
Scientific Research and Essays Vol. 6(14), pp. 2988-2997, 18 July, 2011 
Available online at http://www.academicjournals.org/SRE 
DOI: 10.5897/SRE11.246 
ISSN 1992-2248 ©2011 Academic Journals 
 
 
 
 

Full Length Research Paper 
 

Diffusion in graded materials by decomposition method 
 

Ali Sahin* and Ibrahim Karatay 

 
Department of Mathematics, Fatih University, 34500 Buyukcekmece, Istanbul, Turkey. 

 
Accepted 24 May, 2011 

 

In this study, diffusion equation for composite materials was examined using a well-known Adomian 
Decomposition Method (ADM). Defining variable conductivity and heat capacity as an exponential 
function or a power function that represents Functionally Graded Materials (FGMs), one-dimensional 
diffusion equation with non-homogeneous boundary conditions was examined. First, using standard 
superposition method the diffusion equation is turned into non-homogeneous one with homogeneous 
boundary conditions. Then, using generalized Fourier series expansion, the resultant PDE is solved by 
using ADM. The results are compared with the solution obtained by eigenfunction expansion method. 
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INTRODUCTION 
 
In recent years, the Adomian decomposition method 
(ADM) has been applied to solve a wide class of 
deterministic and stochastic PDEs in Science and 
Engineering (Adomian, 1988; 1989; 1994; Cherruault, 
1989). The method is modified by researchers to solve 
many problems whose models involve, linear or non-
linear, differential equations, integral equations, partial 
differential equations and their systems (Wazwaz, 1999a; 
2001). The advantage of the method is that it converges 
rapidly to a convergent series solution for linear as well 
as non-linear deterministic and stochastic equations. 
There is also no need for linearization and perturbation in 
this method. Because of these properties of the method, 
many different types of special problems such as 
Korteweg–de Vries (KdV) equation (Kaya et al., 2003a,b), 
Shivansky Equation (Momani et al., 2005), Emden-
Fowler type equations (Aslanov, 2009) easily solved by 
ADM. 

A powerful modification of ADM was proposed by 
Wazwaz (1999b) to accelerate the rapid convergence of 
the series solution. Using the modified technique, it may 
be obtained the exact solution for nonlinear equations 
without any need of Adomian polynomials. By modified 
ADM, the size of calculation is minimized in terms of the 
standard ADM. 
 
 
 
*Corresponding author. E-mail: asahin@fatih.edu.tr. 

Many researchers due to its importance in science and 
engineering applications have investigated the solution of 
heat conduction problem. Many attempts were made to 
solve heat conduction problem in homogeneous and 
inhomogeneous materials using analytical and numerical 
techniques. Jang (2007) examined solution of one 
dimensional nonhomogeneous parabolic type equation 
with variable coefficient using ADM. Gorguis and Benny 
Chan (2008) were compared the results of the solution of 
heat equation by using ADM and the traditional 
separation of variables method. In many problems, after 
calculation of heat conduction by ADM, results are 
controlled with either analytical or numerical solutions 
examined in the previous studies. Under periodic 
temperature conditions, the convergence of ADM in one 
dimensional heat equation was investigated by Lesnic 
(2002) using differential iteration method. It was resulted 
that ADM established better rates of convergence 
compare with the differential iteration method. Marwat 
and Asghar (2008), as two-step Adomian decomposition 
method, for a diffusion equation, modified the method of 
Adomian decomposition. In the application of the 
modified method, they showed that the generalized 
Fourier series instead of the trigonometric Fourier series 
is required to build up the solution. 

In early 1980’s, the concept of Functionally Graded 
Materials (FGMs) was proposed as an alternative to 
conventional thermal barrier ceramic coatings. FGMs are 
essentially two-phase particulate composites synthesized  



 
 
 
 
in such a way that the volume fractions of the 
constituents vary continuously in the thickness direction 
to give a predetermined composition profile. The 
composition profile, which varies from 0% ceramic at the 
interface to 100% ceramic near the surface, in turn, is 
selected in such a way that the resulting 
nonhomogeneous material exhibits the desired 
thermomechanical properties. The concept of FGMs 
could provide great flexibility in material design by 
controlling both the composition profile and the 
microstructure. Current and potential applications of the 
concept of FGMs include not only thermal barrier 
coatings of high temperature components but also wear-
resistant coatings on load transfer components, armors 
or shields with improved impact resistance, and 
thermoelectric cells (Kaysser, 1999; Miyamoto et al., 
1999; Niino et al., 1987; Pan et al., 2003; Shiota et al., 
1997). 

In this study, it will be solved a one dimensional 
diffusion equation in FGMs 
 

                (1) 

 

with variable properties like conductivity and heat 
capacity per unit volume. The compositional variation in 
FGM will be assumed as an exponential function by 
defining the conductivity and heat capacity per unit 
volume, respectively, as 
 

                     (2) 

 

and as a power function by defining the conductivity and 
heat capacity per unit volume as 
 

      (3) 

 

where the parameter α  is named as a nonhomogeneity 

parameter of the FGM and parameters 0 0 0, ,ck ρ  are 

constants. It will be employed Adomian decomposition 
method to solve the problem in which the corresponding 
eigenfunctions of the related eigenvalue problem are 
expressed in terms of generalized Fourier series.  
 
 
METHODOLOGY 
 
Let us consider the general deterministic functional equation 
 

    
          (4) 

 

where L  is a linear operator which is invertible under sufficient 

existence and regularity conditions so that 1L−  exists. Also, when 
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1
L

−  is applied on a function ( )tf  then ( )1
f tL-  is measurable. R  

is the remainder of the linear operator and N  represents a 

nonlinear operator. Applying 
1L-

 on both sides of (4), it can be 
obtained that: 
 

   
  (5) 

 

Where 
1

L
−

 is an integral operator, , and the result can 

be simplified as: 
 

( ) ( ) ( )( ) ( ) ( )1 1 1
0u t L t L Lu t f Ru Nu- - -

+ - -=
        

   (6) 

 
The standard ADM defines the solution in the form of 
 

              (7) 
 

where the components ( ), 0,1,2,nu n = K , are determined 

recursively by using the relation 
 

   
               (8) 

 

    (9) 

 

The nonlinear term 
nNu  can be represented by an infinite series of 

the form  
 

                 (10) 

 

where ( ), 0,1, 2,n nA = K , are the appropriate Adomian’s 

polynomials which are given by 
 

      

       (11) 

 
If the series converges in a suitable way, then the general solution 
is obtained as 
 

             (12) 

 
 
Conductivity as an Exponential Function 
 
Let us consider the diffusion equation 
 

    

       (13) 
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with boundary and initial conditions, respectively, 

 

    

       (14) 

 

where η  is constant. The solution of the Equation (13) can be 

obtained by proposing a solution such as 
 

 
             (15) 

 

in which the function ( ),v x t  satisfies the homogeneous equation  

 

                (16) 
 
The solution of (16) along with the nonhomogeneous boundary 
conditions 
 

     
         (17) 

 
is given by 
 

                  (18) 
 
Using (18) in (4), it can be obtained a new nonhomogeneous PDE 
 

       (19) 
 
with homogeneous boundary and initial conditions, respectively, 
 

           

       (20) 

 
At this point, it will be used the Adomian decomposition method to 
solve the problem. First, let us write the equation in operator form 
as follows: 
 

( )t xL u u F xL -=                      (21) 

 
Where 
 

                     (22) 

 

However, if ADM is applied to (19) directly, ( )1 , 0u x t =  is 

obtained which yields the wrong general solution due to the iterative  

 
 
 
 

nature of ADM in (8) and (9). To fix this, the function ( )F x  will be 

expressed as a generalized Fourier series in terms of the 
eigenfunction expansions of the Sturm-Liouville boundary value 
problem 
 

               (23) 
 

with homogeneous boundary conditions ( ) ( ) 0a by y= = . 

Eigenvalues and the corresponding eigenfunctions can be easily 
obtained as  
 

  

  
 
Where  
 

   
 

Finally, the function ( )F x  can be expressed as 

 

,  24) 
 

Where nf  is called as coefficients of generalized Fourier series of 

( )F x  and using orthogonal properties of eigenfunctions it is 

evaluated that 
 

 
 

Now, defining the solution of ( ),u x t  and the inverse of 

operator
tL , respectively, as 

 

                     (25) 
 

then, the ADM method can be applied to (19) as follows: 
 

,         (26) 
 

.        (27) 



 
 
 
 
Let us write that 
 

, 

                     (28) 
 

From the recursive relation 
 

( )1
1( , ) , 0,1, 2,j t x ju x t L u jL-

+ = = K , 

 

it can be obtained that 
  

                         (29) 
 

                                           

   (30) 
 

 

                                         

      (31) 
 

and so on. Finally, the 
th

j  component of the solution can be given 

as 
 

( ) ( )1
1, ,j t x ju x t L uL-

-=
 

 

.                                                      (32) 
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From the superposition of ( ),ju x t  and using the identity 

 

( )
( )

1 2 3 4
1

1
1 ! 2! 3! 4!

j
j t t t t

t
j

+
+

- = - + - + -
+

L ,  

 

( )
( )

1
1

1 1
1 !

j
j tt

e
j

+
+ -

- = -
+

                                          

    (33) 

 

the solution of ( ),u x t  can be written as 

 

          

  (34) 
 
Where 
 

    (35) 
 
The general solution of the diffusion equation with exponentially 
varying conductivity from (15) is given by 

 

, 

          

     (36) 

 
 
Conductivity as a Power Function 

 
Let us consider the diffusion equation in the form of 

 

    (37) 

 
with the same boundary and initial conditions given in (14). 

Proposing the same solution in (15), the function ( ),v x t  satisfies 

the equation  

 

              (38) 
 
The solution of (38) along with the non-homogeneous boundary 
conditions given in (17) can be obtained as: 
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         (39) 
 

Finally, substituting ( ),v x t  into (15), non-homogeneous diffusion 

equation is obtained 

 

                  (40) 

 
with homogeneous boundary and initial conditions given in (20), 
respectively, and then it can be written in an operator form given in 

(21) in which operators and the function ( )F x  can be defined as 

follows: 

 

        

                      (41) 

 
Again, solving the boundary value problem like 
 

            (42) 

 

with boundary conditions  the function
  

( )F x  can be expressed as a generalized Fourier series  

 

              (43) 
 
Where 
 

 
 

 
 
and eigenvalues and the corresponding eigenfunctions are given as 

 

 

 
 
 
 

   
 

 
 

Defining the unknown function ( ),u x t  and the inverse operator as 

in (25), it can be applied the ADM to (40) and it will be obtained the 
first term in the solution series such that 

 

(44) 

 
From the Adomian recursive relation the th

j  component of the 

solution can be given as 

 

              

                              (45) 

 
The general solution of the diffusion equation with power variation 
using the identity given in (33) can be expressed in the form of 

 

                                                                

 (46) 

 
Where 

 

           (47) 

 
The general solution of the diffusion equation with power form of 
the conductivity given by 
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Figure 1. T (×, t) for exponential form of conductivity when α = 0.25.

  
 
 

 
 

Figure 2. ( ),T x t  for exponential form of conductivity when α = 3.0.  

  
 

 
 

                                                        

 

 (48) 

RESULTS 
 
Figures 1 and 2 show the effect of α  for the 

exponentially varying conductivity. As it is seen that the 
heat conduction is rapidly increasing with increasing non-
homogeneity parameterα . In Figures 3 and 4, the effects 

of  for the conductivity in the form of power 
function are shown. Either exponential function or power 
function it can be seen that the effect of the definition of 
conductivity on heat conduction is slightly different. This 
is  because  of  the  solution ( ),v x t

 
 that   is the dominant 
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Figure 3. T (×, t) for power form of conductivity when α = 0.25. 

  

 

 
 
Figure 4. T (×, t) for power form of conductivity when α = 3.0. 

  
 
 

term of the series solution of the problem as . 
 
 
Conclusion 
 
In this study, the heat conduction in a non-homogeneous 
composite material where the conductivity isgiven as an 
exponential function or a power function is solved using 

ADM. For the exponentially varying conductivity, the 
results that are obtained by ADM and eigenfunction 
expansion method are in complete agreement as shown 
in Appendix. In addition, it can be shown that the exact 
solution of the diffusion equation with conductivity as a 
power function can be obtained by the same method. In 
Figures, the effect of the non-homogeneity parameter α  

is       shown       for        the        fixed        values        of 



 
 
 
 

01.0, 1.0, 0, 1.0k a b= = = =η . 
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Appendix  
 
Eigenfunction expansion solution for exponentially varying conductivity 
 
Let us solve the problem in (13) along with the boundary conditions in (14) by the method of eigenfunction expansion. 
Using the same steps from (13) through (18), it is obtained the nonhomogeneous PDE.  
   

                              (A.1) 
 

with homogeneous boundary and initial conditions, respectively, 
   

 

                

               (A.2) 
 

The eigenfunctions of the related homogeneous problem are given by  
   

 

               

                         (A.3) 
 

with homogeneous boundary conditions ( ) ( ) 0.a by y= =  The eigenvalues and the corresponding eigenfunctions are  

  

   

            

         (A.4) 
 

where  
 

   . 
 
By defining the solution as  
    

                         

         (A.5) 
 
and substituting in (A.1) it is obtained  
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Let    and using orthogonality    

 

 
 
it is obtained an ordinary first order differential equation to be solved 
 

   .                         (A.6) 
The solution can be obtained straightforward as  

            .           (A.7) 
and using definitions in (35), it can be written that 
 

                                          (A.8) 
 

where 
nf  is defined in (25). The general solution in terms of eigenfunction expansion method of the problem given in 

(13) is found as 

               (A.9) 
 


