
 

Scientific Research and Essays Vol. 6 (21), pp. 4510-4516, 30 September, 2011 
Available online at http://www.academicjournals.org/SRE 
DOI: 10.5897/SRE11.318 
ISSN 1992-2248 ©2011 Academic Journals 
 
 
 
 
 

Full Length Research Paper 

  

Productivity analysis of an electronics re-
manufacturing system through stochastic Petri nets 

and artificial neural networks 
 

Mehmet Ali Arslan1 and Ismail Fidan2* 
 

1
Department of Mechanical Engineering, Gebze Institute of Technology, P. K. 141 Gebze, Kocaeli 41400, Turkey. 

2
Department of Manufacturing and Industrial Technology, College of Engineering, Tennessee Technological University, 

P. O. Box 5003 Cookville, TN 38505, USA. 
 

Accepted 1 April, 2011  
 

This paper provides Petri net (PN) modeling and performance analysis of a surface mount device (SMD) 
electronics manufacturing assembly line for an automated remanufacturing of printed circuit boards. 
Concentrating on the operational aspects, PN models for an automated assembly stations were 
constructed. These models enable designers to have a better understanding of the system control and 
analysis from the graphical representations of PNs. In this context, the selection of the particular buffer 
size and its effects on the production rate of the transferline are explored. PN models are designed to 
analyze two different transferlines and to find out when local gains propagate to the end of the 
transferline. Furthermore, artificial neural networks (ANN) are proposed as a fast function 
approximation tool for a rapid re-analysis of the remanufacturing system. ANN can easily predict the 
output of the transferline for unknown input patterns when the input and output relation is 
monotonically increasing or decreasing. This capability of the ANN proves to be useful to analyze the 
transferline when there is no further information available. The approaches as presented in this paper 
can be generalized and applied to many other applications of multi-robot assembly systems.  
 
Key words: Electronics remanufacturing, stochastic Petri nets, artificial neural networks, surface mount device, 
performance analysis. 

 
 
INTRODUCTION 
 
In the last few years, the number of rework stations 
available on the electronics manufacturing market has 
grown considerably including automated ones, but there 
has still been no significant reduction in the number of 
defects. In electronics manufacturing, rework is defined 
as the activity that replaces defective components with 
those that are acceptable, such that the populated board 
performs to specifications. Increasing product complexity, 
decreasing component size, and using double-sided 
boards have made rework more difficult and the 
economic reworking of printed circuit board assemblies is  
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one of the main problems facing electronics 
manufacturers. Printed circuit board assembly 
manufacturing has been relatively improved with fully 
automated, accurate assembly machines and the use of 
robots (Dariavach et al., 2010). 

Although significant improvement in automated rework 
has also been made by the authors, it has been shown 
the outcome of the automated rework line has not 
produced a high enough reliable yield percentage (Fidan 
et al., 2004; Fidan, 2004; Fidan et al., 2006). The 
objective of this investigation is to make a contribution 
towards this surface mount electronics remanufacturing 
process by analyzing their performance via stochastic 
Petri nets and artificial neural networks, so that the 
defects that necessitate a rework operation could be 
analyzed to predict the production rate of the transferline,  
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Figure 1. PN Model of the SMD assembly station for case 1. 

  
 
 

by using prior information instead of performing 
reanalysis of the whole system. There is a growing 
interest in automating electronic assembly lines in order 
to compete effectively in today's emerging market place. 
The overall goal of the research in electronic 
manufacturing automation is to offer solutions to achieve 
higher speeds and more flexibility. Manufacturing 
productivity can be inreased further by studying the 
optimal settings of operation, including sequence of 
component placements, and planning of assembly task 
(Vendan and Sakthidhasan., 2010). PNs can be used to 
study the problem of optimal operational settings by 
concurrent assembly systems and to evaluate the 
production rates of various possible models. 

The whole problem of modeling and control of 
manufacturing systems has its roots in discrete-event 
dynamic systems. In a manufacturing system, machine or 
robot failures and repairs, sudden changes in demand, 
and cell blockage or starvation are all events occurring at 
discrete instants. The initiation or termination of these 
events can propagate from cell to cell affecting numerous 
performance measures, e.g. buffer size vs. production 
rate, deadlock, etc. Petri nets have evolved into a 
powerful tool for analyzing asynchronous concurrent 
systems and have been shown to be useful in modeling 
flexible manufacturing systems (Al-Jaar and Desrochers., 
1989; DuBois and Stecke., 1982; Desrochers, 1990). 
They can provide accurate models because, Petri nets 
can capture the precedence relations and structural 
interactions of concurrent and asynchronous events. 
Deadlock, conflicts and buffer size can be modeled 
easily. Petri net models have a well developed 
mathematics formulation that allows a qualitative and 
quantitative analysis of the system. 

In this paper, we present the PN method to model and  
analyze  a   Surface   Mount   Device   (SMD)   assembly  

system for remanufacturing printed circuit boards. The 
paper is  
mainly organized as follows: 

 
1. The effects of the varying buffer size from its nominal 
value. 
2. The level of an increase in local production rate at the 
preceding cell. 
3. The time this local production gain propagates to the 
end of the transferline resulting in a gain. 
4. The use of ANN as a fast function approximation tool 
for rapid reanalysis of the SMD remanufacturing station. 
 
 
MATERIALS AND METHODS 
 
A flexible robotic assembly station for printed circuit boards’ 
remanufactuiring includes the following components: 
 
Cell 1 - Machine 1, solder paste is dispensed onto the board. 
Cell 2 - Robot 1, component is picked up and placed onto 

dispensed board. 
Cell 3 - Robot 2, component is reflowed by using laser energy. 
Cell 4 - Machine 2, complete board is inspected before it is used. 

 
Such a rework system which is aimed at remanufacturing SMDs, is 
considered in this study. P represents the overall production rate at 
which parts emerge from the transferline. Two cases examined and 
all analysis are performed by using SPNP (stochastic Petri net's 
package) software. Basic knowledge of PNs and related modeling 
issues can be found in many references such as DuBois and 
Stecke. (1982), Desrochers (1990) and Rosenblatt (1962). 
 
 
Case 1 
 
The cells (robots or machines) are identical with examples of rates 
given subsequently. A part cannot enter a cell unless the cell's 
buffer has a vacancy. The live and bounded PN model in Figure 1, 
is developed to calculate overall production rate of the transferline.  
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Figure 2. PN Model of the SMD assembly station for case 2. 

  
 
 
The number of tokens in the randomly chosen buffer 2 and 3 is 
varied from 1 to 5 to calculate an increase on the transferline 
production rate vs. varying buffer size at each underlying buffer 
location. 
 
 
Case 2 
 
A part can enter a cell even if the cell's buffer is full, but cannot exit 
the cell until there is a vacancy. This PN model is presented in 
Figure 2. The same steps are followed as explained in Case 1 for 
buffer N3. 
 
 
Assumptions 
 
Modeling automated manufacturing systems inherently leads to 
models with a large and complicated number of states. In this 
study, the following assumptions are made for simplification: 
 
1. Processing, failure and repair time are exponentially distributed 
2. Failures occur when cells are operating 
3. The first cell never starved and the last cell is never blocked 
 
Problem parameters for related units, 
 
tp (part processing rate) = 6% 
tf (machine or robot failure rate) = 3%  
tr (machine or robot repair rate) = 5% 
for Machines, M1,M2,M3,M4. 
N (buffer size) = 2 for buffers, B1,B2,B3. 
 
 
Analytical ınvestigation 

 
Under the aforementioned assumptions both cases are first 
designed then analyzed using SPNP software as presented in the 
following. 
 
 
Case 1 

 
For case 1, P and T invariants are found to be as follows: 
 
1. m(p1)+m(p2)+m(p3) = 1 
2. m(p2)+m(p3)+m(p4)+m(p16) = k =2 
3. m(p5)+m(p6)+m(p7) =1 

4. m(p6)+m(p7)+m(p8)+m(p17) = k = 2 
5. m(p9)+m(p10)+m(p11) = 1 
6. m(p10)+m(p11)+m(p12)+m(p18) = k = 2 
7. m(p13)+m(p14)+m(p15) = 1  
 
and, 
 
1. y1 = {t3 , t4} 
2. y2 = {t7 , t8} 
3. y3 = {t11 , t12} 
4. y4 = {t15 , t16} 
5. y5 = {t1 , t2 , t5 , t6 , t9 , t10 , t13 , t14} 
 
The invariants 1,3,5,7 relate the activities at cell 1,2,3,4 indicating 
each cell can be up and free, busy or down, or being repaired. The 
invariants 2,4,6 point out that, the total number of parts in the 
buffers and in the cells are always equal to k=2. The invariants, 
T1,T2,T3,T4 represent failure and repair cycles, T5 represents a 
production cycle. One can easily see and interpret from the T-
invariants that, all of the transitions (at least one of them) can be 
fired, for any reachable marking. Hence, there exist no deadlock. 
As a result, it can be concluded that the underlying PN is live, and 
since every place in the PN model is covered by P-invariant, it is 
also bounded. SMD part remanufacturing rate of the system is: 
 

P = rate(t14) ×prob(m(p14)) = 2.124 parts/h 
 
By changing the number of tokens in buffers 2 and 3 from 1 to 5, 
the following gradient distributions seen in Table 1 were found. 
 
 
Case 2 

 
After analysis of case 2, P and T invariants were found to be as 
follows: 
 
1. m(p5)+m(p20) = k = 2 
2. m(p10)+m(p21) = k =2 
3. m(p15)+m(p22) = k =2 
4. m(p1)+m(p2)+m(p3)+m(p4) = k =1 
5. m(p6)+m(p7)+m(p8)+m(p9) =1 
6. m(p11)+m(p12)+m(p13)+m(p14)=1 
7. m(p16)+m(p17)+m(p18)+m(p19)=1 
 
and 
 
1. y1 = {t3 , t4} 



 

 
 
 
 

Table 1. The reflections of the changes in buffers 2 and 3. 
 

Pi+1 - Pi ∆∆∆∆N in N2 ∆∆∆∆P / ∆∆∆∆N 

2.12 - 1.96 N2 = 1 to 2 0.155 

2.21 - 2.12 N2 = 2 to 3 0.094 

2.28 - 2.21 N2 = 3 to 4 0.064 

2.33 - 2.28 N2 = 4 to 5 0.047 

   
Pi+1 - Pi ∆∆∆∆N in N3 ∆∆∆∆P / ∆∆∆∆N 

2.12 - 1.99 N3 = 1 to 2 0.129 

2.19 - 2.12 N3 = 2 to 3 0.068 

2.23 - 2.19 N3 = 3 to 4 0.039 

2.25 - 2.23 N3 = 4 to 5 0.023 
 

∆N = Change in the number of tokens; ∆P = Change in the 
overall production rate; P = production rate (parts/h)  

 
 
 

Table 2. The reflection of the changes in buffer 3. 
 

Pi+1 - Pi ∆∆∆∆N in N3 ∆∆∆∆P / ∆∆∆∆N 

2.37 – 2.28 N3 = 1 to 2 0.083 

2.42 - 2.37 N3 = 2 to 3 0.050 

2.45 - 2.42 N3 = 3 to 4 0.032 

2.47 - 2.45 N3 = 4 to 5 0.021 

  
 
 
2. y2 = {t8 , t9} 
3. y3 = {t13 , t14} 
4. y4 = {t18 , t19} 
5. y5 = {t1 , t2 , t5 , t6 , t7 , t10 , t11 , t12 , t15 , t16 , t17 , t20} 

 
One can make similar conclusions as in case 1. The underlying PN 
model is live and bounded. Production rate of the system is: 

 
P = rate(t17)×prob(m(p17)) = 2.372 parts/h. 

 
By changing the number of tokens only in buffer 3 from 1 to 5, the 
following gradient distributions seen in Table 2 were found. 
In cases 1 and 2, as presented in Figures 3 and 4, after increasing 
a buffer size from the nominal value of N3, an increase in (local) 
production rate occurred at the preceding cells. This production 
gain propagated to the end of the transferline by increasing N2 and 
N3 buffer sizes from their nominal value. All the curves tend to 
saturate at a certain buffer size. Therefore, it is useless to use huge 
buffer sizes which only increases the inventory. At this point it can 
be concluded that there is no point in increasing buffer size 
because it reaches almost its optimal value. If both curves are 
matched for case 1, one can easily see that by increasing the buffer 
size N2, overall production rate increases much more than by 
increasing buffer size N3. This can be interpreted that an increase in 
buffer N2 gives better overall production rate in comparison with N3. 
Local production gain in cell i may not propagate through the line 
and does not result in a change in line production rate if the last cell 
in the transferline has an extremely high failure rate. 

In case 2, an increase in buffer size N2 has resulted in an 
increase in the (local) production rate at the preceding cells. This 
production gain can be propagated to the end of the transferline by 
increasing only N3 for this case.  The  slope  of  the  curve  tends  to  
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decrease and saturate at an optimal buffer size. The overall 
production rate is 10% higher than case 1. 
 
 
Using artificial neural networks in the analysis 
 
The multilayer perceptron architecture (Hajela et al., 1992) of ANN 
has been proposed for using a trained network as a rapid 
reanalysis tool (Berke and Hajela., 1992; Fu et al., 1992; Arslan, 
1993). Briefly, a trained network is obtained as a two-step process 
and is initiated with the definition of the network architecture, 
including the number of input-output neurons, the number of hidden 
layers, and the neurons in each of these layers. A set of input 
patterns considered to be representative of the problem of interest, 
are presented to the network input nodes; the output corresponding 
to each of these patterns is obtained at the output layer neurons as 
a function of interconnection weights and bias constants. 

The steepest descent method was used to minimize the 
difference between the network predicted and known outputs by 
adjusting weights and bias constants by a modified delta rule. 
When the network error is below some threshold value, the network 
is considered to be trained and can be used to predict outputs for 
input patterns which are not presented to the network before. This 
method is also known as back-propagation learning algorithm. An 
example of a neural network model is shown in Figure 5. The 
prediction capability of neural network allows one to perform rapid 
reanalysis of the transferline in terms of buffer sizes and production 
rate. This paper presents this approach by implementing to case 1, 
in which N2 buffer size varies from 1 to 5. 
 
 
RESULTS AND DISCUSSION 
 
The relations between three independent variables which 
are N1,N2 and N3 buffer sizes were chosen as the input 
parameters and overall production rate P was chosen as 
an output parameter. During training a network with 3 
neurons in the input layer, 7 neurons in the hidden layer, 
and 1 neuron in the output layer (denoted by 3*7*1) was 
trained with 10 input/output patterns. The network error 
for the mapping between xi (inputs) and yj (outputs) was 
reduced to less than 1% as it can be seen in Table 3.  

After training, generalization capability of the net was 
tested by using two existing buffer size information. 
Furthermore, in case 1, two more new input patterns 
were presented to the network, of which actual outputs 
are not known from SPNP analysis of the system. 
Predictions of the artificial neural net which are obtained 
are consistent with the previous results and new 
gradients tend to decrease. The ANN and SPNP analysis 
results for buffer N2 can be seen in Figure 6, where we 
can see that ANN is useful in approximating the system 
production rate. This capability of the ANN may save a lot 
of time and money for quick estimations. The results are 
summarized in the following table. 
 
 
Conclusions 
 
In this study, PN modeling approach for the design of 
flexible rework systems for remanufacturing of SMDs was 
presented. PN models have been constructed for an 
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Figure 3. Average production rate vs. N2 and N3 for case 1.  
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Figure 4. Average production rate vs. N3 for case 2. 

  
 
 

Table 3. Relative error between the actual and predicted 
results. 
 

N1 - N2 - N3 Actual Predicted Relative error 

2 – 5 – 2 2.330 2.323 0.003 

2 – 6 – 2 N/A 2.338 N/A 

2 – 7 – 2 N/A 2.346 N/A 

2 – 2 – 5 2.255 2.276 0.009 

2 – 2 – 6 N/A 2.306 N/A 

2 – 2 – 7 N/A 2.322 N/A 

  
 
 

existing flexible station. As a step toward the design of a 
flexible SMD assembly system, PN models help the 

designer understand graphically the system operations 
and characteristics. The system performance has been 
evaluated for two cases. The results indicate that case 2 
exhibits both higher system throughput and better robot 
and machine utilization than the corresponding marked 
graph. 

Consequently, according to the ratio between an 
increase of transferline production and buffer size, one 
can allocate the buffer size at each location to maximize 
for performance index. As seen in cases 1 and 2, after 
increasing buffer sizes N2 and N3, overall production rate 
increases to a certain degree after a certain buffer size, 
no increase can be observed. In case 1, an increase in 
buffer N2 has higher effect on production rate than buffer 
N3. Finally, ANN method has been proven to be very 
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Figure 5. An example structure of BP network.  
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Figure 6. Actual and predicted outputs for N2 in case 1. 

  
 
 

useful as a rapid reanalysis tool to predict the production 
rate of the transferline, by using prior information instead 
of performing reanalysis of the whole system. As a future 
study, recurrent neural networks may be studied for the 
same purpose and for the analysis of the queuing 
systems. 
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