
Scientific Research and Essays Vol. 5 (20), pp. 3070-3081, 18 October, 2010
Available online at http://www.academicjournals.org/SRE
ISSN 1992-2248 ©2010 Academic Journals

Full Length Research Paper

A 32-bit floating-point module design for 3D graphic
transformations

Ibrahim Sahin

Department of Electronics and Computer Education, Faculty of Technical Education, Duzce University 81620, Duzce,

Turkey. E-mail: ibrahimsahin@duzce.edu.tr.

Accepted 2 September, 2010

Nowadays, in computer animations, tens of, even hundreds of animation objects are placed in a scene
to form a typical animation scene and thousands of vertices are used to mathematically define each
object in the scene. Applying three dimensional (3D) transformations to such scenes requires huge
amount of CPU time. As a result, calculation of an animation scene could take a long time. Moreover, in
the case of real time animations, it becomes almost impossible to calculate transformations on time. In
this presented work, a 32-bit floating-point based hardware module was designed to speed-up 3D
graphic transformations using field programmable gate array (FPGA) chips. The module was tested and
functional verification of the module was done by comparing the results produced by the module to the
results generated by general purpose computers (PCs) for the same set of input data. Module’s data
processing speed was compared to various PCs. The results showed that, 3D graphic transformations
can be speeded-up by a factor (up to 11.47) employing the designed module.

Key words: Field programmable gate array, computer graphics, three dimensional transformation, hardware
module.

INTRODUCTION

Three dimensional (3D) graphic transformations are a
vital part of graphics software libraries and graphic
application programs. When these transformations are
applied to complex graphic objects in which a few
thousand vertices are included to define the objects,
transformation functions use huge amount of the CPU
resources of the computing environment. Especially in
computer animations, as the number of objects in the
animation scene increases and the number of vertices
used to define these objects increases, calculation of the
animation takes hours. In a typical animation scene of an
animated movie, tens of objects can be used to describe
a scene and over 100 thousand vertices can be used to
describe these objects (Hearn and Baker, 2004). Such an
animation scene has to be recalculated 24 times to
create one second movie in DVD standard. This means
that locations of the 100 thousand vertices used the
describe objects on the scene have to be recalculated 24
times to create a one second movie clip (Disney/Pixar,
2008). In 3D animation, multiplications of a 4x4 matrix
and a 4x1 matrix is required to calculate a new location of

one vertex. A total of 38.4 million multiplications and 28.8
million additions have to be done to calculate such an
animation scene for one second. Some other calculations
are also need to complete animation such as rendering
calculations. General purpose computers become
insufficient for such an animation work and the
calculations take huge amount of time.

As a solution to the problem, several approaches have
been developed. Some of these approaches are using
enhanced graphics cards designed specifically for
computer graphics, using specially designed computers
for computer graphics (Silicon Graphics International,
2007), and using super or parallel processor computers.
All of these solutions are of some disadvantages.
Enhanced graphics cards are designed as application
specific integrated circuit (ASIC). Any error done at the
design stage of these cards cannot be recovered once
the card is manufactured and redesigning the card and
having it ready for manufacturing takes about two
months. Moreover, once these cards are manufactured,
they can only perform the functionality that the card was

designed for. The card hardware cannot be reconfigured
to perform additional functionality. Specially designed
computers, super computers, and parallel computers are
costly solutions and sometimes desired performance gain
cannot be obtained. Field programmable gate array
(FPGA) based solutions are cost effective alternatives to
the above solutions.

In this work, as a cost effective alternative to the above
mentioned counterparts, a new hardware module was
designed to speed-up 3D graphic transformations. The
module was designed to run on FPGA devices and can
operate on 32-bit floating-point numbers. It was simulated
using real test data and correctness of the results
produced by the module was verified. The same test data
was processed using a C++ software running on three
different general purpose computers. Processing speed
of the module was compared to the C++ software. The
comparison results showed that considerable amount of
speed-ups can be achieved when the module is
employed in 3D graphic transformations.

BACKGROUND

Related works

In the literature, it is possible to see several general
purpose matrix multiplication module designs for FPGAs.
For example, in a research work, Boullis and Tisserand
presented a new algorithm for the problem of
multiplication by constant matrices. They claimed that
compared to the best previous results, their solution
leads to a significant drop in the total number of
additions/subtractions, up to 40%. They also
implemented a very high speed integra-ted circuit
hardware description language (VHDL) generator to
generate a circuit design for their algorithm. They
extended their algorithm and generator to cover some
digital filters and they are now able to handle filters
involving a multiplication by constant matrix and delay
operations (such as FIR filters). They claimed that in the
case of a 26-tap 16-bit FIR filter; a 34% reduction of the
operation count was achieved, compared to recent
results (Boullis and Tisserand, 2003, 2005).

In another research work, Gloster et al. designed a
pipelined multiply and accumulate (MAC) unit to speed-
up matrix multiplication. The MAC unit is able to multiply
individual elements of input matrices’ given row and given
column. The accumulator inside the MAC unit
continuously adds the results produced by the multiplier
to the current sum. When one row and one column is
processed with the MAC unit one element of the result
matrix is calculated. The claimed that with MAC module
matrix multiplication can be speeded-up up to ten times
compared to PCs and even more speed-ups can be
achieved when multiple MAC units are organized to
process different rows and column at the same time
(Gloster and Sahin, 2001).

Sahin 3071

El-Atfy et al. presented a new architecture for fixed-
point matrix multiplication using Xilinx Virtex4 device.
Their architecture utilizes the hardware resources on the
entire FPGA and uses the DSP blocks inside the FPGA
devices. The architecture can be implemented for non-
square matrix multiplication. They claimed that the
proposed implementation shows improvement in area
and latency compared to recent published work. They
achieved an improvement by over 50% in FMAX and
20% in area using new FPGAs (El-Atfy et al., 2007).

In 3D graphic transformations small matrices are multi-
plied. Since the matrix multipliers mentioned above were
usually designed to multiply huge matrices, they do not
give desired performance in terms of calculation time
when they are employed in 3D graphic transformations.

One specific study was conducted by Dr. A. Amira et al
from Brunel University. They investigated the suitability of
FPGA devices as a low cost solution for implementing 3D
affine transformations. They implemented their proposed
solution on a RC1000-PP Celoxica board based develop-
ment platform using Handel-C and reported the
implementation results. According to the results, they can
achieve up to 35 MHz clock speed. They also compared
their implementation with RADEON FSC 32 MB graphics
card in terms of data processing speed. Although, their
implementation did not outperform the graphics card,
they showed that 3D affine transformation can be done
using FPGAs for 22 bit fixed-point data (Bensaali et al.,
2003).

Another particular work for 3D transformations was
done by Franchini et al. They introduced a new
coprocessor architecture called CliffoSor which was
designed to support Clifford Algebra. They implemented
the coprocessor on a FPGA device. Initial test results
showed that they were able to speed-up 3D transfor-
mation from 4x to 20x compared to GAIGEN, a standard
geometric algebra library generator for general-purpose
processors (Franchini et al., 2009).

FPGA chips

FPGAs are type of chips that are completely prefabri-
cated and contain special features for customization
(Villasenor and Hutchings, 1998; John and Smith, 1997;
Tessier and Burleson, 1998). The user of these chips can
implement digital circuit designs by configuring them. The
biggest advantage of these chips is their configuration
time. Since the configuration time of these chips is very
small (for some chips the configuration time is less than a
millisecond), circuit designs can be realized very quickly
compared to ASIC implementations. A typical circuit
development cycle for an FPGA device includes four
steps. These steps are designing the circuit, coding the
design in a hardware description language (HDL),
compiling the HDL code to a configuration file and
loading the configuration to the chip.

3072 Sci. Res. Essays

Input / Output Block

Input / Output Block

In
pu

t /
 O

ut
pu

t B
lo

ck

Input / O
utput B

lock

Configurable
Logic
Blocks
(CLBs)

Inter-
connection
Network

Figure 1. Structure of the Xilinx 4000 series FPGA chips
(Sahin, 2002).

S/R
D Q

EC

S/R

EC

LUT

D Q

LUT

LUT

G4
G3
G2
G1

F4
F3
F2
F1

K

C1 C2 C3 C4

YQ

Y

XQ

X

Figure 2. CLB block diagram of Xilinx 4000 series FPGA chips.

A typical FPGA device contains three configurable
parts (Hauck, 1998; Brown and Rose, 2002). These parts
are an array of logic cells called configurable logic blocks
(CLBs), a programmable interconnection network and
programmable input/output blocks. Figure 1 shows the
structure of the Xilinx 4000 series FPGA devices. Each
I/O block includes a number of I/O cells. These cells
provide the interface between the package pins and
internal signal lines of the FPGA chip. Each cell can be
configured as an input, output, or bidirectional port. The
interconnection network consists of switch boxes and
metal wires. The CLBs are connected together by confi-

guring the switch boxes in the interconnection network.
Two most commonly used interconnection network types
are island style and cellular style. In island style
networks, point-to-point communications between the
CLBs are possible. On the other hand, the cellular style
network provides only local communication between the
CLBs (Figure 1).

The CLBs are the most important parts of the FPGA
device. Each FPGA manufacturer implements a different
type of CLB. In this work, we briefly introduce the
structure of CLBs for the Xilinx series FPGA chips. Figure
2 shows the block diagram of the CLB used in Xilinx 4000
series FPGA chips (Xilinx Inc, 1994; Vcc, 2002). This
CLB includes three lookup tables (LUT), two
programmable flip-flops and several programmable
multiplexers. The LUTs are function generators, capable
of implementing any combinational logic function of their
inputs. The LUTs in Figure 2 can perform any function of
up to five inputs when they are combined. SRAM
controlled multiplexers are used to route signals within
the CLB. The flip-flops are used to register output signals
when required.

In Xilinx's FPGA chips, (the Virtex-II Pro), each CLB
comprises four similar slices (Xilinx Inc, 2002). The slices
are connected together with a local feedback box. The
four slices in the CLB are split into two columns. Each
slide includes two four-input function generators,
arithmetic logic gates, carry logic, function multiplexers
and data storage elements.

FPGA based custom computing machines

FPGA Based Custom Computing Machines (FCCMs),
also known as reconfigurable computer (RC), are combi-
nation of hardware/software data processing platforms
that include a general purpose processor and one or
more FPGA devices. As shown in Figure 3, in FCCMs,
one or more FPGA chips with their local memory units
are organized on a printed circuit board (PCB) and they
are attached to a host computer as a coprocessor
through PCI bus. Some of the most famous FPGA boards
are SPLASH-2 (Buell et al., 1996; Ratha and Jain, 1999;
Ratha et al., 2000) and DECPeRLe (Vuillemin et al.,
1996; Lewis et al., 1999; Perkowski et al., 1999). The
SPLASH-2 board includes a linear array of Xilinx 4010
FPGA chips. Sixteen FPGA chips are used on the board
and they are organized in a linear systolic array. One
additional FPGA is used for control purposes. Each
FPGA has a limited 36-bit connection to its two nearest
neighbor chips. A 512 KByte local memory is also
attached to each FPGA. Several SPLASH boards can be
connected to form a chain and up to 16 boards can be
connected together to form a 256-element linear systolic
array. The DECPeRLe-I board includes 23 Xilinx 3090
FPGAs. Sixteen FPGAs were used to form a 4 x 4 array
and the remaining chips were used for interfacing with

Memory 1 Memory 2 Memory n�

FPGA 1 FPGA 2 FPGA n�
FPGA Board

PCI Interface

Host
Computer

Figure 3. General structure of an FCCM.

Figure 4. Sample 3D object definition (Lin, 2007).

the RAM and the host computer.

FCCMs combine the flexibility of general purpose
processors with the speed of application specific
processors. Usually the general purpose processor acts
as the host processor and the reconfigurable hardware
components are used as a coprocessor. In a typical
FCCM, computationally intensive portions of algorithms
are executed on FPGA devices for enhanced perfor-
mance. A well designed and utilized FCCM could yield
10x to 1000x improvement in execution time over
conventional general purpose processor based "software
only" computers.

It has been shown that executing computationally
complex sections of applications on RC systems signifi-
cantly reduces the execution time of the applications

Sahin 3073

compared to the general purpose processor only systems
(DeHon and Wawrzynek, 1999). However, applications
must be mapped to FPGA devices before they can be
executed on these systems. The mapping processes can
be performed either manually or automatically using
software tools. Several applications were mapped to RC
systems manually including image processing algorithms
(Prada et al., 1999; Tavares et al., 1998; Figueiredo and
Gloster, 1998; Figueiredo et al., 2000), genetic
optimization algorithms (Graham and Nelson, 1996), and
pattern recognition (Hogl et al., 1995).

How is computation done in FCCMs?

The computation on FPGA chips is done in four stages.
First, the FPGA chips are configured by host computer
with specially designed hardware modules that can
execute the computationally complex sections of the
algorithms. Second, data to be processed is transferred
from host computers memory to the local memory units of
the FPGAs. Third, the module configurations are enabled
to process given data. Module configurations process
given data and store results back to the local memory.
Fourth, the results are collected by the host computer
from the FPGA chips’ local memories. Data transfer
between the host computer and local memory units is
done using direct memory access (DMA) technique.

Computer graphics and 3D transformations

Several software suites, graphics libraries and application
programming interfaces (API) have been developed for
graphic design and graphic animation purposes. Two of
the well known graphics packages are open graphics
library (OpenGL) and DirectX. These packages include
several functions for creating computer graphics. It is
possible to access functions provided by these graphics
packages through most programming languages such as
C/C++, C#, Java and Visual Basic.

The first step of creating animation using these
packages is to form 2D or 3D mathematical models of
animation objects using vertices, edges and surfaces.
Modeling even a simple animation object requires to
define hundreds even thousands of vertices, edges, and
surfaces. Figure 4 shows a sample animation model of
famous Utah Teapot.

Geometric transformations are an unavoidable part of
the graphics packages. While generating animations,
several 2D or 3D geometric transformations are perform
on the mathematical models of the animation objects.
There basic transformations are translation, rotation and
scaling. While in some cases only one transformation is
required, in most cases combination two or more
transformation is applied to the object to create animation
effects.

When using three dimensional cartesian coordinate

3074 Sci. Res. Essays

system, the animation objects and scene are defined with
three coordinate values (x, y, z). In cartesian coordinate
system, 3D rotation or scaling operations of a single
vertex requires multiplication of a 3x3 matrix and a 3x1
matrix while translation requires addition of a 3x3 matrix
and a 3x1 matrix.

Most of the time more than one transformations have to
be applied to objects to obtain desired results. In such a
case, combining all transformations in to one
transformation matrix and then applying it to the objects
is the desired solution. On the other hand, translation
operation is not a linear operation and cannot be
calculated through matrix multiplication. Moreover, it
cannot be combined with other transformations.

Homogenous coordinate representation of the objects
is used to standardize all geometric transformations. In
this representation, all transformations, applied to a
single vertex, require multiplication of a 4x4 matrix and a
4x1 matrix. Homogenous representation also helps to
combine more than one transformation in to one
transformation matrix.

While converting vertices defined in 3D cartesian
coordinate system (x, y, z) to homogeneous coordinate
system, a fourth coordinate value, w, is added to the
vertex and the vertex is defined as (x, y, z, w), (w � 0
should be satisfied). Usually w = 1 is selected and
different w values cause scaling of the object while
converting to homogeneous coordinate system (Figure
4). Below translation, rotation and scaling operations are
given in parametric and matrix multiplication forms in
Equations (1, 2, 3).

In translation operation, tx, ty, and tz parameters define
the amount of move of the object in each dimension, in
rotation operation, θ parameter defines the rotation angle,
and in scaling operation sx, sy, and sz parameters define
the scaling factors in each directions. P represents the
original coordinate of the vertex and P’ is the new
coordinate of the vertex (Hearn and Baker, 2004).

PtttTP zyx ⋅=),,('

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

11000

100
010
001

1

'

'

'

z

y

x

t

t

t

z

y

x

z

y

x

 (1)

Translation

PRP ⋅=)(' θ

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

� −

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

11000

0100
00cossin
00sincos

1

'

'

'

z

y

x

z

y

x
θθ
θθ

 (2)

Rotation

PsssSP zyx ⋅=),,('

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

11000

000
000
000

1

'

'

'

z

y

x

s

s

s

z

y

x

z

y

x

 (3)

Scaling

As it can be seen from the above equations, all
transformations require multiplication of a 4x4 and a 4x1
matrices. Other than these transformations, some others
such as shearing and shadowing also require the same
multiplications. Usually these transformations are not
applied to object uniquely. First, a combination of these
transformations is formed as a new transformation matrix,
and then, this new matrix is applied to the animation
objects to reduce computational complexity. When these
transformations are combined into a new matrix, the size
of the matrix is again 4x4. As a result, combined
transformations also require multiplication of a 4x4 and a
4x1 matrices. Graphics packages create animation
effects, by applying above mentioned transformations on
to mathematically defined objects. To create a simple
camera move action, new coordinates of all objects in the
scene have to be calculated and these calculations are
done through matrix multiplication.

TRANSFORMATION MODULE DESIGN

In this research work, for 3D homogeneous
transformation, a hardware module was designed to be
used with FPGA based custom computing machines. The
module is designed to multiply a constant 4x4 matrix with
a series of 4x1 matrices and to produce a new series of
4x1 matrixes. The module is designed to comply with
IEEE 754-1985 standard and to process 32-bit floating
point data. The module design is coded in VHDL and
mapped to Xilinx’s Virtex5 chip using Xilinx’s ISE
WebPack electronic design automation (EDA) tool. Here,
details of the module design are presented.

General structure of the module

Top level block diagram of the module is shown in Figure
5. Since the module is designed as a stream processor, it
has two sets of memory signals. It reads data from one
memory unit, processes the data, and writes the results
to the other memory unit. Using 32-bit address boxes and
data boxes, the module is able to address 4 Giga
address space and process 32-bit floating-point data. For
each memory unit, to synchronize read/write operations,
the module produces separate memory control signals,
which are strobe and read/write. Reset, Start and Done
signals are used for handshaking with the host or

Sahin 3075

DataInBus DataOutBus

Matrix
Multiplication

Unit

Reset

Start

Clock
AddressBus2

Mem.Cont.S2Input
Memory

AdressBus1

Mem.Cont.S1

Done

Output
Memory

Figure 5. Top level block diagram of matrix multiplication module.

Control Signals

Feedback
Signals

Control
Unit

Data
Processing

Unit

Figure 6. Second level block diagram of the module.

controlling computer.

Figure 6 show the second level block diagram of the
module. The module was designed in two parts which are
the control unit and the data processing unit. The
purpose of the control unit is to generate required control
signal for both handshaking with the controlling computer
and processing data. For handshaking purpose, the
controller listens Reset and Start signals and it generates
an interrupt signal. For data processing, the controller is
responsible for generating control signals that go to both
memory units and controller signals that coordinate data
flow in the data processing unit. Details of the controller
are given in the following section. The Data Processing
Unit consists of registers, adders, multipliers, and
multiplexers, and can perform 4x4 and 4x1 matrix
multiplication through parallel working multipliers and
adders. This unit is also responsible for tracking source
and destination memory addresses.

Block diagram of the data processing unit is shown in
Figure 7. The Data Processing Unit is designed in two
parts which are data access counters and core unit.
Three counters are employed to manage data access.
Vertex counter (VC) is used to count number of vertex to
be processed. This counter is a countdown counter and
is initialized to number of vertices to be processed before
the unit start processing vertices. After processing a
vertex, value of this counter is decremented by one.
When this counter reaches to zero the Done signal is
sent to the controller to let the Unit stop processing.

VC SC DC
Core
Unit

32

32

32

Data
Output

Address
to the Output
Memory

Done

Data
Input

32 Address
to the Input
Memory

Figure 7. Data processing unit of the module.

Source counter (SC) and destination counter (DC) are
used to keep track of source and destination data
addresses. SC is used for addressing original vertex data
in the input memory and DC is used for addressing newly
calculated vertex address in the output memory. These
counters are also initialized before the unit starts
processing the vertices. Since, for each vertex, four
floating-point numbers are kept in the memory (for x, y, z,
and w), these counters are incremented by one four times

3076 Sci. Res. Essays

Stage 0

�� �

TM0 TM1 TM2 TM3 VR1

VR0

Row
Select

Data
Input

2 32

32 Data
Output

32
32

Transfer

�
Stage 0

Stage 1

Stage 7

:

Stage 0

Stage 1

Stage 7

:

Stage 0

Stage 1

Stage 7

:

Stage 0

Stage 1

Stage 7

:

�Stage 0

Stage 1

Stage 7

:

Stage 1

Stage 7

:

Stage 0

Stage 1

Stage 7

:

��

Figure 8. Block diagram of the core unit.

R1 R2 R3 R4

Mux

Data
Output

32Row
Select

32
Data
Input4Load

Figure 9. Block diagram of the one TM registers.

times while a vertex is being processed.

Figure 8 shows block diagram of the core unit. The
core unit consists of four transformation matrix registers
(TM0 … TM3), two vertex registers (VR0 and VR1), four
floating-point multiplication units, and three floating-point
addition units. As shown in Figure 9, each TM register
contains four 32-bit loadable registers and a 32-bit 4x1
multiplexer. TM registers are used to hold constant
transformation matrix values. Each register holds one
column of the matrix. During a multiplication operation,
through parallel working multiplexers in each register,
rows of the transmission matrix are selected one by one
and send to multipliers. Two vertex registers (VR0 and
VR1) have different structures as shown in Figure 10a
and b. VR0 act as a buffer between the Input memory
and VR1 register. Continually coming vertex data from
the input memory is first stored in VR0. Loading one
vertex data from memory VR0 requires 4 clock cycles.
When, a set of data is loaded into VR0, it is transferred to
VR1 at once for transformation. The vertex data is hold in
VR1 for the duration of four clock cycles and is
continually fed to the multipliers. During this four clock
cycles, rows of the transformation matrix are also fed to
multipliers one by one and two matrices are multiplied.

Floating-point multipliers and adders were designed as
an eight stage pipelined units and can process 32-bit
floating-point numbers in the ways that were described in
IEEE 754-1985 standard (Gloster and Sahin, 2001;
Sahin, 2002; Sahin et al.,2000). Once the numbers to be
multiplied or added are presented to the inputs of these
units, they accept the numbers and start processing.
Eight clock cycles later, the result of multiplication or
addition presents at the output of the unit. This seems to
be disadvantage at first, but in fact these units can accept
data at every clock cycle and produce one result at every
clock cycle. They can process eight pairs of number
simultaneously through the pipeline stages. The only
disadvantage of the units is that the first result is delayed
for eight cycles. Subsequent results are produced in
subsequent clock cycles.

VR0, VR1, multipliers and adders constitute a finely
tuned 29-stage pipeline. Figure 11 shows the data flow
through the pipelined core unit. Sequentially loaded data
from input memory is recorded in VR0 registers. Once
VR0 is full, all four pieces of data is transferred to VR1
registers. At the same time, a new piece of data is loaded
into R1 register of VR0. Data is hold in VR1 for four clock
cycles and is presented to the inputs of the multipliers.
Then, data continues to propagate through the multipliers
and adders, and reaches to the output, 29 cycles later
than it is presented to the core unit. Every 4 clock cycles,
this pipeline can multiply a given 4x4 transformation
matrix with one 4x1 vertex matrix.

Module controller and operation

As shown in Figure 12, the module controller was

Sahin 3077

������������ �

���

R1 R2 R3 R4

32
Data
Input

Data
Outputs

32

4
Load

R1 R2 R3 R4

Data
Outputs

32

Transfer Data
Inputs

32

Figure 10. Block diagram of the variable registers: (a)Variable register 0 (VR0), (b)
variable register 1 (VR1).

Mem’I X1 Y1 Z1 W1 X2 Y2 Z2 W2 X3 Y3 Z3 W3 X4 Y4 Z4 W4

V
R

0

R1 X1 X1 X1 X1 X2 X2 X2 X2 X3 X3 X3 X3 X4 X4 X4 X4
R2 Y1 Y1 Y1 Y2 Y2 Y2 Y3 Y3 Y3 Y4 Y4 Y4
R3 Z1 Z1 Z2 Z2 Z3 Z3 Z4 Z4
R4 W1 W2 W3 W4

V
R

1

R1 X1 X1 X1 X1 X2 X2 X2 X2 X3 X3 X3 X3 X4� X4� X4� X4�
R2 Y1 Y1 Y1 Y1 Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 Y4� Y4� Y4� Y4�
R3 Z1 Z1 Z1 Z1 Z2 Z2 Z2 Z2 Z3 Z3 Z3 Z3 Z4� Z4� Z4� Z4�
R4 W1 W1 W1 W1 W2 W2 W2 W2 W3 W3 W3 W3 W4�W4�W4�W4�

M
ul

tip
lie

rs

 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�
 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�
 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�
 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�
 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�
 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�
 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�
 P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3� P0� P1� P2� P3�

A
dd

er
s

L
ev

el
1

 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3�
 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3�
 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3�
 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3�
 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3�

 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2�

 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0� S1�

 S0� S1� S2� S3� S0� S1� S2� S3� S0� S1� S2� S3� S0�

A
dd

er
 L

ev
el

2

 N0� N1�N2� N3�N0� N1�N2� N3� N0� N1� N2� N3�

 N0�N1� N2�N3� N0�N1� N2� N3� N0� N1� N2�

 N0� N1�N2� N3�N0� N1� N2� N3� N0� N1�

 N0�N1� N2�N3� N0� N1� N2� N3� N0�

 N0� N1�N2� N3� N0� N1� N2� N3�

 N0�N1� N2� N3� N0� N1� N2�

 N0� N1� N2� N3� N0� N1�

 N0� N1� N2� N3� N0�

Mem’O X’1 Y’1 Z’1 W’1

Clk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

�

Figure 11. Data flow through the pipelined core unit.

designed as a Finite State Machine (FSM) with 26 states.
When the module is powered-up, the controller starts to
wait in the Reset state. When the Start signal is asserted
by the host computer, the controller goes into the B_Wait
state. In this state, it sends request signals to both boxes
to the memories by asserting MemBusRequest signals.

When the busses are granted to the Module, it goes to
0…0 h address and starts reading parameters from the
input memory. The module reads three parameters which
are transformation matrix values, vertex count, and
destination address. The parameters and their meanings
are listed in Table 1. 16 transformation matrix values are

3078 Sci. Res. Essays

Reset
Start = 0

Start = 1

Start

MemBusGrant = 1

A1

Read 32-bit
Transformation
Matrix values into
TM Registers from
the Input Memory.

A2

A16

ANS

AHY

B_Wait

L17

L18

Read VertexCount and
DestinationAddress
of the Vertices into
the registers from the
Input Memory.

D1

D2

Done=1

Main Loop

MemBusGrant = 0

X4 X1

X2X3

Stop

Done=0

Send an Interrupt
to Host Computer.

Figure 12. State diagram of the module controller.

loaded into TM registers sequentially. The vertex count
parameter defines the number of vertices to be
processed. This parameter is loaded into VC register of
the data processing unit. The last parameter, destination
address, defines the location where the newly calculate
vertex values will be written in the output memory. It is
loaded into DC register in data processing unit. While
parameters are loaded into module SC counter is used
as an address counter. Later, this counter is used for
addressing original vertex data.

After reading the parameters through 20 stages, the

controller goes into a 4-clock cycle loop. At each iteration
of the loop, one vertex data is loaded from the input
memory and fed into the pipelined core unit. While the
loop continues, the controller operates three different
modes. In the first mode, the controller continuously
feeds the core unit until the first results reaches the
pipeline output, and performs no write operation. In this
mode the pipeline is filled. Once it is filled, the controller
goes into the second mode. In this mode, the controller
reads data from the input memory, at the same time,
performs calculations and writes the result to the output
memory. Finally, when the last data is loaded from the
memory, the controller goes into the third mode. In this
mode, it continues iterating the loop, performs no read
operation, and empties the pipeline. After emptying the
pipeline, the controller exits from the loop and goes into
the Stop state. In this state, it sends an interrupt signal to
the host computer and waits for the next transformation
operation.

EXPERIMENTAL SETUPS AND TEST RESULTS

The module designed in this study was mapped to
Virtex5 FPGA chip, and maximum clock frequency and
amount of hardware resources needed for the module
were determined. Data processing speed of the module
was compared to some selected general purpose
computers to decide modules transformation perfor-
mance. Table 1 lists the configurations of the three
selected computers. PC-1 and PC-3 contain 32-bit single-
core Intel processors and PC-2 contains 32-bit dual core
AMD processor. To obtain timing information on PCs, a
C++ program was written, compiled with VS.NET 2003
IDE, run on PCs, and given test data was processed with
the program. In the C++ code, time stamp counter (TSC)
of the microprocessor was read before and after the code
fragment that actually performs transformations. Then,
according to processor’s clock speed, these TSC values
are converted to CPU timing information.

The module was mapped to Virtex5 chip (xc5vlx50t-
3ff1136) using Xilinx’s ISE WebPack 9.2 EDA tool. Table
2 shows the mapping results in terms of hardware
requirements and maximum clock frequency. According
to the results, when the number of LUTs and the number
of occupied slices are considered, it is possible to fit five
or four copies of the module into the chip, respectively.
On the other hand, when the IOBs utilization is
considered, it is possible to fit only two copies of the
module in to the chip. By placing multiple copies of the
module into single chip, it is possible to run copies of the
module in parallel and gain more speed-ups.

Five sample test data files were generated to test
module data processing speed and the results were
compared with general purpose computers’ results. Five
test files include 100, 1000, 10000, 100000 and 1000000
vertex coordinate values. For each vertex, four 32-bit
floating-point numbers (x, y, z and w) were recorded in

Sahin 3079

Table 1. General purpose computers used in the experiments.

 CPU Memory BUS

PC Type Speed (GHz) Cache
(KB) Type Size (MB) FSB (MHz) Width (Bit)

PC1 Intel Cel. 2.60 128 DDR 1 256 400 32
PC2 AMD Athl. 2.00 2048 DDR 2 512 667 64
PC3 Intel Pent. 1.73 2048 DDR 2 512 533 32

Table 2. FPGA chip statistics for the module.

FPGA chip Number of slice regs./%
Number of

LUTs/%
Number of

occupied slices/%
Number of bounded

IOBs/%
Max. clock frequency

(MHz)
Virtex 5 4281 / 14 4987 / 17 1671 / 23 184 / 38 288.376

Table 3. Processing times of the PCs for different size data sets.

Number of vertices PC-1 (µs) PC-2 (µs) PC-3 (µs)
100 16.87 9.15 8.76
1000 64.99 72.87 68.96
10000 684.65 714.87 679.03
100000 9374.62 7271.61 6920.45
1000000 98939.94 77589.75 70163.72

Table 4. Processing time of the module on virtex 5 chip for different size data sets.

Number of vertices Processing time on virtex 5 (µs)

100 1.47
1000 13.87
10000 138.80
100000 1387.24
1000000 13872.08

the test files.

First, the test data files were processed with general
purpose computers. Table 3 shows each computer’s
processing times of the sample files in microseconds.
These processing times only include reading data from
the main memory, processing it (applying the desired
transformation on the data), and writing the results back
to the main memory, and do not include data transfer
times between the hard drive and the main memory.

Second, the module’s processing times of the given
test files were determined when the module is clocked at
288.376 MHz which is the maximum clock rate that can
be applied to the module in Virtex5 Chip. Data processing
times of the module are given in Table 4.

The chart in Figure 13 shows the speed-up of the
module on Virtex5 compared to PCs for the same set of
data. The module can perform transformations from 4.68
to 11.47 times faster than PCs depending on the data

size and the PCs’ configurations. As was mentioned,
these speed-ups were determined when only one copy of
the module utilized on a Virtex5 chip. By utilizing two
copies of the module on a single FPGA or by utilizing
multiples copies of the module on multiple FPGA chips
even, more speed-ups can be achieved.

Conclusions

In graphics applications, matrix operations and geometric
transformation are intensively used for animation effects.
When these transformations are applied to scenes
containing hundreds of objects, calculating transformation
of even a short animated movie requires huge amount of
CPU time. If it is a real time animation, it becomes
impossible to perform all calculation in time with general
purpose processors. Several solutions to the problem

3080 Sci. Res. Essays

	

�

�

�	

�

�		 �			 �				 �					 �						

�
�
�
�
�
��
�

� �� 	�
��
���
�����

��������� ����� ���
����� ����� ��������� �����

Figure 13. Speed-up of the module on Virtex5 FPGA chip
compared to PCs.

such as graphics card with enhanced graphics pro-
cessing units CPU, specially designed computers for
computer graphics and parallel computers have already
been developed (Silicon Graphics International, 2007;
Bensaali et al., 2003).

In this research work, as an alternative solution, a hard-
ware module was designed to speed-up 3D geometric
transformations and thus speeding-up the graphic
animations. The module was designed to run on FPGA
devices and to process standard 32-bit floating-point
data.

The module was tested using real test data and
functional verification was done by comparing the results
produced by the module and the results produced by the
selected PCs. Module’s data processing speed was
measured and compared with three selected PCs’ data
processing speed. The results showed that when the
module was running at 288 transformation operations can
be speeded-up from 4.68 to 11.47 times compare to the
PCs. Even more speed-ups can be attained when
multiple copies of the module run in parallel.

Above accelerations were reported for FPGA imple-
mentation of the module. If the module is implemented as
application specific integrated circuit again more speed-
ups can be obtained. The module designed in this
research work not only to speed-ups transformation but
also is a cost effective solution compared to the other
approaches. It can run as a co-processor on several
FPGA boards that can be plugged in PCI slots. It is also a
scalable solution. As needed, multiple copies of the
module can be utilized on multiple FPGA chips and can
be run on parallel to meet desired speed-up needs. This
flexibility makes the solution offered in this work scalable
for a given problem.

The module was designed to run solely on single FPGA
chip. Chip statistics show that two copies of the module
can perfectly fit in to a single Virtex 5 chip. In the future,

some research work can be done to place two copies of
the module in to single chip. Moreover, the way of
utilizing even more copies of the module on more than
one chip can also be studied. In such a case, an interface
needs to be developed for efficiently scheduling transfor-
mation requests coming from a graphics API or from a
graphics software, and for managing data flow between
the software and the copies of the module.

REFERENCES

Bensaali F, Amira A, Uzun IS, Ahmedsaid A (2003). An FPGA

Implementation of 3D Affine Transformations. 10th IEEE Int. Conf.
Electronics, Circuits Syst., Sharjah, UAE, 2: 715-718.

Boullis N, Tisserand A (2003). Some Optimizations of Hardware
Multiplication by Constant Matrices, Proceedings of the 16th IEEE
Symposium on Computer Arithmetic, Spain, pp. 20-27.

Boullis N, Tisserand A (2005), Some Optimizations of Hardware
Multiplication by Constant Matrices. IEEE Trans. Comput., 54(10):
1271-1282.

Brown S, Rose J (2002). Architecture of FPGSs and CPLDs: A Tutorial,
http://klabs.org/richcontent /Tutorial/fpga/Toronto tutorial.pdf.

Buell DA, Arnold JM, Kleinfelder WJ (1996). SPLASH 2: FPGAs for
Custom Computing Machines. IEEE Comput. Soc. Press, Los
Alamitos.

Disney/Pixar (2008). How We Make a Movie, Online at:
http://www.pixar.com/howwedoit/index.html.

DeHon A, Wawrzynek J (1999). Reconfigurable Computing: What, Why,
and Implications for Design Automation, Proceedings of 36th Design
Automation Conference, New Orleans, pp. 610-615.

El-Atfy R, Dessouky MA, El-Ghitani H (2007). Accelerating Matrix
Multiplication on FPGAs, 2nd International Design and Test
Workshop, Egypt, pp. 203-204.

Figueiredo MA, Gloster C (1998). Implementation of a Probabilistic
Neural Network for Multi-spectral Image Classiffication on an FPGA
Based Custom Computing Machine, Proceedings of 5th Brazilian
Symposium on Neural Networks, pp. 174-179.

Figueiredo MA, Gloster C, Stephens M, Graves C, Nakkar M (2000).
Implementation of Multi-spectral Image Classiffication on a Remote
Adaptive Computer, J. VLSI Des. Special Issue Reconfigurable
Comput., 10(3): 307-319.

Gloster CS, Sahin I (2001). Floating-Point Modules Targeted for Use
with RC Compilation Tools, Earth Science Technology Conference,
College Park, MD.

Graham P, Nelson B (1996). Genetic Algorithms in Software and in
Hardware, Fourth IEEE Workshop on FPGAs for Custom Computing
Machines.

Hauck S (1998). The Roles of FPGSs in Reprogrammable Systems,
Proceedings of the IEEE, pp. 615-638.

Hearn D, Baker MP (2004). Computer Graphics with OpenGL (3rd
Edition). Prentice Hall Publication, United States of America, p. 345.

Hogl H, Kugel A, Ludvig J, Manner R, Noffz KH, Zoz R (1995).
Enable++: A Second Generation FPGA Processor, Third IEEE
Workshop on FPGAs for Custom Computing Machines.

John M, Smith S (1997), Application-Specific Integrated Circuits.
Addison-Wesley Inc.

Lewis T, Perkowski M, Jozwiak L (1999), Learning in
Hardware:Architecture and Implementation of an FPGA-Based
Rough set Machine, Proc. of 25th EUROMICRO Conference, Italy,
pp. 326-334.

Lin, W (2007), “Design a program to render the wire-frame of a Utah
teapot”, Online at: http://caig.cs.nctu.edu.tw/course/CG2007
/assignments.htm.

Perkowski M, Chebotarev A, Mishchenko A (1999). Evolvable Hardware
or Learning Hardware? Induction of State Machines from Temporal
Logic Constraints, Proc. of the First NASA/DoD Workshop on
Evolvable Hardware, California, pp. 129-138.

Prada EC, Charlwood SM, James-Roxby PB (1999). Image Processing

and Its Applications, Seventh Int. Conf. Image Process. Appl., 1: 450-

454.
Ratha NK, Jain AK (1999), Computer Vision Algorithms on

Reconfigurable Logic Arrays, IEEE Trans. Parallel Distributed Syst.,
10(1): 29-43.

Ratha NK, Jain AK, Rover DT (2000), FPGA-Based Coprocessor for
Text String Extraction. IEEE International Workshop on Computer
Architectures for Machine Perception, Italy, pp. 217-221.

Sahin I (2002) A Compilation Tool for Automated Mapping of Algorithms
onto FPGA Based Custom Computing Machines, PhD dissertation,
NC State University, Raleigh-USA.

Sahin I, Gloster CS (2005). Evaluation of IC Physical Design
Optimization Algorithms for Acceleration Using FPGA-Based Custom
Computing Machines, 4th International Advanced Technologies
Symposium, Konya, Turkey.

Silicon Graphics International (2007). Online at:http://www.sgi.com.

Sahin 3081

Tavares RCDM, Coelho CJN, Araujo ADA, Fernandes AO (1998).

Implementation of an Edge Detection Algorithm in a Reconfigurable
Computing System, Proceedings of the Eleventh Brazilian
Symposium on Integrated Circuit Design, pp. 38-41.

Tessier R, Burleson W (1998). Reconfigurable Computing for Digital
Signal Processing: A Survey. J. VLSI Signal Process., 28:7-27.

Villasenor J, Hutchings B (1998). The Flexibility of Configurable
Computing. IEEE Signal Process. Mag., 15(5): 67-84.

Vuillemin J, Bertin P, Roncin D, Shand M, Touati H, Boucard Ph (1996).
Programmable Active Memories:Reconfigurable Systems Come of
Age, IEEE Trans. VLSI Syst., 4(1): 56-69.

Xilinx Inc (1994). The Programmable Logic Data Book, San Jose, CA.
Xilinx Inc (2002). Virtex-II ProTM Platform FPGAs: Functional

Description, San Jose, CA.

