
Scientific Research and Essays Vol. 6 (13), pp. 2784-2794, 4 July, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.211
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

A neuro-genetic approach to the inverse kinematics
solution of robotic manipulators

Raşit KÖKER

1
Department of Computer Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya – Turkey.

2
Computer Engineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo,

Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina. E-mail: rkoker@sakarya.edu.tr

Accepted 23 May, 2011

In this paper, a neuro-genetic approach is proposed for the inverse kinematics problem solution of
robotic manipulators. The proposed solution method is based on using neural networks and genetic
algorithms in a hybrid system. Neural networks have been used by many researchers in the inverse
kinematics solution. Since the neural networks work with an acceptable error, the error at the end of
learning has to be minimized for sensitive applications. This study is based on using genetic algorithms
to minimize this error. A case study is presented for a 6 degree of freedom robot. In the neural network
part, three Elman networks are separately trained and then used in parallel since one Elman network
may give better result than the other two ones. These three results are placed in the initial population of
the genetic algorithm. The end effector position error is defined as the fitness function and genetic
algorithm is implemented. Thus, the error is reduced in micrometer levels.

Key words: Elman neural networks, error minimization, six-degree-of-freedom robot, genetic algorithms,
robotics.

INTRODUCTION

The fundamental problem of robot kinematics deals with
mapping between joint space and Cartesian space. The
mapping from joint space to Cartesian space is known as
direct kinematics and the mapping from Cartesian space
to joint space is known as inverse kinematics. In many
robotic applications, the inverse kinematics problem
solution is more significant and interesting, because of
the fact that the robot tasks are specified in Cartesian
task space whereas lower level joint controllers needs
joint space coordinate that requires the solution of the
inverse kinematics problem (Kuroe et al., 1993). There
are three traditional methods used to solve inverse
kinematics problem: geometric (Featherstone, 1983; Lee,
1982), algebraic (Duffy, 1980; Manocha and Canny,
1994; Paul et al., 1981; Fu et al., 1987) and iterative
(Korein and Balder, 1982) methods. Each method has
some disadvantages. The algebraic methods do not
guarantee closed form solutions. In case of using
geometric methods, closed form solutions for the first
three joints of the manipulator must exist geometrically.
The iterative methods converge to only a single solution

and this solution depends on the starting point. For
simple manipulator geometry, the problem is solved using
trigonometry approaches involving tedious mathematical
steps. If the joint structure of the manipulator is more
complex, the inverse kinematics solution by using these
traditional methods is a time consuming study (Koker et
al., 2004). In the recent years, new methods were
presented to solve inverse kinematics problem such as
artificial neural networks and the optimal algorithm. The
computation of inverse kinematics using artificial neural
network is particularly useful where shorter calculation
times are required, such as in real-time adaptive robot
control. In other words, for a more generalized m-degrees
of freedom manipulator, traditional methods will become
prohibitive due to the high complexity of mathematical
structure of the formulation. To compound the problem
further, robots have to work in the real world that cannot
be modeled concisely using mathematical expressions
(Koker et al., 2004). However, as it is a well known fact
that the neural networks are working with an acceptable
solutions and cannot give a precise solution, but it

approaches to the solution. That is why neural network
based inverse kinematics problem solution needs error
minimization at the end effector.

Uicker et al. (1964) presented a study about using
iterative solutions for finding inverse kinematics solution
of robotic manipulators. Nearchou (1998) proposed an
evolutionary approach to obtain a unique solution for the
inverse kinematics problem of nonredundant and
redundant robotic manipulators based on a modified
binary-coded genetic algorithm (GA). The multiplicity
resolution issue of a PUMA robot was solved through the
minimization of total joint displacement and the closest
solution was also evaluated in the joint space relative to
the current configuration. In his study, the superiority of
the evolutionary approach over the pseudo-inverse
method and the simple binary-coded genetic algorithm
has been established. Furthermore, the computation of
the Jacobian matrix is not required in the evolutionary
approach; therefore any problem related to the inversion
of this matrix like singularities has been overcome.
However, the proposed approach has some certain
limitations. Khawaja et al. (1998) presented a study about
the inverse kinematics problem solution of an arbitrary
robotic manipulator based on a binary-coded genetic
algorithm. Their approach was used to compute the
motion of an n-R robotic manipulator following a specified
end-effector path. The genetic algorithms may come up
with multiple satisfying solutions because they search the
whole solution space in parallel. The sum of squares of
the discrete joint velocities is computed and described as
an additional fitness function to guide the evolutionary
process to a single solution. The multiple configurations
of a robot existing because of the multimodal nature of
the inverse kinematics problem are therefore not
available at the end of the search. Bingul and Ertunc
(2005) proposed a neural network approach using back
propagation algorithm to solve the inverse kinematics
problem of a robotic manipulator not having an analytical
inverse kinematics solution. Their approach has large
errors in the joint angles as a disadvantage and inability
of the approach is providing multiple solutions of the
inverse kinematics problem. Wang and Lienhardt
formulated and solved a kinematic model as an
optimization problem for ABB robotic manipulators
(Kesheng and Jonathan, 2005). The aim was to analyze
and evaluate the performance of the genetic algorithms in
the optimization of the robot kinematic accuracy. In their
algorithm, small changes in the kinematic parameter
values represent the parent and offspring population and
the end-effector error represents the fitness function.

A numerical example was given to show the
convergence and effectiveness of the given solution
model. The multiple solutions of the inverse kinematics
problem were not provided by this solution approach. In
this paper, a neuro-genetic hybrid approach is applied to
the inverse kinematics problem solution of PUMA 560
robotic manipulator with six joints by using simulation

Koker 2785

software. The main point of this study is the minimization
of end effector position error by using the random search
feature of the genetic algorithms. The proposed solution
schema includes a neural network block, which has three
Elman networks working in parallel, and a genetic
algorithm. Due to the fact that a neural network based
solution system works with an acceptable error, this error
needs to be minimized for some sensitive tasks. That is
the reason why the genetic algorithm is used in this study
to minimize the error at the end of inverse kinematics
learning of the Elman networks. Elman network has
feedback loops, which has a profound impact on the
learning capability of the network, and on network’s
performance. Because of this advantage Elman network
is used in the neural network part. Ten digits decimal
parts of the obtained solutions from the neural networks
were placed in the initial population of the genetic
algorithm to find the best ten digits for the decimal part.
The aim of using three Elman networks in parallel is that
one of these networks can give better result than other
ones. The end effector error was defined as a fitness
function in the genetic algorithm. Elman neural networks
and the genetic algorithm were used online. In this study,
the genetic algorithm was used to find the best decimal
part of the neural network based solution and the end
effector error was reduced to level of micrometers. An
illustrative example for the genetic algorithm
implementation is also presented.

THE DENAVIT-HARTENBERG METHOD FOR THE KINEMATIC
ANALYSIS

The Denavit-Hartenberg (D-H) method deals with the allocation of
coordinate frames to each link by using a set of rules to locate the
frame origin and the orientation axes. The poses of subsequent
links are then described by the homogeneous transformation matrix
that transforms the frame attached to the link i-1 into a frame fixed
to link i. This transformation is obtained from simpler
transformations representing the three basic translations along, and
three rotations about the frames’ x-, y- and z- axes (Paul et al.,
1981). This paper takes the PUMA 560 robotic manipulator as an
example. As shown in Figure 1, the PUMA robot has six joints. In
order to analyze the inverse kinematics problem, Denavit-
Hartenberg frames are given in Figure 1 (Fu et al., 1987). D-H
parameters of PUMA robotic manipulator is given in Table 1, where

 is the joint angle, is the joint offset, is the link length, and

 is the link twist. According to the D-H parameters , ,

and , homogeneous transformation matrix Ai I = 1, 2,...,6 can be

obtained. If the θi is given, the cartesian position of the end effector
can be computed by using Equation 1. The matrix T6 describes the
position and also the orientation of the manipulator. The orientation
of the hand is described according to the roll-pitch-yaw (RPY)
rotations.

��������−���������������� = ��6 = ��1 . ��2 . ��3 . ��4 . ��5. ��6 = ����� ���� ���� �������� ���� ���� �������� ���� ���� ����0 0 0 1

 (1)

2786 Sci. Res. Essays

Figure 1. PUMA 560 robotic manipulator.

Table 1. D-H parameters of PUMA 560 robotic manipulator.

Joint i (°°°°) (°°°°) (mm) (mm) Joint range (°°°°)

1 90 -90 0 0 -160 to +160

2 0 0 431.8 149.09 -225 to +45

3 90 90 -20.32 0 -45 to +225

4 0 -90 0 433.07 -110 to +170

5 0 90 0 0 -100 to +100

6 0 0 0 56.25 -266 to +266

The matrix T6 describes the position and also the orientation of the
manipulator. The orientation of the hand is described according to
the RPY rotations (Kozakiewicz et al., 1991).

 �������∅��, ∅��, ∅��� = �����������, ∅��������������, ∅��������������, ∅��� (2)

If T6 matrix is solved, then:
 ∅��= ��tan 2�����, ����� , (3)

 ∅�� = ��tan 2�−����, ����������∅��+ ����������∅�� , (4)

 ∅��= ��tan 2� ���� ������∅��− ����������∅�� ����cos ∅��− ���� ������∅��� (5)

These obtained equations give information about the position and
orientation of the robot according to the real world coordinate
frame. The coordinate frames for each joint are used to describe

the position and orientation of robot. Equation 6 shows the inverse
kinematics solution as a function.

 ���������������� �������������������� ���, ��, ��, ∅��, ∅��, ∅��� = ���1 , ��2, ��3, ��4, ��5, ��6� (6)

It can be clearly seen that the forward kinematics problem can be
easily solved for the given joint angles (Karlik and Aydin, 2000;
Köker, 2005). These Equations 1 to 6 have been used to prepare
training, verification and test data set of the neural network.

RECURRENT NEURAL NETWORKS

A recurrent neural network is distinguished from a feed forward
neural network because of having at least one feedback loop. The
presence of these feedback loops has a profound impact on the
learning capability of the network, and on the performance of the

Koker 2787

Hidden layer Output layer

Unit-Delay

Bank (Z
-1

)

Multilayer perceptron with a single hidden layer

Outputs

External

inputs

Recurrent

inputs

Figure 2. The block diagram of a simple recurrent neural network.

Network-1: N1 = 45; N2 = 6

Network-2: N1 = 40; N2 = 6

Network-3: N1 = 70; N2 = 6

1

N2

+B +B

1

12

1

N1

12 inputs

Figure 3. The structure of the Elman network used in the inverse kinematics learning.

network. Additionally, these feedback loops involve the use of
particular branches composed of unit-delay elements shown as

 that result in a nonlinear nature of the neurons. Nonlinear

dynamics has a key role in the storage function of a recurrent
network. A block scheme of the recurrent neural network is given in
Figure 2. Some important properties of recurrent neural network
can be listed as given as follows: firstly, the recurrent neural
networks are universal predictor of nonlinear dynamic systems,
provided that they are designed with an adequate number of hidden
layers. Secondly, they are locally controllable and observable,
provided that their linearized versions satisfy certain conditions.
Thirdly, given any finite-state machine, a recurrent neural network
regarded as a black-box machine can be built, will behave like that

finite-state machine. And lastly, a recurrent neural network shows a
meta-learning capability. In other words, its learning ability can be
explained as learning to learning. Actually, using recurrent neural
networks in computing, control and signal processing applications
really give precise benefits. Especially, in the robot control using
recurrent neural networks will be beneficial because of dynamical
structure of robotic manipulators (Haykin, 2009). The expressions
for the outputs of each hidden layer neurons are given in Equations
7 and 8 using the parameters shown in Figure 3:

 ������������ = 1�1 + �����������ℎ ����� + ∑ ��������ℎ����=1 ������������ + ∑ ��������ℎ ����������+��1��=��+��1 ���− 1��

 (7)

2788 Sci. Res. Essays

Randomly generated decimal

parts for solutions

(θ1, θ2, θ3, θ4, θ5, θ6)

X Y Z ox ax
oy oz az nx

ny nz ay

Elman

networks

Yes

No

Improved solution with

minimized error

Genetic algorithm

Crossover

Mutation

Compute the fitness function for new

generation by using direct kinematics

Is satisfactory

result

obtained?

Select solutions for reproduction

Decimal parts of

θ1, θ2, θ3, θ4, θ5, θ6

Decimal parts of

θ1, θ2, θ3, θ4, θ5, θ6

Decimal parts of

θ1, θ2, θ3, θ4, θ5, θ6

Figure 4. The schematic diagram of the proposed inverse kinematics solution schema.

Elman network output can be expressed as:

 ������������ = 1 1 + ������!����0���� + ∑ ������ℎ��������������������1��=1 "#
 (8)

Where �������� is the th input to the network (external inputs), �������− 1� is recurrent input to the network, ��1,0��ℎ is the weight

value from the first neuron of input layer to first neuron of hidden

layer, �������� is the th recurrent input, ��1,0ℎ�� is the weight value

from the first neuron of input layer to the first neuron of hidden

layer, ������������ is the th output (Temurtas et al., 2004).

NEURO-GENETIC APPROACH TO INVERSE KINEMATICS
SOLUTION

Here, proposed solution scheme is explained. The system is
composed of the neural network block and a genetic algorithm as

denoted in Figure 4. The given block schema is online implemented
for the inverse kinematics solution of Puma 560 robotic manipulator
with six joints by using designed neural networks and genetic
algorithm. Here, it is mainly aimed to reduce the prediction error of
the neural network by using a genetic algorithm.

Training of the Elman networks

In this study, neural networks and genetic algorithms were used
together in the inverse kinematics problem solution of a six-joint
Puma 560 robotic manipulator to minimize the error at the end
effector. Firstly, three Elman neural networks were trained for the
inverse kinematic solution. The following step is genetic algorithm
implementation. Genetic algorithm was used online to improve the
decimal part of the Elman neural network result up to ten digits. The
neural networks for inverse kinematics learning are working with an
acceptable error. That is the reason why in the neural network part,
three Elman networks have been trained by using separately
prepared data sets. The aim of using more than a unique neural
network is trying to get possibly better results. For instance, for a
desired solution for any joint is “35.0019726393”, these three neural
networks may give the solution for this joint as “35.003619870”,

Koker 2789

Table 2. Training parameters and the error values of Elman networks.

 Elman network-1 Elman network-2 Elman network-3

Learning rate 0.40 0.35 0.40

Momentum coefficient 0.70 0.80 0.75

Activation function Sigmoid Sigmoid Sigmoid

Number of neurons in the hidden layer 45 40 70

Iteration number 800,000 1,100,000 1,000,000

Sample size in training set 5000 5000 5000

Sample size in test set 2000 2000 2000

MSE values for training set 1,45622 2,39754 1,87345

MSE values for validation set 1,39012 1,98007 1,78809

MSE values for test data set 1,12003 1,54099 1,44199

“34.991358752” and “35.012980025”, respectively. In this case, the
solution of the second network is not a good one to be improved.
Because in the genetic algorithm we only improve the decimal part
of the solutions and then the improved solution was joined with the
integer part. The decimal parts of these three Elman network
solutions exist in the initial population of the genetic algorithm, and
good ones will survive. As it is clearly seen, the decimal part of the
second network of “34.991358752” is not good since the integer
part of the solution is not used in the genetic algorithm. These three
feed forward Elman neural networks with sigmoid activation function
were used to solve inverse kinematics problem. Each network was
trained with the least error as much as possible. A case study about
using neural networks in parallel was previously presented by
Koker (2005). The block diagram of the proposed solution was
given in Figure 4. Training of a neural network is the process of
setting the best weights on the inputs of each of the units. The aim
is to use the training set to produce weights where the output of the
network is as much closer to the desired output values for many of
the examples in the training set (Shanthi et al., 2009). The training
set is a part of the input dataset used for neural network training,
that is for adjustment of network weights.

In this study, for the training, firstly, three different 5000 data,

which consists of the (θ1, θ2, θ3, θ4, θ5 and θ6) joint angles according
to the different (X, Y, Z, ox, oy, oz, nx, ny, nz, ax, ay and az) cartesian
coordinate parameters, were generated separately using Equations
1 to 6 in the work volume of robotic manipulator. It has been tried to
obtain well-structured learning sets to make the learning process
successful and easy. These values were recorded in the files to
form the learning sets of the networks. Each 5000 of these data
was used in the training of Elman networks. As a validation set,
2000 data was prepared. The validation set is a part of the data
used to tune network topology or network parameters other than
weights. For example, it is used to define the number of units to
detect the moment when neural network performance started
hidden to deteriorate. To choose the best network (that is by
changing the number of units in the hidden layer) the validation set
is used. As it is well known too much training can cause over fitting,
the validation set also have to be used in an early stopping of the
training process. For the test set, 2000 data were prepared and
used in the test of each neural network to see their success for the
same data set. The test set is a part of the input data set used to
test how well the neural network will perform on new data. The
training process was completed until the error was possibly
minimum for each network. Mean square error (MSE) has been
used in the error computation and the training parameters and test
results have been given in Table 2. The neural networks have been
trained using the neural networks toolbox of the Matlab.
Conventional back propagation algorithm that uses a threshold with
a sigmoid activation function and gradient-descent learning

algorithm has been used. The momentum coefficient, learning rate
and number of neurons in the hidden layers were determined,
experimentally.

The genetic algorithm

The genetic algorithms are dealing with directed random search
emulating the process of genetic evolution found in nature to
perform artificial evolution. They were developed by Holland (1975)
in the early 1970s and since then have been applied successfully to
many different complex search problems. Naturally, organisms
have certain characteristics, which affect their ability to survive or
reproduce. These characteristic features are found in their genes.
Natural selection guarantees that genes from a strong individual are
presented in greater numbers in the next generation than those
from a weak individual. Over a number of generations, the fittest
individuals have the highest probability of survival and tend to
increase in numbers, while the less fit individuals tend to die out.
The main important point here is survival of the fittest and this point
constitutes the basic idea behind genetic algorithms (Nearchou,
1998; Cakar et al., 2005). In this study, a genetic algorithm is used
to search the best decimal parts up to 10 digits by using obtained
solution from neural network block. The first thing in the
performance of a genetic algorithm is coding. After coding process,
the genetic algorithm operators are applied on the chromosomes.
Crossover, mutation and reproduction processes continue until an
optimal solution is obtained. In this study, the evaluations of the
offsprings are done by using fitness function, which is defined as
the end effector error, namely the distance between the target point
and end effector. The genetic algorithm tries to find the best ten
digits for the decimal part by minimizing this end effector error. An
illustrative example is given as follows:

Coding

The decimal parts of the obtained neural network solutions are
used in the genetic algorithm implementation. The genetic algorithm
is designed to search the best ten digits decimal part for the
solution. Binary coding is used to represent these ten digits. A
sample representation of the coding process for a neural network
solution is given in Table 3.

Initial population

In this study, the initial population is not produced totally randomly.
The decimal parts of the obtained solutions from neural network are

2790 Sci. Res. Essays

Table 3. Representation of the coding process for a neural network solution.

Joint angle Neural network result Decimal part Binary representation
θ1 30,2768940110 2768940110 0010100101000010101010110001001110

Θ2 26,0073200971 0073200971 0000000100010111001111010101001011

Θ3 35,8862341501 8862341501 1000010000001111001001100101111101

 Θ4 10,7635920333 7635920333 0111000111001000101110010111001101

 Θ5 20,9100783441 9100783441 1000011110011100101110111101010001

 Θ6 35,1107296387 1107296387 0001000010000000000000000010000011

Table 4. Randomly generated chromosome.

Randomly generated chromosome Actual number

1000101111011000111101010001110110 9385006198

0011011111010111100000011101010011 3747481427

1111010111000010101111000010101010 16492720298

1010011110101000010100010111111101 11251303933

0000011110010001110101011110010101 507991957

1101111111110010111001010001110001 15028950129

Table 5. A sample representation of chromosome operation.

 The matched chromosome pairs After the crossover operation

1st pieces
0010100101000010101010110001 001110

X
0010100101000010101010110001110110

1000101111011000111101010001 110110 1000101111011000111101010001001110

2nd pieces
0000000100010111001111010101 001011

X
0000000100010111001111010101010011

0011011111010111100000011101 010011 0011011111010111100000011101001011

3rd pieces
1000010000001111001001100101 111101

X
1000010000001111001001100101101010

1111010111000010101111000010 101010 1111010111000010101111000010111101

4rd pieces
0111000111001000101110010111 001101

X
0111000111001000101110010111111101

1010011110101000010100010111 111101 1010011110101000010100010111001101

5th pieces
1000011110011100101110111101 010001

X
1000011110011100101110111101010101

0000011110010001110101011110 010101 0000011110010001110101011110010001

6th pieces
0001000010000000000000000010 000011

X
0001000010000000000000000010110001

1101111111110010111001010001 110001 1101111111110010111001010001000011

also put in the initial population. Other chromosomes have been
generated randomly. A sample of randomly generated chromosome
is given in Table 4.

Crossover process

The crossover process is done by crossing obliquely from the
randomly determined two chromosomes. At the end of crossover
operation, two new chromosomes will be obtained. Let us show this
crossover operation by using two chromosomes that were given

earlier. As it is explained, one of these chromosomes was obtained
from neural network solution and other one was randomly
generated (Table 5). Here “X” refers to crossover operation. The
randomly selected crossover points are shown by a dotted line.
After the crossover operation, obtained new offsprings were given
in Table 6.

Mutation process

In the mutation process, a gene is randomly selected inside the

Koker 2791

Table 6. New offsprings obtained from crossover operations.

New offspring #1

0010100101000010101010110001110110 2768940150

0000000100010111001111010101010011 73200979

1000010000001111001001100101101010 8862341482

0111000111001000101110010111111101 7635920381

1000011110011100101110111101010101 9100783445

0001000010000000000000000010110001 1107296433

New offspring #2

1000101111011000111101010001001110 9385006158

0011011111010111100000011101001011 3747481419

1111010111000010101111000010111101 16492720317

1010011110101000010100010111001101 11251303885

0000011110010001110101011110010001 507991953

1101111111110010111001010001000011 15028950083

Table 7. The obtained results after the mutation operation.

New result #1 New result #2
30,11358874742 30,9385006158

26,73200979 26,3747481419

35,8862341482 35,16492720317

10,7635920381 10,11251303885

20,9100783445 20, 507991953

35,1107296433 35,15028950083

chromosomes in the population according to defined mutation rate
(Cakar et al., 2008). Because of this, binary coding is used; during
the mutation selected gene will be just inverted. For example, if the
selected gene is “1” it will be “0”. To apply mutation process to the
given offspring aforementioned, let us assume the first bit of the
first piece of the offspring 1 is randomly selected for mutation. It will
be converted from “0” to “1”. The results are given in Table 7 after
the mutation operation. The decimal parts are added to show the
new result. The fitness function is defined as end effector error in
this study. This end effector error can be computed easily in the
three dimensional space by using Euclidian distance equation. The
main aim of this paper is trying to minimize the error by using the
random search ability of the genetic algorithm. In genetic algorithm
implementation part, experimentally determined parameters were
given as follows:

Population size: 100, crossover rate: 100%.
Mutation rate: 1%, max generation: 100.

Reproduction

In the population, the reproduction operator makes a copy of each
gene and it is added to the candidate genes list. Basically, this
guarantees that each chromosome in the current population
remains a candidate to be selected for the next population. In this
paper, it is aimed to find the solution, which minimizes the given
fitness function. As it is mentioned previously, the fitness function is
the position error as a distance between robot end effector and the
target. The Cartesian coordinate information can be computed by
using direct kinematics equations for any obtained new offspring.
Then, this position error can be obtained easily in metric form by

using three-dimensional (3-D) distance equation between two
points in 3-D space as shown in Figure 5. Euclidian distance
equation can be used in the distance computation and given in
Equation 9. The genetic algorithm may get better chances to
survive chromosomes with quite higher fitness. The living good
chromosomes stay in the population. This process will be going on
until an optimal solution is obtained in each population.

 ������ ���������������� ����������= ����2 − ��1�2 + ���2 − ��1�2 + ���2 − ��1�2�1 2$

 (9)

Where, ���1 , ��1, ��1� refers to end effector’s Cartesian position

and ���2, ��2, ��2� the Cartesian position for the obtained solution

from the genetic algorithm by the way of using direct kinematic
equations.

RESULTS

The graphical representation of the fitness function
according to the number of generation is given in Figures
6 and 7. Population size is selected as 100
experimentally. In Figure 6, the genetic algorithm is trying
to minimize the defined fitness function as it is evidently
seen. When the optimal results are approximating to the
zero, it is not clearly seen on the graphic after 57th
generation. That is the reason why to expose the region
near zero on the graphic, it is also sketched by using a
logarithmic scale in Figure 7. In this graphic, the change
of the fitness function can also be seen clearly near zero.
When the genetic algorithm is stopped the obtained
optimal solution is 0.00041 mm as an end effector error
of the robot. On the other hand, in Figure 7, there is no
change on the fitness function after seventieth
generation. In Table 8, the sample outputs of the Elman
neural networks and genetic algorithm are given. As it is
clearly seen that the second Elman neural network gave

a result for θ3 with different integer part from the desired
value. Therefore, since the floating-parts of the values
were used in the genetic algorithm, the output of second

2792 Sci. Res. Essays

Table 8. Sample results of the inverse kinematics for puma 560 robotic manipulator.

 θθθθ1(°°°°) θθθθ2(°°°°) θθθθ3(°°°°) θθθθ4(°°°°) θθθθ5(°°°°) θθθθ6(°°°°) Error (mm.)

Desired value 30.088100123 26.4619968742 35. 0019726393 15.2706900181 18.151077294 37.7592149001 0.00029

Elman Network 1 30.0866014425 26.479100985 35. 003619870 15.2779871599 18.158000258 37.763980010 3.19358

Elman network 2 30.087569120 26.478071130 34. 991358752 15.285015411 18.15188750 37.754112980 3.896197

Elman network 3 30.075666001 26.492377582 35. 012980025 15.276088501 18.16222980 37,766598001 3.658421

The result after the genetic algorithm 30.088100118 26.4619968745 35. 0019726389 15.2706900180 18.151077291 37.7592149014 0.00041

Magnified

Figure 5. The symbolic end effector error representation (fitness function in the genetic algorithm).

Elman network for this joint is not good. However,
since the floating parts of each Elman network are
given to the genetic algorithm, the better
chromosomes will survive during the generations.
Since the integer part was not given to the genetic

algorithm, the chromosome obtained result for θ3
from the second Elman network will not survive.
To show the performance of the genetic algorithm
in this study, all solutions in test set of Elman
networks are given to the genetic algorithm to be
improved. After this improvement, the MSE value

was computed as 0.0000008099 for the test data
set.

DISCUSSION

Obtained result from the neural network based
inverse kinematics solution part was improved by
using genetic algorithm. The three Elman
networks were used to use possibility of having
the best result in the initial population of the

genetic algorithm. In the initial population of the
genetic algorithm, the best solution either
obtained from neural network or from randomly
generated solutions will survive, others will die.
The genetic algorithm was stopped when there is
no change on the end effector error. In this case,
the obtained angle values were substituted in the
direct kinematics equation of the robotic
manipulator to obtain the Cartesian position
information, then by using Euclidian distance
equation given in Equation 9, the error for the end

 Koker 2793

Figure 6. The fitness function change according to the number of generation.

Figure 7. The fitness function change according to the number of generation using a logarithmic scale.

effector was obtained as 0.00029 mm. According to the
application, the genetic algorithm can be stopped earlier
if the satisfactory result is obtained. The satisfactory
results were obtained as shown in Figures 6, 7 and Table
8. On the other hand, considering the MSE computations
for each Elman network and whole solution system with
genetic algorithm, the error for the test set was also
reduced significantly.

CONCLUSIONS

In this study, a hybrid approach using neural networks

and genetic algorithms for the inverse kinematics
problem solution of the robotic manipulators based on
end effector error minimization was presented. Since the
neural networks work with acceptable error, the error has
to be minimized after neural network based inverse
kinematics solution in the sensitive applications. Puma
560 robotic manipulator was used as a case study to
show the performance of the proposed solution method.
The proposed approach combines the characteristics of
genetic algorithms as an evolutionary algorithm and the
neural networks. Three Elman neural networks were
used in parallel to have the possibility of better decimal
parts in the initial population of the genetic algorithm. The

2794 Sci. Res. Essays

decimal part of the neural network result was improved
up to ten digits by using a genetic algorithm. The genetic
algorithm was used online in the solution. The result of
each neural network was placed in the initial population
of the genetic algorithm with randomly generated
solutions. The genetic algorithm tries to find the best
decimal part of the solution based on using fitness
function defined as end effector error. The usage of the
genetic algorithm reduced the end effector errors to
micrometer levels, significantly. That is why the improved
solution can be used for redundant robotic manipulators
especially for critical applications.

REFERENCES

Bingul Z, Ertunc HM (2005). Applying neural network to inverse

kinematic problem for 6R robot manipulator with offset wrist. in: Proc.
of the 7th International Conference on Adaptive and Natural
Computing Algorithms. Portugal.

Cakar T, Yıldırım MB, Barut M (2005). A neuro-genetic approach to
design and planning of a manufacturing cell. J. Intell. Man., 16: 453-
462.

Cakar T, Koker R, Demir HI (2008). Parallel robot scheduling to
minimize mean tardiness with presedence constraints using a genetic
algorithm. Adv. Eng. Software, 39: 47-54.

Duffy J (1980). Analysis of Mechanism and Robot Manipulators. Wiley.
New York.

Featherstone R (1983). Position and velocity transformation between
robot end-effector coordinate and joint angle. Int. J. Robotic. Res.,
2(2): 35-45.

Fu KS, Gonzalez RC, Lee CSG (1987). Robotics-Control, Sensing,
Vision and Intelligence. McGrow-Hill, pp. 36-39.

Haykin S (2009). Neural networks and Learning Machines. Third Ed.,
Pearson. New Jersey, pp. 818-834.

Holland JH (1975). Adaptation in Natural and Artificial Systems.
University of Michigan Press. Ann Arbor. MI.

Karlik B, Aydın S (2000). An improved approach to the solution inverse
kinematics problems for robot manipulators. Eng. Appl. Artif. Intell.,
13: 159-164.

Kesheng W, Jonathan L (2005). Robot kinematic calibration using
genetic algorithms. Intell. Prod. Machines Syst., pp. 213-218.

Khawaja AA, Rahman MO, Wagner MG (1998). Inverse kinematics of

arbitrary robotic manipulators using genetic algorithms. Advances in
Robot Kinematics: Analysis and Control. Kluwer Academic
Publishers, pp. 375-382.

Korein JU, Balder NI (1982). Techniques for generating the goal-
directed motion of articulated structures. IEEE Comput. Graphics
Appl., 2(9): 71-81.

Köker R (2005). Reliability-based approach to the inverse kinematics
solution of robots using the Elman’s network. Eng. Appl. Artif. Intell.,
18: 685-693.

Kozakiewicz K, Ogiso T, Miyake N (1991). Partitioned neural network
architecture for inverse kinematics calculation of a 6 DOF robot
manipulator. Proceedings of the IEEE International Joint Conference
on Neural Networks, Singapore: 2001-2006.

Köker R, Oz C, Cakar T, Ekiz H (2004). A study of neural network
based inverse kinematics solution for a three-joint robot. Robot.
Auton. Syst., 49: 227-234.

Kuroe Y, Yasuhiro N, Takehiro M (1993). A new neural network
approach to the inverse kinematics problem in robotics. IEEE Motion
Control Proceeding, pp. 112-117.

Lee GCS (1982). Robot arm kinematics, dynamics and control.
Comput., 15(12): 62-79.

Manocha D., Canny JF (1994). Efficient inverse kinematics for general
6r manipulators. IEEE Transact. Robot. Autom., 10(5): 648-657.

Nearchou AC (1998). Solving the inverse kinematics problem of
redundant robots operating in complex environments via a modified
genetic algorithm. Mech. and Mach. Theory, 33 (3): 273–292.

Paul RP, Shimano B. Mayer GE (1981). Kinematic control equations for
simple manipulators. IEEE Transact. Syst. Man Cybernetics. SMC-11
(6): 66-72.

Uicker JJ, Denavit J, Hartenberg RS (1964). An iterative method for the
displacement analysis of spatial mechanisms. Trans. ASME J. Appl.
Mech., 31: 309-314.

Shanthi D, Sahoo G, Saravanan N (2009). Designing an artificial neural
network model for the prediction of Thrombo-embolic stroke.
International Journal of Biometric and Bioinformatics (IJBB), 3(1): 10-
18.

Temurtas F, Gunturkun R, Yumusak N, Temurtas H (2004). Harmonic
detection using feed forward and recurrent neural networks for active
filters. Elect. Power Syst. Res., 72: 33-40.

