’s experience. It is 
time-consuming to evaluate the calculated results and 
fine-tune the weightings by trial and error. In this study, 
three types of ANNs are instructed by three different 
training algorithms to effectively evaluate the quality of 
the NPC treatment plans. A better match for ANN and the 
training algorithm will be chosen and established. We aim 
to help to make an intelligence judgment that reduces the 
amount of interaction between planner and TPS during 
the iterative process of generating inverse treatment 
plans. It can decide whether a plan is acceptable and 
ranking the quality of treatment plans automatically, 
therefore, providing an improvement suggestion when the 
plan was not acceptable.   
 
 
MATERIALS AND METHODS 
 

Three different neural network models, namely, the Elman (ANN -E), 
feed-forward (ANN-FF), and pattern recognition (ANN-PR) models, 
are adopted. Each model is worked with three selection methods, 
named the leave-one-out (loo), random-selection, and user-defined 
methods, to train the neurons. The overall system flowchart is as 
shown in Figure 1. The data of DVHs are imported into the 
untrained ANNs and the training method  is  selected.  We  want  to  



2078          Sci. Res. Essays 
 
 
 

Treatment 

planing

Manual

evaluation

ANN 

Evaluation 

system

Check

criteria

Ready for 

delivery

Plan improvement 
suggestions

Yes

No

 
 

Figure 1. System flowchart for plan quality evaluation and 
improvement suggestions; ANN: artificial neural networks. 

 
 

 

find an ANN model that matches a specific training method to 
produce   the  highest  accuracy  by  consideration a mong  the 
conditions of the training time, the number of neurons, the size of 
training data population, and ROC curves (Chen et al., 2007; 

Mathieu et al., 2005b). Then, the model can be taken as the best 
one to evaluate the treatment plans. The basic neural networks 
structure of the selection procedure is as shown in Figure 2. In the 
following, parameters and neural networks used are described.  
 
 

Input parameters 
 

According to the International Commission on Radiation Units and 

Measurements (ICRU) Report 62, the planning organ-at-risk 
volumes (PRVs) were defined as a safety margin around the OARs, 
particularly for a high-dose gradient area. In this study, the PRV of 
the spinal cord was determined by adding a 3D margin of at least 5 
mm to the delineated spinal cord. The PRVs of the brain stem and 
chiasm were defined through addition of a 3D margin of at least 1 
mm around the delineated structures. According to the suggestions 
of Radiation Therapy Oncology Group (RTOG) 0225 (Lee et al., 
2003), one hundred NPC samples (NP = N100) are collected as the 

inputs, where NP denotes the dimension of sample space and the 
suffix p denotes the number of samples in that group. This study 
was approved by the institutional review boards of the hospitals 
involved (IRB 99-1420B). Eventually, all the samples will be 
separated into four ranking classes, named A, B, C, and D. Each 
class is described as follows: 
 

A: the treatment plan is accepted by physicians. 

B: the prescription dose calculated on parallel organs exceeds the 
criteria. 
C: the prescription dose calculated  on  serial  organs  exceeds  the 

criteria. 
D: the coverage of PTV does not meet the criteria. 
 
The energy selected is of a 6 MV photon beam and a seven-field 

IMRT plan is created (Chao et al., 2010). This leads to the 
reduction of treatment time and enhance the biological effect. Each 
NPC plan has its own dosimetric indices and parameters (Lee et al., 
2010, Lee et al., 2011, Fang et al., 2010; Widesott et al., 2008; 
Leung et al., 2007), which are discussed subsequently. 

 
 
Dosimetric parameters 

 
Planning target volume  
 
Three parameters are commonly used to evaluate the coverage of 
the PTV. V93 means 93% of the total dose is received by 97% of 
PTV. The parameter V100 means 100% of the prescription dose 
covers more than 95% of PTV. Similarly, V110 means that 110% of 
the dose covers less than or equal to 20% of the PTV. 

 
 
Constraints for the organs at risk 

 
1) Spinal cord (SC): The maximum dose ≤ 45 Gy or 1 cc of PRV ≤ 
50 Gy; 
2) Brain stem (BS): The maximum dose ≤ 54 Gy or 1% of PRV ≤ 60 
Gy; 
3) Chiasm: The maximum dose ≤ 54 Gy or maximum dose of PRV 

≤ 60 Gy;  
4) Parotid: The mean dose ≤ 26 Gy or V30Gy ≤ 50%; 
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Figure 2. Basic neural networks structure. ANN: artificial neural networks; ANN-E: the 
Elman network; ANN-FF: the feed-forward network; ANN-PR: a pattern recognition network; 
Train-loo: ANN with leave-one-out method for training data selection; Train-random: ANN with 
random selection method for training data selection; Train-user: ANN with user-defined 

method for training data selection. 

 
 
 
5) Lens: The maximum dose must be ≤ 10 Gy and as low as 
possible; 
6) Eyes: the maximum dose must be ≤ 45 Gy; 
7) Mandible: The maximum dose must be ≤ 70 Gy or 1 cc of PRV 

and cannot exceed 75 Gy;  
8) Oral cavity excluding PTV: the mean dose must be ≤ 40 Gy;  
9) Healthy tissue: the mean dose must be ≤ 30 Gy or no more than 
1% or 1 cc of the tissue outside the PTV will receive ≥ 110% of the 
dose prescribed to the PTV. 
 
 
Dosimetric indices 

 

Conformal index (CI) 
 
This is used to estimate the coverage of PTV (Feuvret et al., 2006). 
 

2

PV

TV
PTV

TV

V
VCI   

 

where TVV  is the treatment volume of prescribed isodose lines, 

PTVV  is the volume of PTV,  and  PVTV   is  the  volume  of  PTVV  

within TVV . The best conformal case is the value of CI equal to 1. 

 
 
Homogeneity index (HI) 

 
This index describes how the homogeneity varies within the PTV. 
 

%95

%5

D

D
HI   

 

where %5D  and %95D are the minimum doses delivered to 5 and 

95% of the PTV. A higher HI indicates poorer homogeneity.  
Therefore, there are 14 indices included in D = [V93, V100, V110, 

SC, BS, rt Parotid, lt Parotid, Lens, rt Eye, lt Eye, Oral, Mandible, 
CI, HI] which are presented in this paper as the input vector (rt: right 
side, lt: left side). 
 
 
Training parameters 

 
Three distinct training methods are considered separately as 
follows: 
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1) Leave-one-out (Train-loo): This method selects one set of the 
patient’s data at a time to be the validation vector, and the other 
sets (Np – 1) are used to train the network until Np iterations have 
been done. It is suitable for use when the amount of data is small 
and high accuracy is needed. 
2) Random selection (Train-random): Here, four kinds of arrangement 
are made. The first kind selects 60% of the patient’s data (N60) to be 
the training data and the remaining 40% are used as the test vector. 
In the second arrangement, 67% of data are chosen to be the 
training data and the remainder is the test vector; in the third 
arrangement, the training data and test vector comprise 75 and 
25% of the data, respectively, and in the fourth, 80 and 20%, 
respectively.  

3) User-defined (Train-user): This method is similar to Train-random, but 
differs in that the data are selected manually. We prefer to select 
typical data to train the network, because it is easier to describe the 
border of data when the population of data is small. 
 
The cross-validation method is adopted to prevent ANNs from over-
training. If an ANN model is over-trained, non-generalized problems 
may occur as a result; for example, the training time may be too 
long or the accuracy may fall below an acceptable level, and so on.  

 
 
Artificial neural networks 

 
ANN is a brain-like network that possesses self-learning and 
memory abilities. The signal routes of a network are similar to the 
axons that carry the electrical signal out to other layers (Gulliford et 
al., 2004). Three types of ANNs are instructed by three different 
training algorithms to evaluate the quality of the plans. MATLAB (v 

7.9, The MathWorks, Natick, Massachusetts) is adopted to 
construct the network and to evaluate the treatment plans. 
 
 
Feed-forward network 

 
Many kinds of structures can be produced by combining learning 
modes and nodes. A basic one is the feed-forward network (ANN-

FF), it has three main layers (Isaksson et al., 2005; Deasy et al., 
2007; Bortfeld and Webb, 2009; Luo et al., 2005; Zhang et al., 
2010): 
 
1) Input layer: This layer actually consists of input components. 
Generally, it has two types: one whose input components are 
weighted in neurons with a bias value, and another which just 
connects the input components to neurons directly without 
operations. Here, the first type is adopted. 
2) Hidden layer: The intermediate layer between input and output 
layers. This layer receives input signals and processes them with a 
defined transfer function. The number of layers could be zero or 
multiple. Here, there is one hidden layer. It should be noted that the 
number of neurons will decide the speed of convergence.  
3) Output layer: A layer whose output is the output of the network. 
An error between the output and the actual value could feed 
backward to the weighting matrix. This feedback procedure is done 
until the output converges.  
 
 
Elman network 

 
The Elman network structure (ANN-E) (Cheng et al., 2002) is a 
simple recursive network (SRN). In an Elman network, some 
outputs of the hidden layer feed information back to the input layer. 
Those components are called context units and their weightings are 

fixed. This mechanism produces a signal which returns to where it  
came from, and thus the Elman network acts like a dynamic 
memory that can remember some previous information  temporarily.  

 
 
 
 
The weighting is adjusted by an error back-propagation algorithm. 
The linear transfer function is adopted in the input layer and the 
output layer, but a hyperbolic tangent function is used in the hidden 
layer. A factor δ called self-feedback gain denotes the state of the 
previous inputs contained in a context component (Liu et al., 2006; 
Qi et al., 2008; Su et al., 2007; Yuan-Chu et al., 2008). When δ 
approaches 1, this means that a context unit possesses more 
previous states. Otherwise, the network returns to the standard 
Elman network as δ is equal to zero. The value δ is chosen to be 
zero in our study. 
 
 
Pattern recognition network 

  
A pattern recognition network (ANN-PR) (Duin et al., 2007) can be 
trained to classify inputs according to target classes. The target 
data for pattern recognition networks should consist of vectors of all 
zero values except for a 1 in element i, where i is the class they are 
to represent. The input patterns are sensed and transformed into 
measurements by an ANN-PR. The features will be extracted from 
those measurements during the preprocessing procedure and 
features extraction. Therefore, the ANN-PR can recognize the 

patterns with respect to the features (Klopf and Gose, 1969; Lee 
and Bezdek, 1988; Maruno et al., 1993; Ulug, 1996; Weaver, 1975). 
In this study, the transfer function of the input layer is linear. 
Besides, there is only one stage in the hidden layer, whose transfer 
function is a hyperbolic tangent. The arrangement of the output 
layer is the same as that of the hidden layer here.  

Three networks, named Elman, feed-forward, and pattern 
recognition, are adopted in this study. During training, the data are 
selected by the loo, random selected, and user defined methods 

separately. The over-training problem is also discussed in the 
following along with the inputted data and the number of neurons, 
and the accuracies of the three algorithms are evaluated by using 
ROC curves. 
 
 
Statistical analysis  
 

Statistical tests of differences between the models were performed 
using a two-tail matched-pair exact Student t-test. Differences were 
considered statistically significant for p-values ≤ 0.05. All data 
presented in the text, tables and figures refer to the mean and 
standard deviation. The Statistical Package for Social Sciences 
(SPSS)-16.0 software was used for data processing (SPSS, Inc., 
Chicago, IL, USA). 
 
 

RESULTS 
 
Neurons and training data 
 
The cross-validation method is used to prevent the over-
training situation from occurring for evaluating the 
number of neurons and the amount of training data; the 
results on two issues are as follow: 
 

1) Training data: The accuracies of the system and 
training time of networks versus the size of training data 
is shown in Table 1, the simulated results for ANN-E and 
ANN-FF show that the optimal size of training data is 84% 
of total inputs. In the case of ANN-PR, the optimal size of 
training data is 76% of total inputs. 
2) Number of neurons: Relations between the number of 
neurons and neural  networks  are  as shown in Figure  3.  

http://en.wikipedia.org/wiki/Natick
http://en.wikipedia.org/wiki/Massachusetts
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Table 1. The result of the ANN-E, ANN-FF, and ANN-PR (the optimal amount of training data can be selected for three ANNs). 

 

The amount of 
training data (%) 

ANN-E  ANN-FF  ANN-PR 

Accuracy (%) Training time (s)  Accuracy (%) Training time (s)  Accuracy (%) Training time (s) 

60 75.38 ± 1.22 0.99 ± 0.05  68.74 ± 1.21 4.60 ± 0.82  76.38 ± 1.27 0.56 ± 0.04 

68 78.06 ± 1.27 0.99 ± 0.05  69.97 ± 1.97 4.55 ± 0.98  78.63 ± 1.22 0.56 ± 0.03 

76 79.03 ± 1.00 0.99 ± 0.04  72.34 ± 1.72 4.85 ± 0.95  81.27 ± 1.35 0.57 ± 0.04 

84 81.18 ± 1.94 0.97 ± 0.06  75.49 ± 2.43 5.36 ± 0.82  81.83 ± 2.33 0.59 ± 0.04 
 

ANN-E: The Elman network; ANN-FF: the feed-forward network; ANN-PR: a pattern recognition network; All data presented refer to the mean and 
standard deviation. 

 
 
 
The three data selection methods are run with one model 
at a time for the optimal numbers of neurons selection. 
Table 2 shows that the training data are selected by the 
loo method and the optimal numbers of neurons for ANN-

E, ANN-FF, and ANN-PR are 6, 24, and 9, respectively. For 
the random-selection method, the optimal numbers of 
neurons are 26, 22, and 4, as shown in Table 2. 
Therefore, the optimal numbers with respect to the user-
defined method are 12, 8, and 11, respectively. It should 
be mentioned that the condition of the training data used 
here is the same as in Table 1. 
 

 

Accuracies and training time versus training data  
 
The condition of the optimal neurons here is inherited 
from Table 2. Through this condition, the neural models 
are tested with varied training data to find out the most 
adaptive ones. Experimental results are as follows: 
 
1) The three models with the highest accuracy are ANN-

PR-loo (93.65 ± 3.60%), ANN-FF-loo (88.05 ± 5.84%), and 
ANN-E-loo (87.55 ± 5.86%). 
2) The three models with the shortest training time are 
ANN-PR-random (0.55 ± 0.11 s), ANN-PR-user (0.59 ± 0.08 s), 
and ANN-E-user (1.07 ± 0.16 s). 
3) The ANN-FF model is used as a benchmark for 
statistical comparison. Statistical significance is deemed a 
p-value < 0.05, and the accuracy of ANN-PR-loo and ANN-

PR-random models is found to be the statistical best ones. 
 
 

ROC curves 
 
The ROC curve is used to estimate the adaptability of the 
neural networks as depicted in Figure 4. The sensitivity 
specificity analyses are listed in Table 3. The best case is 
ANN-PR-loo, which has 99% sensitivity and 100% 
specificity. The worst case is ANN-E-user, which has 67% 
sensitivity and 64% specificity. 
 
 

Error estimation 
 
Through the classification of three algorithms, the highest 

missing rate occurred in the 97 and 98th dataset as 
shown in Figure 5. Each dataset missed six times in total. 
 
 
Plan improvement  
 
Plan improvement suggestions are given after an 
execution of the neural models in a pop-up window in 
Figure 6. One example before/after improvement is 
demonstrated in Figure 7, the DVHs and isodose curves 
are included. Plan improved from rank C (left hand side) 
to rank A (right hand side). 

 
 
DISCUSSION 
 
To find an optimal size of train data to avoid an over-
training problem is a primary goal in our research. So, 
Train-user is adopted here instead of Train-random, because 
we want the input data to be distributed uniformly, 
otherwise the amount of train data will increase 
dramatically and then the optimal population size will 
never be found. For ANN-E, there is no significant 
difference for the system accuracy in the amounts of 
training data used (of 76 and 84%) among the three 
models as shown in Table 1. But the training time for 84% 
train data is shorter than the others, so the amount of 
training data (84%) is adopted in the case of ANN-E. In 
the case of ANN-FF, the amount of training data of 84% is 
taken, because the accuracy is highest. However, in the 
ANN-PR model, the outcomes in the amount of training 
data of 76 and 84% used are almost the same. Based on 
the reason for the less training time, the 76% is taken. 

The accuracies and training time of the ANN-E, ANN-FF, 
and ANN-PR models can be estimated after the number of 
neurons and the size of train data have been decided. 
Table 2 shows that the ANN-PR-loo possesses the highest 
accuracy, but with much longer training time, and the size 
of train data for Train-loo is fixed. In the same loo method 
group the other two results for ANN-E-loo and ANN-FF-loo are 
similar. On average, the accuracy is highest in the group 
Train-loo, followed by the group Train-user and lastly the 
group Train-random. The advantage of Train-loo models is 
that all of their parameters  have  been trained to result in  
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Figure 3. Relations between the number of neurons and neural networks; (a) for Train-loo (b) 

for Train-random, and (c) for Train-user. (Square marked with the best solutions). ANN-FF: The 
feed-forward network; ANN-E: the Elman network; ANN-PR: A pattern recognition network; 
Train-loo: ANN with leave-one-out method for training data selection; Train-random: ANN with 
random selection method for training data selection; Train-user: ANN with user-defined method 
for training data selection; Statistical tests of differences between the models were performed 

using a two-tail matched-pair exact Student t-test. ANN-FF was used as a benchmark. 
Differences were considered statistically significant for p-values ≤ 0.05; NS: not statistical 
significance.  
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Table 2. The result of the ANN-E, ANN-FF, and ANN-PR for the three different data selection methods (the best number of neurons are 
selected). 

 

Method 
Input data 

(%) 
Number of 
neurons 

Accuracy 

(%) 
p value 

Training time 

(s) 
p value 

Leave-one-out method (Train-loo)       

ANN-E  100 6 87.55 ± 5.86 0.782
NS

 43.62 ± 1.44 0.186
NS

 

ANN-FF 100 24 88.05 ± 5.84 - 42.38 ± 4.38 - 

ANN-PR 100 9 93.65 ± 3.60 <0.005 37.34 ± 0.58 <0.005 

       

Random selection method (Train-random)       

ANN-E  84 26 83.13 ± 7.34 0.039
NS

 1.08 ± 0.13 <0.005 

ANN-FF 84 22 85.00 ± 5.27 - 4.83 ± 2.23 - 

ANN-PR 76 4 77.71 ± 2.80 <0.005 0.55 ± 0.11 <0.005 

       

User-defined method (Train-user)       

ANN-E  84 12 87.50 ± 11.79 0.642
NS

 1.07 ± 0.16 0.007 

ANN-FF 84 8 85.00 ± 9.86 - 4.33 ± 3.00 - 

ANN-PR 76 11 84.38 ± 6.21 0.648
NS

 0.59 ± 0.08 <0.005 
 

Train-loo: ANN with leave-one-out method for training data selection; Train-random: ANN with random selection method for training data selection; 
Train-user: ANN with user-defined method for training data selection; ANN-E; the Elman network; ANN-FF; the feed-forward network; ANN-PR：a 

pattern recognition network; All data presented refer to the mean and standard deviation. Statistical tests of differences between the models were 
performed using a two-tail matched-pair exact Student t-test. ANN-FF was used as a benchmark. Differences were considered statistically 
significant for p-values ≤ 0.05; NS: not statistical significance. 

  
 
 
higher accuracy; however, the disadvantage is that the 
training time is much longer. The common factor in the 
groups Train-user and Train-random is that the sizes of the 
training populations adopted are the same. But there is a 
slight difference in accuracy between them, because of 
the data-selection methods. The user-selection model 
possesses higher average accuracy than the random-
selection model, but the average training time is almost 
the same.  

ANN-PR-loo is the most precise model and is also faster 
than ANN-E-loo and ANN-FF-loo. So, ANN-PR-loo is suitable for 
the cases where high accuracy is required. The training 
time for ANN-PR-user remains within one second with 
84.38% accuracy rate, which is most suitable for some 
real-time applications.  

As shown in Figure 5, classification errors occurred six 
times in dataset 97 and 98th. Dataset reviewed showed 
that the dataset 97th belongs to class D based on the 
RTOG 0225 criteria and the department standard; 
meanwhile, the PTV margin overlaps BS’s and parotid’s 
margins, which belong to class B. This increases the 
probability of error in classification. An enlarged margin 
was used to deal with some specific marginal situations 
which caused a marginal overlapping problem. This also 
happens on dataset 98, whose margin overlaps SC’s, 
BS’s, parotids’, and lens’ margins, which are classified 
into class C. However, the overlapping situation can be 
effectively improved with a larger size of training data 
population, as occurred with Train-loo on dataset 98th. 

In terms of medical  examination,  the  number  of  false 

negatives (1-sensitivity) should be as low as possible, 
because this means the sensitivity is greater. Therefore, 
the ROC results show that ANN-PR-loo is the optimal 
solution among the three in this study. 

The ANN-PR model has not only the shortest training 
time, as stated by Lampariello and Sciandrone, (2001), 
but also the highest accuracy. The multilayer perceptron 
that was introduced by Kolasa et al. (2009) possesses 
five neurons in the hidden layer and is used to predict the 
survival rate of patients with bladder cancer. The 
accuracy of Kolasa’s model is 90%, but the accuracy of 
ANN-PR-loo presented in this study is 99%. Bassi et al. 
(2007) proposed a method that adopts 93 sets of data to 
train neurons. The ratio of training data to validation data 
is 1:1 (model A) and the ratio in model B is 2:1. The 
results show that the areas under the ROC curves are 
0.89 and 0.88. However, with our Train-loo algorithm, the 
area under any ROC curve is 0.96 or above. Besides, the 
ratio of training data to validation data is 19:6 
(approximates to 3:1) in ANN-PR-user and the area under 
the ROC is 0.89. Mathieu (2005a) proposed the idea of 
adopting a neural network to optimize the dose 
distributions. Therefore, we adopted this idea in our ANN-

FF model to improve the speed of the calculation. The 
accuracy of our model is the same as that of the 
conventional and self-adaptive filter methods, both of 
which are proposed by Isaksson et al. (2005).  

The neural networks use dosimetric indices and 
parameters from DVHs to classify the quality of treatment 
plans,  in  this  study. Three kinds  of  ANN  are run  along  
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ROC curve for user defined method
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Figure 4. Three different ANNs ROC curves from (a) 

Train-loo (b) Train-random (c) Train-user. ANN: artificial neural 
networks; ANN-E: the Elman network; ANN-FF; the feed-
forward network; ANN-PR: a pattern recognition network; 
ROC: receiver operating characteristic; Train-loo: ANN with 
leave-one-out method for training data selection; Train-

random: ANN with random selection method for training data 
selection; Train-user: ANN with user-defined method for 
training data selection. 
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Table 3. Sensitivity and specificity analysis for the models.  
 

Method Sensitivity (%) Specificity (%) 

Leave-one-out method   

ANN-E  96 4 

ANN-FF 96 0 

ANN-PR 99 0 

   

Random selection method   

ANN-E  77 16 

ANN-FF 81 16 

ANN-PR 88 36 

   

User-defined method   

ANN-E  67 36 

ANN-FF 77 24 

ANN-PR 89 8 
 

ANN-FF: The feed-forward network; ANN-E: the Elman network; ANN-PR: a pattern 

recognition network. 
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Figure 5. Classification missed evaluation in dataset. 

 
 
 
with three data selection methods, named the loo, 
random-selection, and user-selection methods. The 
answers we found on how the training data population 
and training data quality affect the operation of each 
model and the ROC is also an important factor in 
quantifying the model’s accuracy. Based on the results, 
Train-loo possesses high accuracy, but its training time is 
too long to be applied in some real-time applications. If 
we need a model that is capable of  an  instant  response, 

then Train-random or Train-user is a suitable choice. However, 
Train-user needs to execute one more operation to avoid 
biased distribution of the training data and to keep the 
accuracy within an acceptable range. Summarizing all the 
findings and considerations mentioned earlier, the best 
neural network for application to the evaluation of the 
quality of treatment plans is ANN-PR-loo. The overlapping 
problem in this model can be solved by importing more 
training samples. 
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Figure 6. Plan improvement suggestions. 
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Figure 7. A planning sample before (left)/after (right) improvement (improved from rank C to rank A). 



 
 
 
 
Conclusions 
 

ANN-PR-loo reduces the amount of trail-and-error during 
the iterative process of generating inverse treatment 
plans. It is concluded that the ANN-PR-loo is an excellent 
model among the three for classifying the quality of 
treatment plans for NPC. This system is able to classify 
the calculated result and offer suggestions to planners 
that reduce the amount of interaction between planner 
and TPS during the iterative process of generating 
inverse treatment plans. It is a convenient and effective 
way to evaluate the quality of treatment plans. 
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