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Nowadays, in computer animations, tens of, even hundreds of animation objects are placed in a scene 
to form a typical animation scene and thousands of vertices are used to mathematically define each 
object in the scene. Applying three dimensional (3D) transformations to such scenes requires huge 
amount of CPU time. As a result, calculation of an animation scene could take a long time. Moreover, in 
the case of real time animations, it becomes almost impossible to calculate transformations on time. In 
this presented work, a 32-bit floating-point based hardware module was designed to speed-up 3D 
graphic transformations using field programmable gate array (FPGA) chips. The module was tested and 
functional verification of the module was done by comparing the results produced by the module to the 
results generated by general purpose computers (PCs) for the same set of input data. Module’s data 
processing speed was compared to various PCs. The results showed that, 3D graphic transformations 
can be speeded-up by a factor (up to 11.47) employing the designed module.  
 
Key words: Field programmable gate array, computer graphics, three dimensional transformation, hardware 
module. 

 
 
INTRODUCTION 
 
Three dimensional (3D) graphic transformations are a 
vital part of graphics software libraries and graphic 
application programs. When these transformations are 
applied to complex graphic objects in which a few 
thousand vertices are included to define the objects, 
transformation functions use huge amount of the CPU 
resources of the computing environment. Especially in 
computer animations, as the number of objects in the 
animation scene increases and the number of vertices 
used to define these objects increases, calculation of the 
animation takes hours. In a typical animation scene of an 
animated movie, tens of objects can be used to describe 
a scene and over 100 thousand vertices can be used to 
describe these objects (Hearn and Baker, 2004). Such an 
animation scene has to be recalculated 24 times to 
create one second movie in DVD standard. This means 
that locations of the 100 thousand vertices used the 
describe objects on the scene have to be recalculated 24 
times to create a one second movie clip (Disney/Pixar, 
2008). In 3D animation, multiplications of a 4x4 matrix 
and a 4x1 matrix is required to calculate a new location of 

one vertex. A total of 38.4 million multiplications and 28.8 
million additions have to be done to calculate such an 
animation scene for one second. Some other calculations 
are also need to complete animation such as rendering 
calculations. General purpose computers become 
insufficient for such an animation work and the 
calculations take huge amount of time.  

As a solution to the problem, several approaches have 
been developed. Some of these approaches are using 
enhanced graphics cards designed specifically for 
computer graphics, using specially designed computers 
for computer graphics (Silicon Graphics International, 
2007), and using super or parallel processor computers. 
All of these solutions are of some disadvantages. 
Enhanced graphics cards are designed as application 
specific integrated circuit (ASIC). Any error done at the 
design stage of these cards cannot be recovered once 
the card is manufactured and redesigning the card and 
having it ready for manufacturing takes about two 
months. Moreover, once these cards are manufactured, 
they can only perform the functionality that the  card  was  



 
 
 
 
designed for. The card hardware cannot be reconfigured 
to perform additional functionality. Specially designed 
computers, super computers, and parallel computers are 
costly solutions and sometimes desired performance gain 
cannot be obtained. Field programmable gate array 
(FPGA) based solutions are cost effective alternatives to 
the above solutions. 

In this work, as a cost effective alternative to the above 
mentioned counterparts, a new hardware module was 
designed to speed-up 3D graphic transformations. The 
module was designed to run on FPGA devices and can 
operate on 32-bit floating-point numbers. It was simulated 
using real test data and correctness of the results 
produced by the module was verified. The same test data 
was processed using a C++ software running on three 
different general purpose computers. Processing speed 
of the module was compared to the C++ software. The 
comparison results showed that considerable amount of 
speed-ups can be achieved when the module is 
employed in 3D graphic transformations. 
 
 
BACKGROUND 
 
Related works 
 
In the literature, it is possible to see several general 
purpose matrix multiplication module designs for FPGAs. 
For example, in a research work, Boullis and Tisserand 
presented a new algorithm for the problem of 
multiplication by constant matrices. They claimed that 
compared to the best previous results, their solution 
leads to a significant drop in the total number of 
additions/subtractions, up to 40%. They also 
implemented a very high speed integra-ted circuit 
hardware description language (VHDL) generator to 
generate a circuit design for their algorithm. They 
extended their algorithm and generator to cover some 
digital filters and they are now able to handle filters 
involving a multiplication by constant matrix and delay 
operations (such as FIR filters). They claimed that in the 
case of a 26-tap 16-bit FIR filter; a 34% reduction of the 
operation count was achieved, compared to recent 
results (Boullis and Tisserand, 2003, 2005).  

In another research work, Gloster et al. designed a 
pipelined multiply and accumulate (MAC) unit to speed-
up matrix multiplication. The MAC unit is able to multiply 
individual elements of input matrices’ given row and given 
column. The accumulator inside the MAC unit 
continuously adds the results produced by the multiplier 
to the current sum. When one row and one column is 
processed with the MAC unit one element of the result 
matrix is calculated. The claimed that with MAC module 
matrix multiplication can be speeded-up up to ten times 
compared to PCs and even more speed-ups can be 
achieved when multiple MAC units are organized to 
process different rows and column at the same time 
(Gloster and Sahin, 2001).  
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El-Atfy et al. presented a new architecture for fixed-
point matrix multiplication using Xilinx Virtex4 device. 
Their architecture utilizes the hardware resources on the 
entire FPGA and uses the DSP blocks inside the FPGA 
devices. The architecture can be implemented for non-
square matrix multiplication. They claimed that the 
proposed implementation shows improvement in area 
and latency compared to recent published work. They 
achieved an improvement by over 50% in FMAX and 
20% in area using new FPGAs (El-Atfy et al., 2007). 

In 3D graphic transformations small matrices are multi-
plied. Since the matrix multipliers mentioned above were 
usually designed to multiply huge matrices, they do not 
give desired performance in terms of calculation time 
when they are employed in 3D graphic transformations. 

One specific study was conducted by Dr. A. Amira et al 
from Brunel University. They investigated the suitability of 
FPGA devices as a low cost solution for implementing 3D 
affine transformations. They implemented their proposed 
solution on a RC1000-PP Celoxica board based develop-
ment platform using Handel-C and reported the 
implementation results. According to the results, they can 
achieve up to 35 MHz clock speed. They also compared 
their implementation with RADEON FSC 32 MB graphics 
card in terms of data processing speed. Although, their 
implementation did not outperform the graphics card, 
they showed that 3D affine transformation can be done 
using FPGAs for 22 bit fixed-point data (Bensaali et al., 
2003). 

Another particular work for 3D transformations was 
done by Franchini et al. They introduced a new 
coprocessor architecture called CliffoSor which was 
designed to support Clifford Algebra. They implemented 
the coprocessor on a FPGA device. Initial test results 
showed that they were able to speed-up 3D transfor-
mation from 4x to 20x compared to GAIGEN, a standard 
geometric algebra library generator for general-purpose 
processors (Franchini et al., 2009).  
 
 
FPGA chips 
 
FPGAs are type of chips that are completely prefabri-
cated and contain special features for customization 
(Villasenor and Hutchings, 1998; John and Smith, 1997; 
Tessier and Burleson, 1998). The user of these chips can 
implement digital circuit designs by configuring them. The 
biggest advantage of these chips is their configuration 
time. Since the configuration time of these chips is very 
small (for some chips the configuration time is less than a 
millisecond), circuit designs can be realized very quickly 
compared to ASIC implementations. A typical circuit 
development cycle for an FPGA device includes four 
steps. These steps are designing the circuit, coding the 
design in a hardware description language (HDL), 
compiling the HDL code to a configuration file and 
loading the configuration to the chip. 
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Figure 1. Structure of the Xilinx 4000 series FPGA chips 
(Sahin, 2002). 
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Figure 2. CLB block diagram of Xilinx 4000 series FPGA chips. 

 
 
 

A typical FPGA device contains three configurable 
parts (Hauck, 1998; Brown and Rose, 2002). These parts 
are an array of logic cells called configurable logic blocks 
(CLBs), a programmable interconnection network and 
programmable input/output blocks. Figure 1 shows the 
structure of the Xilinx 4000 series FPGA devices. Each 
I/O block includes a number of I/O cells. These cells 
provide the interface between the package pins and 
internal signal lines of the FPGA chip. Each cell can be 
configured as an input, output, or bidirectional port. The 
interconnection network consists of switch boxes and 
metal wires. The CLBs are connected together  by  confi- 

 
 
 
 
guring the switch boxes in the interconnection network. 
Two most commonly used interconnection network types 
are island style and cellular style. In island style 
networks, point-to-point communications between the 
CLBs are possible. On the other hand, the cellular style 
network provides only local communication between the 
CLBs (Figure 1). 

The CLBs are the most important parts of the FPGA 
device. Each FPGA manufacturer implements a different 
type of CLB. In this work, we briefly introduce the 
structure of CLBs for the Xilinx series FPGA chips. Figure 
2 shows the block diagram of the CLB used in Xilinx 4000 
series FPGA chips (Xilinx Inc, 1994; Vcc, 2002). This 
CLB includes three lookup tables (LUT), two 
programmable flip-flops and several programmable 
multiplexers. The LUTs are function generators, capable 
of implementing any combinational logic function of their 
inputs. The LUTs in Figure 2 can perform any function of 
up to five inputs when they are combined. SRAM 
controlled multiplexers are used to route signals within 
the CLB. The flip-flops are used to register output signals 
when required. 

In Xilinx's FPGA chips, (the Virtex-II Pro), each CLB 
comprises four similar slices (Xilinx Inc, 2002). The slices 
are connected together with a local feedback box. The 
four slices in the CLB are split into two columns. Each 
slide includes two four-input function generators, 
arithmetic logic gates, carry logic, function multiplexers 
and data storage elements. 
 
 
FPGA based custom computing machines 
 
FPGA Based Custom Computing Machines (FCCMs), 
also known as reconfigurable computer (RC), are combi-
nation of hardware/software data processing platforms 
that include a general purpose processor and one or 
more FPGA devices. As shown in Figure 3, in FCCMs, 
one or more FPGA chips with their local memory units 
are organized on a printed circuit board (PCB) and they 
are attached to a host computer as a coprocessor 
through PCI bus. Some of the most famous FPGA boards 
are SPLASH-2 (Buell et al., 1996; Ratha and Jain, 1999; 
Ratha et al., 2000) and DECPeRLe (Vuillemin et al., 
1996; Lewis et al., 1999; Perkowski et al., 1999). The 
SPLASH-2 board includes a linear array of Xilinx 4010 
FPGA chips. Sixteen FPGA chips are used on the board 
and they are organized in a linear systolic array. One 
additional FPGA is used for control purposes. Each 
FPGA has a limited 36-bit connection to its two nearest 
neighbor chips. A 512 KByte local memory is also 
attached to each FPGA. Several SPLASH boards can be 
connected to form a chain and up to 16 boards can be 
connected together to form a 256-element linear systolic 
array. The DECPeRLe-I board includes 23 Xilinx 3090 
FPGAs. Sixteen FPGAs were used to form  a  4 x 4 array 
and the remaining chips  were  used  for  interfacing  with  
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Figure 3. General structure of an FCCM. 

 
 

 
 
Figure 4. Sample 3D object definition (Lin, 2007). 

 
 
 
the RAM and the host computer. 

FCCMs combine the flexibility of general purpose 
processors with the speed of application specific 
processors. Usually the general purpose processor acts 
as the host processor and the reconfigurable hardware 
components are used as a coprocessor. In a typical 
FCCM, computationally intensive portions of algorithms 
are executed on FPGA devices for enhanced perfor-
mance. A well designed and utilized FCCM could yield 
10x to 1000x improvement in execution time over 
conventional general purpose processor based "software 
only" computers. 

It has been shown that executing computationally 
complex sections of applications on RC systems signifi-
cantly  reduces  the  execution  time  of  the  applications  
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compared to the general purpose processor only systems 
(DeHon and Wawrzynek, 1999). However, applications 
must be mapped to FPGA devices before they can be 
executed on these systems. The mapping processes can 
be performed either manually or automatically using 
software tools. Several applications were mapped to RC 
systems manually including image processing algorithms 
(Prada et al., 1999; Tavares et al., 1998; Figueiredo and 
Gloster, 1998; Figueiredo et al., 2000), genetic 
optimization algorithms (Graham and Nelson, 1996), and 
pattern recognition (Hogl et al., 1995). 
 
 
How is computation done in FCCMs? 
 
The computation on FPGA chips is done in four stages. 
First, the FPGA chips are configured by host computer 
with specially designed hardware modules that can 
execute the computationally complex sections of the 
algorithms. Second, data to be processed is transferred 
from host computers memory to the local memory units of 
the FPGAs. Third, the module configurations are enabled 
to process given data. Module configurations process 
given data and store results back to the local memory. 
Fourth, the results are collected by the host computer 
from the FPGA chips’ local memories. Data transfer 
between the host computer and local memory units is 
done using direct memory access (DMA) technique. 
 
 
Computer graphics and 3D transformations 
 
Several software suites, graphics libraries and application 
programming interfaces (API) have been developed for 
graphic design and graphic animation purposes. Two of 
the well known graphics packages are open graphics 
library (OpenGL) and DirectX. These packages include 
several functions for creating computer graphics. It is 
possible to access functions provided by these graphics 
packages through most programming languages such as 
C/C++, C#, Java and Visual Basic. 

The first step of creating animation using these 
packages is to form 2D or 3D mathematical models of 
animation objects using vertices, edges and surfaces. 
Modeling even a simple animation object requires to 
define hundreds even thousands of vertices, edges, and 
surfaces. Figure 4 shows a sample animation model of 
famous Utah Teapot. 

Geometric transformations are an unavoidable part of 
the graphics packages. While generating animations, 
several 2D or 3D geometric transformations are perform 
on the mathematical models of the animation objects. 
There basic transformations are translation, rotation and 
scaling. While in some cases only one transformation is 
required, in most cases combination two or more 
transformation is applied to the object to create animation 
effects. 

When  using  three  dimensional  cartesian   coordinate  
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system, the animation objects and scene are defined with 
three coordinate values (x, y, z). In cartesian coordinate 
system, 3D rotation or scaling operations of a single 
vertex requires multiplication of a 3x3 matrix and a 3x1 
matrix while translation requires addition of a 3x3 matrix 
and a 3x1 matrix. 

Most of the time more than one transformations have to 
be applied to objects to obtain desired results. In such a 
case, combining all transformations in to one 
transformation matrix and then applying it to the objects 
is the desired solution. On the other hand, translation 
operation is not a linear operation and cannot be 
calculated through matrix multiplication. Moreover, it 
cannot be combined with other transformations.  

Homogenous coordinate representation of the objects 
is used to standardize all geometric transformations. In 
this representation, all transformations, applied to a 
single vertex, require multiplication of a 4x4 matrix and a 
4x1 matrix. Homogenous representation also helps to 
combine more than one transformation in to one 
transformation matrix. 

While converting vertices defined in 3D cartesian 
coordinate system (x, y, z) to homogeneous coordinate 
system, a fourth coordinate value, w, is added to the 
vertex and the vertex is defined as (x, y, z, w), (w � 0 
should be satisfied). Usually w = 1 is selected and 
different w values cause scaling of the object while 
converting to homogeneous coordinate system (Figure 
4). Below translation, rotation and scaling operations are 
given in parametric and matrix multiplication forms in 
Equations (1, 2, 3). 

In translation operation, tx, ty, and tz parameters define 
the amount of move of the object in each dimension, in 
rotation operation, θ parameter defines the rotation angle, 
and in scaling operation sx, sy, and sz parameters define 
the scaling factors in each directions. P represents the 
original coordinate of the vertex and P’ is the new 
coordinate of the vertex (Hearn and Baker, 2004). 
 

PtttTP zyx ⋅= ),,('  

 

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

11000

100
010
001

1

'

'

'

z

y

x

t

t

t

z

y

x

z

y

x

                                                 (1) 

 
Translation 
 

PRP ⋅= )(' θ  
 

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

� −

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

11000

0100
00cossin
00sincos

1

'

'

'

z

y

x

z

y

x
θθ
θθ

                                        (2) 

 
Rotation 

 
 
 
 

PsssSP zyx ⋅= ),,('  

 

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

11000

000
000
000

1

'

'

'

z

y

x

s

s

s

z

y

x

z

y

x

                                                 (3) 

 
Scaling 
 

As it can be seen from the above equations, all 
transformations require multiplication of a 4x4 and a 4x1 
matrices. Other than these transformations, some others 
such as shearing and shadowing also require the same 
multiplications. Usually these transformations are not 
applied to object uniquely. First, a combination of these 
transformations is formed as a new transformation matrix, 
and then, this new matrix is applied to the animation 
objects to reduce computational complexity. When these 
transformations are combined into a new matrix, the size 
of the matrix is again 4x4. As a result, combined 
transformations also require multiplication of a 4x4 and a 
4x1 matrices. Graphics packages create animation 
effects, by applying above mentioned transformations on 
to mathematically defined objects. To create a simple 
camera move action, new coordinates of all objects in the 
scene have to be calculated and these calculations are 
done through matrix multiplication. 
 
 
TRANSFORMATION MODULE DESIGN 
 
In this research work, for 3D homogeneous 
transformation, a hardware module was designed to be 
used with FPGA based custom computing machines. The 
module is designed to multiply a constant 4x4 matrix with 
a series of 4x1 matrices and to produce a new series of 
4x1 matrixes. The module is designed to comply with 
IEEE 754-1985 standard and to process 32-bit floating 
point data. The module design is coded in VHDL and 
mapped to Xilinx’s Virtex5 chip using Xilinx’s ISE 
WebPack electronic design automation (EDA) tool. Here, 
details of the module design are presented.  
 
 
General structure of the module 
 
Top level block diagram of the module is shown in Figure 
5. Since the module is designed as a stream processor, it 
has two sets of memory signals. It reads data from one 
memory unit, processes the data, and writes the results 
to the other memory unit. Using 32-bit address boxes and 
data boxes, the module is able to address 4 Giga 
address space and process 32-bit floating-point data. For 
each memory unit, to synchronize read/write operations, 
the module produces separate memory control signals, 
which are strobe and read/write. Reset, Start and Done 
signals  are  used  for   handshaking   with   the   host   or 
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Figure 5. Top level block diagram of matrix multiplication module. 
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Figure 6. Second level block diagram of the module. 

 
 
 
controlling computer.  

Figure 6 show the second level block diagram of the 
module. The module was designed in two parts which are 
the control unit and the data processing unit. The 
purpose of the control unit is to generate required control 
signal for both handshaking with the controlling computer 
and processing data. For handshaking purpose, the 
controller listens Reset and Start signals and it generates 
an interrupt signal. For data processing, the controller is 
responsible for generating control signals that go to both 
memory units and controller signals that coordinate data 
flow in the data processing unit. Details of the controller 
are given in the following section. The Data Processing 
Unit consists of registers, adders, multipliers, and 
multiplexers, and can perform 4x4 and 4x1 matrix 
multiplication through parallel working multipliers and 
adders. This unit is also responsible for tracking source 
and destination memory addresses.  

Block diagram of the data processing unit is shown in 
Figure 7. The Data Processing Unit is designed in two 
parts which are data access counters and core unit. 
Three counters are employed to manage data access. 
Vertex counter (VC) is used to count number of vertex to 
be processed. This counter is a countdown counter and 
is initialized to number of vertices to be processed before 
the unit start processing vertices. After processing a 
vertex, value of this counter is decremented by one. 
When this counter reaches to zero the Done signal is 
sent to the controller to let the Unit stop processing.  

VC SC DC
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Unit

32

32

32

Data
Output
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to the Output
Memory

Done

Data
Input
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to the Input
Memory

 
 
Figure 7. Data processing unit of the module. 
 
 
 
Source counter (SC) and destination counter (DC) are 
used to keep track of source and destination data 
addresses. SC is used for addressing original vertex data 
in the input memory and DC is used for addressing newly 
calculated vertex address in the output memory. These 
counters are also initialized before the unit starts 
processing the vertices. Since, for each vertex, four 
floating-point numbers are kept in the memory (for x, y, z, 
and w), these counters are incremented by one four times 
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Figure 8. Block diagram of the core unit. 
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Figure 9. Block diagram of the one TM registers. 

 
 
 
 
times while a vertex is being processed. 

Figure 8 shows block diagram of the core unit. The 
core unit consists of four transformation matrix registers 
(TM0 … TM3), two vertex registers (VR0 and VR1), four 
floating-point multiplication units, and three floating-point 
addition units. As shown in Figure 9, each TM register 
contains four 32-bit loadable registers and a 32-bit 4x1 
multiplexer. TM registers are used to hold constant 
transformation matrix values. Each register holds one 
column of the matrix. During a multiplication operation, 
through parallel working multiplexers in each register, 
rows of the transmission matrix are selected one by one 
and send to multipliers. Two vertex registers (VR0 and 
VR1) have different structures as shown in Figure 10a 
and b. VR0 act as a buffer between the Input memory 
and VR1 register. Continually coming vertex data from 
the input memory is first stored in VR0. Loading one 
vertex data from memory VR0 requires 4 clock cycles. 
When, a set of data is loaded into VR0, it is transferred to 
VR1 at once for transformation. The vertex data is hold in 
VR1 for the duration of four clock cycles and is 
continually fed to the multipliers. During this four clock 
cycles, rows of the transformation matrix are also fed to 
multipliers one by one and two matrices are multiplied. 

Floating-point multipliers and adders were designed as 
an eight stage pipelined units and can process 32-bit 
floating-point numbers in the ways that were described in 
IEEE 754-1985 standard (Gloster and Sahin, 2001; 
Sahin, 2002; Sahin et al.,2000). Once the numbers to be 
multiplied or added are presented to the inputs of these 
units, they accept the numbers and start processing. 
Eight clock cycles later, the result of multiplication or 
addition presents at the output of the unit. This seems to 
be disadvantage at first, but in fact these units can accept 
data at every clock cycle and produce one result at every 
clock cycle. They can process eight pairs of number 
simultaneously through the pipeline stages. The only 
disadvantage of the units is that the first result is delayed 
for eight cycles. Subsequent results are produced in 
subsequent clock cycles. 

VR0, VR1, multipliers and adders constitute a finely 
tuned 29-stage pipeline. Figure 11 shows the data flow 
through the pipelined core unit. Sequentially loaded data 
from input memory is recorded in VR0 registers. Once 
VR0 is full, all four pieces of data is transferred to VR1 
registers. At the same time, a new piece of data is loaded 
into R1 register of VR0. Data is hold in VR1 for four clock 
cycles and is presented to the inputs of the multipliers. 
Then, data continues to propagate through the multipliers 
and adders, and reaches to the output, 29 cycles later 
than it is presented to the core unit. Every 4 clock cycles, 
this pipeline can multiply a given 4x4 transformation 
matrix with one 4x1 vertex matrix.  
 
 
Module controller and operation 
 
As shown in Figure 12, the module controller was



Sahin          3077 
 
 
 

������������ �

���������������������������������������������������������������������������������������������������������

R1 R2 R3 R4

32
Data
Input

Data
Outputs

32

4
Load

R1 R2 R3 R4

Data
Outputs

32

Transfer Data
Inputs

32

 
 
Figure 10. Block diagram of the variable registers: (a)Variable register 0 (VR0), (b) 
variable register 1 (VR1). 
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Figure 11. Data flow through the pipelined core unit. 

 
 
 
designed as a Finite State Machine (FSM) with 26 states. 
When the module is powered-up, the controller starts to 
wait in the Reset state. When the Start signal is asserted 
by the host computer, the controller goes into the B_Wait 
state. In this state, it sends request signals to both boxes 
to the memories by asserting MemBusRequest signals. 

When the busses are granted to the Module, it goes to 
0…0 h address and starts reading parameters from the 
input memory. The module reads three parameters which 
are transformation matrix values, vertex count, and 
destination address. The parameters and their meanings 
are listed in Table 1. 16 transformation matrix  values  are 
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Figure 12. State diagram of the module controller. 

 
 
 
loaded into TM registers sequentially. The vertex count 
parameter defines the number of vertices to be 
processed. This parameter is loaded into VC register of 
the data processing unit. The last parameter, destination 
address, defines the location where the newly calculate 
vertex values will be written in the output memory. It is 
loaded into DC register in data processing unit. While 
parameters are loaded into module SC counter is used 
as an address counter. Later, this counter is used for 
addressing original vertex data.  

After  reading  the  parameters  through  20 stages, the  

 
 
 
 
controller goes into a 4-clock cycle loop. At each iteration 
of the loop, one vertex data is loaded from the input 
memory and fed into the pipelined core unit. While the 
loop continues, the controller operates three different 
modes. In the first mode, the controller continuously 
feeds the core unit until the first results reaches the 
pipeline output, and performs no write operation. In this 
mode the pipeline is filled. Once it is filled, the controller 
goes into the second mode. In this mode, the controller 
reads data from the input memory, at the same time, 
performs calculations and writes the result to the output 
memory. Finally, when the last data is loaded from the 
memory, the controller goes into the third mode. In this 
mode, it continues iterating the loop, performs no read 
operation, and empties the pipeline. After emptying the 
pipeline, the controller exits from the loop and goes into 
the Stop state. In this state, it sends an interrupt signal to 
the host computer and waits for the next transformation 
operation. 
 
 
EXPERIMENTAL SETUPS AND TEST RESULTS 
 
The module designed in this study was mapped to 
Virtex5 FPGA chip, and maximum clock frequency and 
amount of hardware resources needed for the module 
were determined. Data processing speed of the module 
was compared to some selected general purpose 
computers to decide modules transformation perfor-
mance. Table 1 lists the configurations of the three 
selected computers. PC-1 and PC-3 contain 32-bit single-
core Intel processors and PC-2 contains 32-bit dual core 
AMD processor. To obtain timing information on PCs, a 
C++ program was written, compiled with VS.NET 2003 
IDE, run on PCs, and given test data was processed with 
the program. In the C++ code, time stamp counter (TSC) 
of the microprocessor was read before and after the code 
fragment that actually performs transformations. Then, 
according to processor’s clock speed, these TSC values 
are converted to CPU timing information. 

The module was mapped to Virtex5 chip (xc5vlx50t-
3ff1136) using Xilinx’s ISE WebPack 9.2 EDA tool. Table 
2 shows the mapping results in terms of hardware 
requirements and maximum clock frequency. According 
to the results, when the number of LUTs and the number 
of occupied slices are considered, it is possible to fit five 
or four copies of the module into the chip, respectively. 
On the other hand, when the IOBs utilization is 
considered, it is possible to fit only two copies of the 
module in to the chip. By placing multiple copies of the 
module into single chip, it is possible to run copies of the 
module in parallel and gain more speed-ups. 

Five sample test data files were generated to test 
module data processing speed and the results were 
compared with general purpose computers’ results. Five 
test files include 100, 1000, 10000, 100000 and 1000000 
vertex coordinate values. For each vertex, four 32-bit 
floating-point  numbers  (x, y, z and w)  were  recorded  in 
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Table 1. General purpose computers used in the experiments. 
 
 CPU Memory BUS 

PC Type Speed (GHz) Cache 
(KB) Type Size (MB) FSB (MHz) Width (Bit) 

PC1 Intel Cel. 2.60 128 DDR 1 256 400 32 
PC2 AMD Athl. 2.00 2048 DDR 2 512 667 64 
PC3 Intel Pent. 1.73 2048 DDR 2 512 533 32 

 
 
 

Table 2. FPGA chip statistics for the module. 
 

FPGA chip Number of slice regs./% 
Number of 

LUTs/% 
Number of 

occupied slices/% 
Number of bounded 

IOBs/% 
Max. clock frequency 

(MHz) 
Virtex 5 4281 / 14 4987 / 17 1671 / 23 184 / 38 288.376 

 
 
 

Table 3. Processing times of the PCs for different size data sets. 
 
Number of vertices PC-1 (µs) PC-2 (µs) PC-3 (µs) 
100 16.87 9.15 8.76 
1000 64.99 72.87 68.96 
10000 684.65 714.87 679.03 
100000 9374.62 7271.61 6920.45 
1000000 98939.94 77589.75 70163.72 

 
 
 

Table 4. Processing time of the module on virtex 5 chip for different size data sets. 
 
Number of vertices Processing time on virtex 5 (µs) 

100 1.47 
1000 13.87 
10000 138.80 
100000 1387.24 
1000000 13872.08 

 
 
 
the test files. 

First, the test data files were processed with general 
purpose computers. Table 3 shows each computer’s 
processing times of the sample files in microseconds. 
These processing times only include reading data from 
the main memory, processing it (applying the desired 
transformation on the data), and writing the results back 
to the main memory, and do not include data transfer 
times between the hard drive and the main memory. 

Second, the module’s processing times of the given 
test files were determined when the module is clocked at 
288.376 MHz which is the maximum clock rate that can 
be applied to the module in Virtex5 Chip. Data processing 
times of the module are given in Table 4. 

The chart in Figure 13 shows the speed-up of the 
module on Virtex5 compared to PCs for the same set of 
data. The module can perform transformations from 4.68 
to 11.47 times faster than PCs depending on the data 

size and the PCs’ configurations. As was mentioned, 
these speed-ups were determined when only one copy of 
the module utilized on a Virtex5 chip. By utilizing two 
copies of the module on a single FPGA or by utilizing 
multiples copies of the module on multiple FPGA chips 
even, more speed-ups can be achieved. 
 
  
Conclusions 
 
In graphics applications, matrix operations and geometric 
transformation are intensively used for animation effects. 
When these transformations are applied to scenes 
containing hundreds of objects, calculating transformation 
of even a short animated movie requires huge amount of 
CPU time. If it is a real time animation, it becomes 
impossible to perform all calculation in time with general 
purpose processors.  Several  solutions  to  the  problem 
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Figure 13. Speed-up of the module on Virtex5 FPGA chip 
compared to PCs. 

 
 
 
such as graphics card with enhanced graphics pro-
cessing units CPU, specially designed computers for 
computer graphics and parallel computers have already 
been developed (Silicon Graphics International, 2007; 
Bensaali et al., 2003). 

In this research work, as an alternative solution, a hard-
ware module was designed to speed-up 3D geometric 
transformations and thus speeding-up the graphic 
animations. The module was designed to run on FPGA 
devices and to process standard 32-bit floating-point 
data. 

The module was tested using real test data and 
functional verification was done by comparing the results 
produced by the module and the results produced by the 
selected PCs. Module’s data processing speed was 
measured and compared with three selected PCs’ data 
processing speed. The results showed that when the 
module was running at 288 transformation operations can 
be speeded-up from 4.68 to 11.47 times compare to the 
PCs. Even more speed-ups can be attained when 
multiple copies of the module run in parallel. 

Above accelerations were reported for FPGA imple-
mentation of the module. If the module is implemented as 
application specific integrated circuit again more speed-
ups can be obtained. The module designed in this 
research work not only to speed-ups transformation but 
also is a cost effective solution compared to the other 
approaches. It can run as a co-processor on several 
FPGA boards that can be plugged in PCI slots. It is also a 
scalable solution. As needed, multiple copies of the 
module can be utilized on multiple FPGA chips and can 
be run on parallel to meet desired speed-up needs. This 
flexibility makes the solution offered in this work scalable 
for a given problem. 

The module was designed to run solely on single FPGA 
chip. Chip statistics show that two copies of the module 
can perfectly fit in to a single Virtex 5 chip. In  the  future, 

 
 
 
 
some research work can be done to place two copies of 
the module in to single chip. Moreover, the way of 
utilizing even more copies of the module on more than 
one chip can also be studied. In such a case, an interface 
needs to be developed for efficiently scheduling transfor-
mation requests coming from a graphics API or from a 
graphics software, and for managing data flow between 
the software and the copies of the module.  
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