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The semiparametric estimation procedure of binary response data is composed of two steps. In the first 
step, various semiparametric estimators are used for estimating the model parameters, whereas 
nonparametric regression type estimators are required in the second step to obtain the probability 
estimates dependent on the estimated model parameters in the first step. In this study, we have 
investigated the efficiency level of the Klein and Spady estimator which is widely used in the current 
literature in first step of the semiparametric modelling and the classical Nadaraya-Watson kernel 
estimator used in the second step of the estimation procedure of binary response data when the 
parametric model assumptions are satisfied. We have also wanted to see the variation in the estimates 
when the adaptive Nadaraya-Watson kernel estimator has been used instead of the classical estimator. 
So far, there has neither been any simulation study nor a study comparing those methods, analytically 
in Statistics literature. Therefore, a comprehensive simulation study has been conducted and data sets 
from the logistic distribution have been generated to display that success in practice. Four different 
sample sizes have been considered to see the differences along with the variation in the sample sizes. 
All findings have been assessed in terms of both the mean averaged square error and the correct 
classification rate criteria for ordinary, Pearson and deviance residuals, respectively. Additionally, a 
real data set has been used to demonstrate the effectiveness of the simulation results with the results 
in practice. The simulation results indicate that the semiparametric Klein and Spady estimations give 
considerable close results to the parametric counterparts when parametric model assumptions are 
satisfied. This obviously means that there is no significance difference between the parametric and the 
semiparametric approaches in case of satisfaction of the parametric model assumptions. Another 
considerable finding is that there is no clear superiority between classical and adaptive Nadaraya-
Watson estimators.  
 
Key words: Nonparametric regression, kernel estimation, semiparametric estimation, binary data. 

 
 
INTRODUCTION 
 
A model with both an unknown function and an unknown 
finite-dimensional parameter is called “semiparametric”. 
Since the semiparametric approach does not need much 
of the assumptions required by the parametric alternative, 
it has gradually become popular for the limited dependent 
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variable in Econometrics. Besides, researchers neces-
sarily use the semiparametric model approach when the 
parametric model assumptions are violated. We mainly 
focus on the semiparametric modeling of binary response 
data here. 

The semiparametric estimation procedure of binary 
response data is composed of two steps: In the first step,  
one of the semiparametric estimators such as the 
semiparametric   least   square   estimator   proposed   by  
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(Ichimura, 1993), the semiparametric maximum likelihood 
estimator of Klein and Spady (1993) or the density 
weighted average derivative estimator of (Powell et al., 
1989) could be used for the estimation of the model 
parameters. 

It is well known that the IC estimator outperforms when 
the dependent variable is continuous. However, PW 
estimator could or should be used for the model including 
only discrete explanatory variables, which is extremely a 
restrictive requirement. That is why we are interested in 
the performance of the semiparametric KS estimator 
which could be used for the data types of both discrete 
and continuous.  

In the second step, the semiparametric estimation 
procedure is completed by the application that is one of 
the nonparametric regression estimation procedures of 
the binary dependent variable on the linear combination 
of the model parameters estimated in the first step. Since 
the classical Nadaraya-Watson (NW) estimator has a 
simple mathematical form, it is generally preferred to be 
used in the estimation process.  

This study is composed of two parts. In the first part of 
the study, the efficiency degree of the traditional 
semiparametric KS estimator has been determined when 
the parametric model assumptions are satisfied in the 
first step of the semiparametric modelling of binary 
response data. Additionally, parametric Probit (PR) model 
estimates have also been obtained to see the deviations 
of the KS estimates from that of the true parametric PR 
estimates. 

In the second part of the study, we show and propose 
that Adaptive Nadaraya-Watson (NWA) kernel estimator 
may be used in place of the NW estimator in the 
semiparametric estimation of binary response data. We 
show that the proposed NWA estimator presents pretty 
much similar results to the NW estimator. 

So far, in Statistics literature, there has neither a 
simulation work nor a study comparing those methods, 
analytically. For this purpose, a comprehensive 
simulation study has been conducted and data sets from 
the logistic distribution have been generated. This means 
that, much of the results obtained from the generated 
data perform in favour of the parametric model estimates 
due to the known mathematical structure of the model. 

Keeping this in mind, in the first part of the simulation 
design we have investigated whether the KS estimator 
gives considerable close results to the parametric 
counterparts or not when the data is suitable for the 
parametric estimation. After that, parametric PR 
estimates are obtained to see the difference in results of 
an alternative parametric model apart from the logit 
estimates, as well.  

The second part of the simulation study is designed to 
discuss the performance of the nonparametric NW and 
NWA kernel estimators for the modeling of a categorical 
dependent variable that are commonly used in the 
nonparametric modeling of a continuous dependent 
variable.  

 
 
 
 

All findings have been assessed in terms of both the 
Mean of Averaged Square Error (MASE) and the Correct 
Classification Rate (CCR) criteria for Gaussian (GAU) 
and Epanechnikov (EPA) kernel functions and ordinary, 
Pearson and deviance residuals, separately. 
 
 
METHODS 
 

In binary dependent variable modeling, the mean function that is 
conditional on the vector of the explanatory variables X given in 
Equation (1) has been defined as the probability (also denoted by 
P) of belonging of an observations to the category “1” coded in the 
dependent variable,  
 

T

m( x ) E(Y | X x ) P[Y 1| X x )]

ˆG ( X ) 

    


………………....             (1) 

 

where ̂ is the vector of the estimated parameters, Y is a binary 

dependent variable and G is the distribution of the error term  .  
 
 
The parametric approach 
 
In this approach both the structure of the distribution and its 

parameters are known. Under the linear index restriction (
T ˆX 

), 

̂
 

could easily be obtained owing to the known mathematical 
structure of the model. 

Parametric logistic regression model (LG) is obtained under the 
assumption that G represents the logistic distribution function. 
Similar to this, the PR model is obtained under the normal 
distribution assumption for the function G. The mathematical 
expressions of both LG and PR models are given in Equation (2) 
and (3), respectively, 

 

( LG )

T

T

E(Y | X x ) P[Y 1| X x )]

ˆexp( X )

ˆ1 exp( X )





   




     ……………..                  (2) 
 

( PR )

T

E(Y | X x ) P[Y 1| X x )]

ˆ( X )

   

 
 ………………                 (3) 

 
In Equation (3),  denotes the standard cumulative normal 
distribution function.  

Model parameters (’s) are derived by maximizing the logarithmic 
likelihood function given in Eq. (4) (McCullagh and Nelder, 1989). 
 

T
n nN

1
N n

n 1 T
n

Y log G( X )

log L ( ) N (1 Y )

log[1 G( X )]











 
 

   
 

 



………………..            (4) 

 
 
The semiparametric approach 

 
In the semiparametric modeling of binary response data, no 
assumption is required related to the distribution of the error term 
and “g” has been substituted  in  place  of  G  in  Equation  (1).  The 



 
 
 
 

T ˆ( X )  linear index assumption is still valid here. The general 
expression of the model is defined as follows: 
  

T ˆE(Y | X x ) P[Y 1| X x )] g( X )    
………………   (5)  

 

The semiparametric estimation procedure is summarized as 
follows: 
  

Step 1:  is estimated using one of the semiparametric estimators 
mentioned in the Introduction part of the study.  

Since there is no need of distributional assumption for G, an 
alternative estimator is required in the semiparametric approach. 

Such an alternative estimator was proposed by Klein and Spady 
(1993).  
 
 
KS estimator 
 

Let GN be in the form of equation as follows; 
 

N N
N

N N N N

P g ( |Y 1)
G ( )

P g ( |Y 1) (1 P )g ( |Y 0 )




 




   
   ……………….  (6) 

 

Where Y is dependent variable in dummy structure. 
Klein and Spady showed that GN which is nonparametric 

estimation of G could be estimated by the nonparametric regression 

of Y on
T

KS
ˆX 

. 
The proportion of responses “1” in overall; the kernel estimation 

of the density function of 
T

KS
ˆX 

 for responses “1” and the 

kernel estimation of the density function of 
T

KS
ˆX 

 for 
responses “0” are given by Equations (7), (8) and (9), respectively. 
 

N

n

n 1
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P
N




………………… (7) 
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 




 
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   
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 ……………                 (9)  
 

After both replacing GN () in place of G in Equation (4) and 

maximizing the log likelihood function, the unknown  parameters 
are estimated by the KS method. 
 

Step 2: The linear function of 
T ˆ( X )  is computed after the estimation 

of .  
 
Step 3: g in Equation (5) is estimated using one of the 
nonparametric regression estimation methods, that is ,used to 

regress Y on the estimated
T ˆ( X )

. As a result, the probabilities of 
observations belonging to the category “1” in the dependent 
variable are estimated. 
 
 
NW estimator  
 

The   general   form   of  the  conditional  expected  value  given  by  
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Equation (1) is defined as: 
 

 

ˆyf ( x,y )
m̂( x ) dy

f̂ ( x )
 

………….                                                    (10)  

 

where 
f̂ ( x,y )

 is the estimated joint probability density function of X 

and Y and f̂ ( x )  is the estimated density function of X. Nadaraya 
(1964) and Watson (1964) proposed an estimator for the estimation 

of m( x )  based on the kernel functions. The kernel estimators of 

f ( x )  and f ( x,y )  are given as: 
 

n
i

i 1

1 x X
f̂ ( x ) K

nh h

 
  

 


………….                                              (11) 
 

n
i i

i 11 2 1 2

1 x X y Y
f̂ ( x,y ) K ,

nh h h h

  
  

 


………                                (12) 
 
where h is a bandwidth (smoothing) parameter which controls for 
the smoothing level of the kernel estimation; K is a symmetrical 

probability density function called “kernel function”; 
K(.)

 is a 
bivariate kernel function which can be obtained using the 
multiplicative kernel functions defined as follows (see Hardle, 1990; 
Horowitz and Hardle, 1994).  
 

i i i i

1 2 1 2

x X y Y x X y Y
K , K K

h h h h

        
     

      ……………                (13) 
 
and h1 and h2 are fixed bandwidths.  

The use of the EPA (Epanechnikov, 1969) and GAU kernel 
functions given below are commonly preferred in practice due to the 
simplicity of their functional forms.  
 

  2

EPAK(u ) 3(1 u ) / 4 ; u 1
 

 

    2

GAUK(u ) exp( u / 2 ) / 2 ; u
 

 
Using the same bandwidth parameters (h1= h2=h) in Equation (12) 

and replacing the density functions of 
f̂ ( x )

 and 
f̂ ( x,y )

 in 
Equation (10) with their kernel estimates in Equations (12) and (13), 
the Nadaraya-Watson kernel estimator of the regression function, 

NWm̂ ( x )
, is obtained. 

 
n

i
i

i 1
NW n

i

i 1

x X
Y K

h
m̂ ( x )

x X
K

h





 
 
 
 

 
 




                                              ………. (14) 

 
h plays a very important role in the performance of the kernel 
estimators. Various methods such as cross-validation, penalized 
functions, plug-in, bootstrap etc. have been developed to obtain the 
optimal bandwidth parameter h (Pagan and Ullah, 1999). In fact the 
Cross Validation (CV) method has become very popular in the 
estimations due to its simplicity in selecting optimal h. 

The optimal bandwidth value of h is obtained by minimizing the 
CV function given by Equation (15) with a nonnegative weight 
function w(Xi) (Hardle, 1990; Horowitz and Hardle, 1994). 
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n
2

i i i

i 1

ˆCV( h ) n [Y m( X )] w( X )


 
………………..                       (15) 

  
CV includes the leave-one-out kernel estimator obtained by leaving 

the observations Xi and Yi out of the data defined as follows:  
 

n
i j

j

j i

i i n
i j

j i

X X
Y K

h
m̂ ( X )

X X
K

h





 
 
 

 
 
 




          ………………..                       (16) 

 

The bandwidth that minimizes the CV function also minimizes the 
mean square error which is a performance criterion of an estimator 
(Hardle, 1990; Horowitz, 1998). 
 
 
NWA estimator  
 

The kernel estimator of the probability density function may not be 
efficient especially when a fixed bandwidth parameter is used for 
the multivariate case. Silverman (1986) proposed a procedure 
called the “adaptive kernel” (or sample point) estimator based on 
the varying bandwidth parameter. 

An adaptive kernel estimator of a probability density function 
which uses different bandwidth values for the data point of Xi, is 
given by: 
 

n
i

A

i 1 i i

1 1 x X
f̂ ( x ) K

n h( X ) h( X )

 
  

 


              ……….                         (17) 
 

where, h(Xi) represents the varying bandwidth value for observation 
i. Using varying bandwidth parameters instead of the fixed 
bandwidths, the adaptive multiplicative kernel estimator of the 

variables 1 2 d( X ,X ,...,X )
 (in d-dimensional space) could be 

defined as: 
 

dn
j

A 1 d
1i di ji 1 j 1

x X1 1
f̂ ( x ,...,x ) K

n h h h( X ) 

   
    

   

 

………………...   (18) 
 
(Sain, 1994). The adaptive estimator of the bivariate density 
function given by Equation (19) is a special case of the function 
given in Equation (18) with two random variables. 
  

n
i i

A

i 1 i i i i

1 1 x X y Y
f̂ ( x,y ) K K

n h( X )h(Y ) h( X ) h(Y )

    
    

   


………….        (19) 
 

A NWA kernel estimator with varying bandwidth parameter is 

obtained by replacing Af̂ ( x )
 and Af̂ ( x,y )

 into the numerator and 
denominator of Equation. (10). The resulting estimator is given as 

follows (Demir and Toktamis, 2010). 

 
n

i i

i 1 i iA
NWA n

A i

i 1 i i

Y x X
K

ˆ hyf ( x,y )
m̂ ( x ) dy

f̂ ( x ) 1 x X
K

h

 

 





 
 
  
 
 
 





……….                    (20) 

 

In Equation (20), i 
(i 1,...,n)

 represents the local bandwidth 
factors.   Silverman  (1986)  proposed  an  algorithm  composing  of  

 
 
 
 
three steps in the estimation of the adaptive estimators. 

In the first step, a prior kernel estimator if ( X )
 with a fixed h is 

obtained. In the second step, I is computed as:  
 

i
i

f ( X )







 
  
   ……………………………………….................      (21) 

 

Where  is the geometric mean of the function if ( X )
 and  is the 

sensitivity parameter which satisfies the condition 0    1.  
In the last step, the following adaptive kernel estimator of the 

density function of X is obtained by replacing hi instead of h(Xi) in 
Equation (17).  
 

n
i

A

i 1 i i

1 1 x X
f̂ ( x ) K

n h h 

 
  

 


…………                                                 (22) 
 
The same procedure is applied to obtain the adaptive kernel 
estimator of the bivariate density function given in Equation (19) to 
reach the expression in Equation (20). The adaptive kernel 
estimation is equivalent to the kernel estimation with fixed 

bandwidth parameter when the sensitivity parameter  is equal to 0. 
Abramson (1982) and Silverman (1986) emphasized the point that 

 is considered to be 0.5 for obtaining better results. 
 
 

Simulation study 
 

This section contains the simulation planning. The linear index 
function given below has been determined following the study of 
(Proença and Silva, 2000) so that the minimal conditions could be 
satisfied for the semiparametric estimation. The identifiability 
condition of the model parameters proposed by (Manski, 1988) has 
been achieved by assigning the value 1 to the first coefficient of a 
continuous variable. 
 

T

i 1i 2iIndex X 1 X X ; i 1, ,n    
  

 

In order to reveal the effects of both continuous and discrete 
explanatory variables, X1 has been generated from standard 
normal distribution whereas a discrete variable X2 has been 
generated from Bernoulli distribution whose parameter is 0.75. The 
probabilities with respect to the index values have been computed 
using the ordinary logistic function presented below. This means 
that all simulated data are consistent with the model LG. 
  

  i
i

i

exp( Index )
P Y 1 / X x ; i 1, ,n

1 exp( Index )
   


 

 
Dependent variable Y has been derived from the Bernoulli 

distribution with the parameter {
 iP Y 1 / X x 

}. The MASE and 
CCR criterion have been interpreted in terms of the Ordinary, 

Pearson and Deviance residuals, separately. The mathematical 
definitions of these residuals are given as:  
 

 Ordinary( i ) i ir y P( x ),
   




  

i i

Pearson( i )

i i

ˆy P( x )
r

ˆ ˆP( x ) 1 P( x )
,  

  

   

 
  

 

Deviance( i ) i i

i i
i i

i i

r Sign y P( x )

y 1 y
2 y log (1 y )log

P( x ) 1 P( x )
 



Akkuş et al.          2413 
 
 
 
Table 1. The results based on the KS estimator and GAU and EPA kernel functions. 
 

N 
Kernel MASEGAU 

CCRGAU 
MASEEPA 

CCREPA 
Est. Ordinary Pearson Deviance Ordinary Pearson Deviance 

25 
NW 0.08161 0.55571 0.23009 88.80 0.09233 0.64298 0.25959 87.53 

NWA 0.08201 0.55061 0.23124 88.85 0.09423 0.64142 0.26454 87.27 

          

100 
NW 0.09874 0.70276 0.27710 86.64 0.10397 0.76374 0.29183 86.01 

NWA 0.10028 0.69598 0.28032 86.43 0.10621 0.76344 0.29660 85.60 

          

250 
NW 0.11474 0.82499 0.31956 84.54 0.11697 0.85229 0.32578 84.26 

NWA 0.11613 0.82929 0.32264 84.28 0.11855 0.86141 0.32941 83.95 

          

500 
NW 0.12199 0.88646 0.33788 83.52 0.12344 0.90203 0.34190 83.33 

NWA 0.12304 0.89538 0.34018 83.28 0.12456 0.91494 0.34442 83.05 

 
 
 
Table 2. The results based on the PR estimator and GAU and EPA kernel functions. 

 

N 
Kernel MASEGAU 

CCRGAU 
MASEEPA 

CCREPA 
Est. Ordinary Pearson Deviance Ordinary Pearson Deviance 

25 
NW 0.08469 0.56279 0.23738 88.28 0.09123 0.60993 0.25431 87.37 

NWA 0.08501 0.55744 0.23825 88.18 0.09251 0.60636 0.25757 87.21 

          

100 
NW 0.10091 0.71853 0.28230 86.18 0.10427 0.76013 0.29163 85.78 

NWA 0.10213 0.70926 0.28476 85.94 0.10599 0.75584 0.29517 85.40 

          

250 
NW 0.11484 0.84959 0.31949 84.42 0.11668 0.84959 0.32469 84.14 

NWA 0.11599 0.85712 0.32283 84.10 0.11800 0.85712 0.32766 83.88 

          

500 
NW 0.12169 0.88683 0.33687 83.33 0.12295 0.90152 0.34040 83.28 

NWA 0.12253 0.89394 0.33864 83.05 0.09123 0.60993 0.25431 83.07 

 
 
 

Where iy
 denotes the observed value of the dependent variable 

whereas iP( x )
 is the estimated probability with respect to the x of 

observation i
( i 1, ,n )

.  
Two popular kernel functions, GAU and EPA, have been used in 

computations with sample sizes of 25, 100, 250 and 500. For each 
type of sample size 1000 replications have been performed.  

It is well known fact that the interpretation of the ordinary 
residuals are not appropriate in modeling the categorical dependent 
variable in spite of their smallest MASE values in comparison with 
the other type of residuals. The reason why we have included the 
ordinary residuals in our study is to show that using this type of 
residual will lead us to misinterpret the results. In the sub-section 
this has been presented in detail. The MASE values of the deviance 
residuals are smaller than the Pearson residuals in any sample 
sizes and for both kernel functions presented in Tables 1 and 2. 
Since the deviance is the smallest residual type it should be 
evaluated in any stage of the simulation study.  

Tables 1 and 2 summarize the simulation results on the basis of 

the KS and PR estimators with GAU and EPA kernel functions for 

averaged square residuals when the data fit the logistic distribution. 

RESULTS 
 
This part of the study summarizes all the simulation 
results obtained.  
 
1. The first comparison is made on the efficiency of the 
semiparametric estimator KS and the parametric 
estimator PR when the simulated data sets are consistent 
with the parametric model LG. We conclude that the KS 
results overlap with the results of the PR under the 
satisfied assumptions of the parametric model. In other 
words, there is no significant difference between the 
parametric and the semiparametric approaches to the 
modeling of binary response data when satisfactions of 
the parametric model assumptions are achieved.  
2. Another comparison is made on the performance of 
the NW and NWA estimators in terms of the MASE 
values considering the deviance residuals. We conclude 
that  there  is  no  clear  superiority  of  the  estimators  on 
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Table 3. The results of the cancer data. 
 

Estimator Kernel Estimator Kernel Function 
MSE 

CCR (%) 
Ordinary Pearson Deviance 

KS 

NW 
GAU 

0.21968 0.93329 0.54508 63.08 

NWA 0.21983 0.93660 0.54550 63.08 

      

NW 
EPA 

0.21807 0.92696 0.54054 63.08 

NWA 0.21868 0.94057 0.54229 64.62 

       

PR 

NW 
GAU 

0.13766 0.71611 0.36676 80.00 

NWA 0.13743 0.69351 0.36393 80.00 

      

NW 
EPA 

0.13909 0.75839 0.37116 81.54 

NWA 0.14147 0.72477 0.37198 80.00 

 
 
 
efficiencies. However, when the exact results are taken 
into consideration, the MASE values of the NW estimator 
are smaller than that of the NWA. Thus, we suggest that 
researchers should use the NW estimator due to its 
simpler mathematical structure in place of the estimator 
of NWA.  
3. It is also evident that the CCR criterion does not 
present distinguishable information for the concerned 
comparison. 
4. Since the MASE values obtained from the use of the 
GAU kernel function are smaller than that of the EPA 
kernel in almost all sample sizes under the deviance 
residuals, a definite conclusion cannot be presented 
about the comparison of the efficiency on the kernel 
functions used. We indeed know and expect that kernel 
functions do not have a significant effect on the results 
(Hardle et al., 2004).  
5. Another remarkable point that should be emphasized 
is that CCR values get smaller as the sample size 
increases contrary to expectations. This is related to the 
asymptotic consistency of the estimators. The 
consistency of an estimator is dependent on some 
restrictive conditions and it is not so easy to satisfy such 
conditions for every data set studied in nonparametric 
regression approach (Hardle, 1990). The main problem of 
not satisfying such conditions is due to the difficulty of 
monitoring the attitude of the consistency of an estimator 
in the boundaries of the explanatory variables. In our 
case, in fact this problem has occurred especially due to 
the binary structure of the dependent variable. Moreover 
we know that the nonparametric estimations are more 
efficient especially for small sample size which is justified 
by the simulation results given in Tables 1 and 2. 
Therefore, interpreting the results related to the small 
sample size is rather meaningful.  
 
The following section illustrates the effectiveness of the 
simulation results with the result in practice.  

APPLICATION TO A REAL DATA 
 
A cancer data including male patients of 65 is used to 
examine whether the simulation results given in previous 
section are supported by the results of a real data set in 
practice. Y is a binary variable coded as follows: 
 


 


i

0, if patient i  is alive.
Y

1, if patient i  is dead.
  

 
Three important factors that could affect the disease are 
determined. These are, the age of patient (X1), the tumor 
size (X2) and the situation of metastasis (X3). X1 and X2 
are continuous variables whereas X3 is a binary variable 
coded as: 
 


 


3

0, if the metastasis is not stated.
X

1, if stated.
 

 
We have not focused on to model and interpret the 
parameter estimates of the data here. We have only 
intended to give the results indicating the model quality 
and their interpretations. Table 3 gives the statistics that 
measure the quality of the estimated model for the data 
via the Mean Square Error (MSE) and the CCR criteria 
under three different residual types. The results are 
presented with respect to the GAU and EPA kernel 
functions and KS and PR estimators, separately.  
The optimal h for the NW estimator using the GAU kernel 
function is computed as 10.39 whereas it is 18.02 for the 
EPA kernel function when the KS estimator is used in the 
first step of the semiparametric modeling. In the case of 
the PR estimator, the optimal bandwidth values are 0.16 
and 0.34 for the GAU and EPA kernels, respectively. It is 
obviously seen in Table 3 that the real data results 
support the considerable part of the simulation results. 
These consistent parts are listed as: 
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Figure 1. Predicted probabilities versus index values related to the NW and NWA estimators under the GAU 

kernel function and the KS estimator. 
  
 
 
1. The deviance residuals have smaller MSE values in 
comparison with the Pearson residuals for both GAU and 
EPA kernel functions.  
2. As we do not have a sufficient evidence to apply a 
parametric model to the data studied, we could only 
propose to use the semiparametric KS estimator in the 

estimation of 


 in the first step of the semiparametric 
estimation procedure.  
3. In parallel with the simulation results, it was found that 
the MSE value of NW in any case is slightly smaller than 
NWA without taking any kernel function into 
consideration.  
 

The graphical presentations of the probability of being 

dead: P(Y 1)
 versus the estimated linear index values 

under different combinations of the NW, NWA and KS 
estimators and the GAU and EPA kernel functions are 
given in Figures 1 and 2. Both figures shows the similarity 
of the NW and NWA results under the KS estimator and 
two widely used kernel functions.  
 
 

DISCUSSION 
 

According to the simulation study,  the  best  combination  

of the most efficient estimators has been determined both 
in the first and the second steps in the semiparametric 
estimation of binary response data when data sets are 
consistent with the parametric logit model.  

Results have been assessed according to the MASE 
values under the deviance residuals and CCR values.  

Results indicate that the semiparametric KS 
estimations are considerably close to the estimations of 
the parametric counterpart of it when the parametric 
model assumptions are satisfied. This obviously 
emphasizes the success of the semiparametric KS 
estimator. It cannot be concluded that NW estimator 
exactly outperforms than NWA or vice versa in all 
simulation scenarios in the second part of the 
semiparametric estimation. However, when the exact 
MASE values are taken into consideration, the use of NW 
estimator seems to be a little better. It was also 
concluded that the results are not affected by the kernel 
functions used. 

It was revealed that both the simulation and the real 
data results are in favor of the usage of the KS estimator 
in the first step and the NW estimator in the second step. 
It can be concluded that NWA estimator could be used 
for not only modeling a continuous dependent variable 
but also for a binary response. However we  suggest  that  
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Figure 2. Predicted probabilities versus index values related to the NW and NWA estimators under the EPA kernel 

function and the KS estimator.  

 
 
 
a further modification is necessarily needed for the NWA 
estimator to compete the opponent estimators. 
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