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In this paper, a neuro-genetic approach is proposed for the inverse kinematics problem solution of 
robotic manipulators. The proposed solution method is based on using neural networks and genetic 
algorithms in a hybrid system. Neural networks have been used by many researchers in the inverse 
kinematics solution. Since the neural networks work with an acceptable error, the error at the end of 
learning has to be minimized for sensitive applications. This study is based on using genetic algorithms 
to minimize this error. A case study is presented for a 6 degree of freedom robot. In the neural network 
part, three Elman networks are separately trained and then used in parallel since one Elman network 
may give better result than the other two ones. These three results are placed in the initial population of 
the genetic algorithm. The end effector position error is defined as the fitness function and genetic 
algorithm is implemented. Thus, the error is reduced in micrometer levels. 
 
Key words: Elman neural networks, error minimization, six-degree-of-freedom robot, genetic algorithms, 
robotics. 

 
 
INTRODUCTION 
 
The fundamental problem of robot kinematics deals with 
mapping between joint space and Cartesian space. The 
mapping from joint space to Cartesian space is known as 
direct kinematics and the mapping from Cartesian space 
to joint space is known as inverse kinematics. In many 
robotic applications, the inverse kinematics problem 
solution is more significant and interesting, because of 
the fact that the robot tasks are specified in Cartesian 
task space whereas lower level joint controllers needs 
joint space coordinate that requires the solution of the 
inverse kinematics problem (Kuroe et al., 1993). There 
are three traditional methods used to solve inverse 
kinematics problem: geometric (Featherstone, 1983; Lee, 
1982), algebraic (Duffy, 1980; Manocha and Canny, 
1994; Paul et al., 1981; Fu et al., 1987) and iterative 
(Korein and Balder, 1982) methods. Each method has 
some disadvantages. The algebraic methods do not 
guarantee closed form solutions. In case of using 
geometric methods, closed form solutions for the first 
three joints of the manipulator must exist geometrically. 
The iterative methods converge to only a single solution 

and this solution depends on the starting point. For 
simple manipulator geometry, the problem is solved using 
trigonometry approaches involving tedious mathematical 
steps. If the joint structure of the manipulator is more 
complex, the inverse kinematics solution by using these 
traditional methods is a time consuming study (Koker et 
al., 2004). In the recent years, new methods were 
presented to solve inverse kinematics problem such as 
artificial neural networks and the optimal algorithm. The 
computation of inverse kinematics using artificial neural 
network is particularly useful where shorter calculation 
times are required, such as in real-time adaptive robot 
control. In other words, for a more generalized m-degrees 
of freedom manipulator, traditional methods will become 
prohibitive due to the high complexity of mathematical 
structure of the formulation. To compound the problem 
further, robots have to work in the real world that cannot 
be modeled concisely using mathematical expressions 
(Koker et al., 2004). However, as it is a well known fact 
that the neural networks are working with an acceptable 
solutions   and   cannot   give   a  precise  solution,  but  it  



 
 
 
 
approaches to the solution. That is why neural network 
based inverse kinematics problem solution needs error 
minimization at the end effector. 

Uicker et al. (1964) presented a study about using 
iterative solutions for finding inverse kinematics solution 
of robotic manipulators. Nearchou (1998) proposed an 
evolutionary approach to obtain a unique solution for the 
inverse kinematics problem of nonredundant and 
redundant robotic manipulators based on a modified 
binary-coded genetic algorithm (GA). The multiplicity 
resolution issue of a PUMA robot was solved through the 
minimization of total joint displacement and the closest 
solution was also evaluated in the joint space relative to 
the current configuration. In his study, the superiority of 
the evolutionary approach over the pseudo-inverse 
method and the simple binary-coded genetic algorithm 
has been established. Furthermore, the computation of 
the Jacobian matrix is not required in the evolutionary 
approach; therefore any problem related to the inversion 
of this matrix like singularities has been overcome. 
However, the proposed approach has some certain 
limitations. Khawaja et al. (1998) presented a study about 
the inverse kinematics problem solution of an arbitrary 
robotic manipulator based on a binary-coded genetic 
algorithm. Their approach was used to compute the 
motion of an n-R robotic manipulator following a specified 
end-effector path. The genetic algorithms may come up 
with multiple satisfying solutions because they search the 
whole solution space in parallel. The sum of squares of 
the discrete joint velocities is computed and described as 
an additional fitness function to guide the evolutionary 
process to a single solution. The multiple configurations 
of a robot existing because of the multimodal nature of 
the inverse kinematics problem are therefore not 
available at the end of the search. Bingul and Ertunc 
(2005) proposed a neural network approach using back 
propagation algorithm to solve the inverse kinematics 
problem of a robotic manipulator not having an analytical 
inverse kinematics solution. Their approach has large 
errors in the joint angles as a disadvantage and inability 
of the approach is providing multiple solutions of the 
inverse kinematics problem. Wang and Lienhardt 
formulated and solved a kinematic model as an 
optimization problem for ABB robotic manipulators 
(Kesheng and Jonathan, 2005). The aim was to analyze 
and evaluate the performance of the genetic algorithms in 
the optimization of the robot kinematic accuracy. In their 
algorithm, small changes in the kinematic parameter 
values represent the parent and offspring population and 
the end-effector error represents the fitness function. 

A numerical example was given to show the 
convergence and effectiveness of the given solution 
model. The multiple solutions of the inverse kinematics 
problem were not provided by this solution approach. In 
this paper, a neuro-genetic hybrid approach is applied to 
the inverse kinematics problem solution of PUMA 560 
robotic manipulator with six joints by using simulation  
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software. The main point of this study is the minimization 
of end effector position error by using the random search 
feature of the genetic algorithms. The proposed solution 
schema includes a neural network block, which has three 
Elman networks working in parallel, and a genetic 
algorithm. Due to the fact that a neural network based 
solution system works with an acceptable error, this error 
needs to be minimized for some sensitive tasks. That is 
the reason why the genetic algorithm is used in this study 
to minimize the error at the end of inverse kinematics 
learning of the Elman networks. Elman network has 
feedback loops, which has a profound impact on the 
learning capability of the network, and on network’s 
performance. Because of this advantage Elman network 
is used in the neural network part. Ten digits decimal 
parts of the obtained solutions from the neural networks 
were placed in the initial population of the genetic 
algorithm to find the best ten digits for the decimal part. 
The aim of using three Elman networks in parallel is that 
one of these networks can give better result than other 
ones. The end effector error was defined as a fitness 
function in the genetic algorithm. Elman neural networks 
and the genetic algorithm were used online. In this study, 
the genetic algorithm was used to find the best decimal 
part of the neural network based solution and the end 
effector error was reduced to level of micrometers. An 
illustrative example for the genetic algorithm 
implementation is also presented. 
 
 
THE DENAVIT-HARTENBERG METHOD FOR THE KINEMATIC 
ANALYSIS 
 
The Denavit-Hartenberg (D-H) method deals with the allocation of 
coordinate frames to each link by using a set of rules to locate the 
frame origin and the orientation axes. The poses of subsequent 
links are then described by the homogeneous transformation matrix 
that transforms the frame attached to the link i-1 into a frame fixed 
to link i. This transformation is obtained from simpler 
transformations representing the three basic translations along, and 
three rotations about the frames’ x-, y- and z- axes (Paul et al., 
1981). This paper takes the PUMA 560 robotic manipulator as an 
example. As shown in Figure 1, the PUMA robot has six joints. In 
order to analyze the inverse kinematics problem, Denavit-
Hartenberg frames are given in Figure 1 (Fu et al., 1987). D-H 
parameters of PUMA robotic manipulator is given in Table 1, where 

 is the joint angle,  is the joint offset,  is the link length, and 

 is the link twist. According to the D-H parameters , ,  

and , homogeneous transformation matrix Ai I = 1, 2,...,6 can be 

obtained. If the θi is given, the cartesian position of the end effector 
can be computed by using Equation 1. The matrix T6 describes the 
position and also the orientation of the manipulator. The orientation 
of the hand is described according to the roll-pitch-yaw (RPY) 
rotations. 

 

��������−���������������� = ��6 = ��1 . ��2 . ��3 . ��4 . ��5. ��6 = ����� ���� ���� �������� ���� ���� �������� ���� ���� ����0 0 0 1 
 
 (1) 
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Figure 1. PUMA 560 robotic manipulator. 

 
 
 

Table 1. D-H parameters of PUMA 560 robotic manipulator. 
 

Joint i  (°°°°) (°°°°)  (mm)  (mm) Joint range (°°°°) 

1 90 -90 0 0 -160 to +160 

2 0 0 431.8 149.09 -225 to +45 

3 90 90 -20.32 0 -45 to +225 

4 0 -90 0 433.07 -110 to +170 

5 0 90 0 0 -100 to +100 

6 0 0 0 56.25 -266 to +266 
  
 
 
The matrix T6 describes the position and also the orientation of the 
manipulator. The orientation of the hand is described according to 
the RPY rotations (Kozakiewicz et al., 1991). 
 

 �������∅��, ∅��, ∅��� = �����������, ∅��������������, ∅��������������, ∅���    (2) 

 
If T6 matrix is solved, then: 
 ∅��= ��tan 2�����, ����� ,                              (3) 

 ∅�� = ��tan 2�−����, ����������∅��+ ����������∅�� ,             (4) 

 ∅��= ��tan 2� ���� ������∅��− ����������∅�� ����cos ∅��− ���� ������∅���       (5) 

 
These obtained equations give information about the position and 
orientation of the robot according to the real world coordinate 
frame. The coordinate frames for each joint are used to describe 

the position and orientation of robot. Equation 6 shows the inverse 
kinematics solution as a function. 

  ���������������� �������������������� ���, ��, ��, ∅��, ∅��, ∅��� = ���1 , ��2, ��3, ��4, ��5, ��6�      (6) 

 
It can be clearly seen that the forward kinematics problem can be 
easily solved for the given joint angles (Karlik and Aydin, 2000; 
Köker, 2005). These Equations 1 to 6 have been used to prepare 
training, verification and test data set of the neural network. 

 
 
RECURRENT NEURAL NETWORKS 

 
A recurrent neural network is distinguished from a feed forward 
neural network because of having at least one feedback loop. The 
presence of these feedback loops has a profound impact on the 
learning capability of the network, and  on  the  performance  of  the  
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Figure 2. The block diagram of a simple recurrent neural network.  
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Figure 3. The structure of the Elman network used in the inverse kinematics learning. 

  
 
 

network. Additionally, these feedback loops involve the use of 
particular branches composed of unit-delay elements shown as 

 that result in a nonlinear nature of the neurons. Nonlinear 

dynamics has a key role in the storage function of a recurrent 
network. A block scheme of the recurrent neural network is given in 
Figure 2. Some important properties of recurrent neural network 
can be listed as given as follows: firstly, the recurrent neural 
networks are universal predictor of nonlinear dynamic systems, 
provided that they are designed with an adequate number of hidden 
layers. Secondly, they are locally controllable and observable, 
provided that their linearized versions satisfy certain conditions. 
Thirdly, given any finite-state machine, a recurrent neural network 
regarded as a black-box machine can be built, will behave like that 

finite-state machine. And lastly, a recurrent neural network shows a 
meta-learning capability. In other words, its learning ability can be 
explained as learning to learning. Actually, using recurrent neural 
networks in computing, control and signal processing applications 
really give precise benefits. Especially, in the robot control using 
recurrent neural networks will be beneficial because of dynamical 
structure of robotic manipulators (Haykin, 2009).  The expressions 
for the outputs of each hidden layer neurons are given in Equations 
7 and 8 using the parameters shown in Figure 3: 

 ������������ = 1�1 + �����������ℎ ����� + ∑ ��������ℎ����=1 ������������ + ∑ ��������ℎ ����������+��1��=��+��1 ���− 1�� 

    (7) 
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Figure 4. The schematic diagram of the proposed inverse kinematics solution schema. 

 
 
 
Elman network output can be expressed as: 

 ������������ = 1 1 + ������!����0���� + ∑ ������ℎ��������������������1��=1 "#
    (8) 

 

Where �������� is the th input to the network (external inputs),  �������− 1�  is recurrent input to the network,  ��1,0��ℎ  is the weight 

value from the first neuron of input layer to first neuron of hidden 

layer,  �������� is the th recurrent input,  ��1,0ℎ�� is the weight value 

from the first neuron of input layer to the first neuron of hidden 

layer,  ������������  is the th output (Temurtas et al., 2004). 

 
 
NEURO-GENETIC APPROACH TO INVERSE KINEMATICS 
SOLUTION 
 
Here, proposed solution scheme is explained. The system is 
composed of the neural network block and a genetic algorithm as  

denoted in Figure 4. The given block schema is online implemented 
for the inverse kinematics solution of Puma 560 robotic manipulator 
with six joints by using designed neural networks and genetic 
algorithm. Here, it is mainly aimed to reduce the prediction error of 
the neural network by using a genetic algorithm. 
 
 
Training of the Elman networks 
 
In this study, neural networks and genetic algorithms were used 
together in the inverse kinematics problem solution of a six-joint 
Puma 560 robotic manipulator to minimize the error at the end 
effector. Firstly, three Elman neural networks were trained for the 
inverse kinematic solution. The following step is genetic algorithm 
implementation. Genetic algorithm was used online to improve the 
decimal part of the Elman neural network result up to ten digits. The 
neural networks for inverse kinematics learning are working with an 
acceptable error. That is the reason why in the neural network part, 
three Elman networks have been trained by using separately 
prepared data sets. The aim of using more than a unique neural 
network is trying to get possibly better results. For instance, for a 
desired solution for any joint is “35.0019726393”, these three neural 
networks may give  the  solution  for  this  joint  as  “35.003619870”,  
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Table 2. Training parameters and the error values of Elman networks. 
 

 Elman network-1 Elman network-2 Elman network-3 

Learning rate 0.40 0.35 0.40 

Momentum coefficient 0.70 0.80 0.75 

Activation function Sigmoid Sigmoid Sigmoid 

Number of neurons in the hidden layer 45 40 70 

Iteration number 800,000 1,100,000 1,000,000 

Sample size in training set 5000 5000 5000 

Sample size in test set 2000 2000 2000 

MSE values for training set 1,45622 2,39754 1,87345 

MSE values for validation set 1,39012 1,98007 1,78809 

MSE values for test data set 1,12003 1,54099 1,44199 
  
 
 
“34.991358752” and “35.012980025”, respectively. In this case, the 
solution of the second network is not a good one to be improved. 
Because in the genetic algorithm we only improve the decimal part 
of the solutions and then the improved solution was joined with the 
integer part. The decimal parts of these three Elman network 
solutions exist in the initial population of the genetic algorithm, and 
good ones will survive. As it is clearly seen, the decimal part of the 
second network of “34.991358752” is not good since the integer 
part of the solution is not used in the genetic algorithm. These three 
feed forward Elman neural networks with sigmoid activation function 
were used to solve inverse kinematics problem. Each network was 
trained with the least error as much as possible. A case study about 
using neural networks in parallel was previously presented by 
Koker (2005). The block diagram of the proposed solution was 
given in Figure 4. Training of a neural network is the process of 
setting the best weights on the inputs of each of the units. The aim 
is to use the training set to produce weights where the output of the 
network is as much closer to the desired output values for many of 
the examples in the training set (Shanthi et al., 2009). The training 
set is a part of the input dataset used for neural network training, 
that is for adjustment of network weights. 

In this study, for the training, firstly, three different 5000 data, 

which consists of the (θ1, θ2, θ3, θ4, θ5 and θ6) joint angles according 
to the different (X, Y, Z, ox, oy, oz, nx, ny, nz, ax, ay and az) cartesian 
coordinate parameters, were generated separately using Equations 
1 to 6 in the work volume of robotic manipulator. It has been tried to 
obtain well-structured learning sets to make the learning process 
successful and easy. These values were recorded in the files to 
form the learning sets of the networks. Each 5000 of these data 
was used in the training of Elman networks. As a validation set, 
2000 data was prepared. The validation set is a part of the data 
used to tune network topology or network parameters other than 
weights. For example, it is used to define the number of units to 
detect the moment when neural network performance started 
hidden to deteriorate. To choose the best network (that is by 
changing the number of units in the hidden layer) the validation set 
is used. As it is well known too much training can cause over fitting, 
the validation set also have to be used in an early stopping of the 
training process. For the test set, 2000 data were prepared and 
used in the test of each neural network to see their success for the 
same data set. The test set is a part of the input data set used to 
test how well the neural network will perform on new data. The 
training process was completed until the error was possibly 
minimum for each network. Mean square error (MSE) has been 
used in the error computation and the training parameters and test 
results have been given in Table 2. The neural networks have been 
trained using the neural networks toolbox of the Matlab. 
Conventional back propagation algorithm that uses a threshold with 
a sigmoid activation function and gradient-descent learning 

algorithm has been used. The momentum coefficient, learning rate 
and number of neurons in the hidden layers were determined, 
experimentally. 
 
 
The genetic algorithm 
 
The genetic algorithms are dealing with directed random search 
emulating the process of genetic evolution found in nature to 
perform artificial evolution. They were developed by Holland (1975) 
in the early 1970s and since then have been applied successfully to 
many different complex search problems. Naturally, organisms 
have certain characteristics, which affect their ability to survive or 
reproduce. These characteristic features are found in their genes. 
Natural selection guarantees that genes from a strong individual are 
presented in greater numbers in the next generation than those 
from a weak individual. Over a number of generations, the fittest 
individuals have the highest probability of survival and tend to 
increase in numbers, while the less fit individuals tend to die out. 
The main important point here is survival of the fittest and this point 
constitutes the basic idea behind genetic algorithms (Nearchou, 
1998; Cakar et al., 2005). In this study, a genetic algorithm is used 
to search the best decimal parts up to 10 digits by using obtained 
solution from neural network block. The first thing in the 
performance of a genetic algorithm is coding. After coding process, 
the genetic algorithm operators are applied on the chromosomes. 
Crossover, mutation and reproduction processes continue until an 
optimal solution is obtained. In this study, the evaluations of the 
offsprings are done by using fitness function, which is defined as 
the end effector error, namely the distance between the target point 
and end effector. The genetic algorithm tries to find the best ten 
digits for the decimal part by minimizing this end effector error. An 
illustrative example is given as follows:  
 
 
Coding 
 
The decimal parts of the obtained neural network solutions are 
used in the genetic algorithm implementation. The genetic algorithm 
is designed to search the best ten digits decimal part for the 
solution. Binary coding is used to represent these ten digits. A 
sample representation of the coding process for a neural network 
solution is given in Table 3.  
 
 
Initial population 
 
In this study, the initial population is not produced totally randomly. 
The decimal parts of the obtained solutions from neural network are  
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Table 3. Representation of the coding process for a neural network solution. 

 

Joint angle Neural network result Decimal part Binary representation 
θ1 30,2768940110 2768940110 0010100101000010101010110001001110 

Θ2 26,0073200971 0073200971 0000000100010111001111010101001011 

Θ3 35,8862341501 8862341501 1000010000001111001001100101111101 

 Θ4 10,7635920333 7635920333 0111000111001000101110010111001101 

 Θ5 20,9100783441 9100783441 1000011110011100101110111101010001 

 Θ6 35,1107296387 1107296387 0001000010000000000000000010000011 
 
 
 

Table 4. Randomly generated chromosome. 

 

Randomly generated chromosome Actual number 

1000101111011000111101010001110110 9385006198 

0011011111010111100000011101010011 3747481427 

1111010111000010101111000010101010 16492720298 

1010011110101000010100010111111101 11251303933 

0000011110010001110101011110010101 507991957 

1101111111110010111001010001110001 15028950129 
 
 
 

Table 5. A sample representation of chromosome operation. 
 

 The matched chromosome pairs  After the crossover operation 

1st pieces 
0010100101000010101010110001 001110 

X 
0010100101000010101010110001110110 

1000101111011000111101010001 110110 1000101111011000111101010001001110 

     

2nd pieces 
0000000100010111001111010101 001011 

X 
0000000100010111001111010101010011 

0011011111010111100000011101 010011 0011011111010111100000011101001011 

     

3rd pieces 
1000010000001111001001100101 111101 

X 
1000010000001111001001100101101010 

1111010111000010101111000010 101010 1111010111000010101111000010111101 

     

4rd pieces 
0111000111001000101110010111 001101 

X 
0111000111001000101110010111111101 

1010011110101000010100010111 111101 1010011110101000010100010111001101 

     

5th pieces 
1000011110011100101110111101 010001 

X 
1000011110011100101110111101010101 

0000011110010001110101011110 010101 0000011110010001110101011110010001 

     

6th pieces 
0001000010000000000000000010 000011 

X 
0001000010000000000000000010110001 

1101111111110010111001010001 110001 1101111111110010111001010001000011 
 
 
 
also put in the initial population. Other chromosomes have been 
generated randomly. A sample of randomly generated chromosome 
is given in Table 4. 
 
 
Crossover process 
 
The crossover process is done by crossing obliquely from the 
randomly determined two chromosomes. At the end of crossover 
operation, two new chromosomes will be obtained. Let us show this 
crossover operation by using two chromosomes that were given 

earlier. As it is explained, one of these chromosomes was obtained 
from neural network solution and other one was randomly 
generated (Table 5). Here “X” refers to crossover operation. The 
randomly selected crossover points are shown by a dotted line. 
After the crossover operation, obtained new offsprings were given 
in Table 6. 
 
 
Mutation process 
 
In the mutation process, a gene is randomly selected inside the  
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Table 6. New offsprings obtained from crossover operations. 
 

New offspring #1 

0010100101000010101010110001110110 2768940150 

0000000100010111001111010101010011 73200979 

1000010000001111001001100101101010 8862341482 

0111000111001000101110010111111101 7635920381 

1000011110011100101110111101010101 9100783445 

0001000010000000000000000010110001 1107296433 

   

New offspring #2 

1000101111011000111101010001001110 9385006158 

0011011111010111100000011101001011 3747481419 

1111010111000010101111000010111101 16492720317 

1010011110101000010100010111001101 11251303885 

0000011110010001110101011110010001 507991953 

1101111111110010111001010001000011 15028950083 
  
 
 
Table 7. The obtained results after the mutation operation. 

 

New result #1 New result #2 
30,11358874742 30,9385006158 

26,73200979 26,3747481419 

35,8862341482 35,16492720317 

10,7635920381 10,11251303885 

20,9100783445 20, 507991953 

35,1107296433 35,15028950083 

  
 
 
chromosomes in the population according to defined mutation rate 
(Cakar et al., 2008). Because of this, binary coding is used; during 
the mutation selected gene will be just inverted. For example, if the 
selected gene is “1” it will be “0”. To apply mutation process to the 
given offspring aforementioned, let us assume the first bit of the 
first piece of the offspring 1 is randomly selected for mutation. It will 
be converted from “0” to “1”. The results are given in Table 7 after 
the mutation operation. The decimal parts are added to show the 
new result. The fitness function is defined as end effector error in 
this study. This end effector error can be computed easily in the 
three dimensional space by using Euclidian distance equation. The 
main aim of this paper is trying to minimize the error by using the 
random search ability of the genetic algorithm. In genetic algorithm 
implementation part, experimentally determined parameters were 
given as follows: 
 
Population size: 100, crossover rate: 100%. 
Mutation rate: 1%, max generation: 100. 
 
 
Reproduction 
 
In the population, the reproduction operator makes a copy of each 
gene and it is added to the candidate genes list. Basically, this 
guarantees that each chromosome in the current population 
remains a candidate to be selected for the next population. In this 
paper, it is aimed to find the solution, which minimizes the given 
fitness function. As it is mentioned previously, the fitness function is 
the position error as a distance between robot end effector and the 
target. The Cartesian coordinate information can be computed by 
using direct kinematics equations for any obtained new offspring. 
Then, this position error can be obtained easily in metric form by 

using three-dimensional (3-D) distance equation between two 
points in 3-D space as shown in Figure 5. Euclidian distance 
equation can be used in the distance computation and given in 
Equation 9. The genetic algorithm may get better chances to 
survive chromosomes with quite higher fitness. The living good 
chromosomes stay in the population. This process will be going on 
until an optimal solution is obtained in each population. 

 
 ������ ���������������� ����������= ����2 − ��1�2 + ���2 − ��1�2 + ���2 − ��1�2�1 2$           

                                                                                                       (9) 

 
Where,  ���1 , ��1, ��1� refers to end effector’s Cartesian position 

and ���2, ��2, ��2� the Cartesian position for the obtained solution 

from the genetic algorithm by the way of using direct kinematic 
equations. 
 
 
RESULTS 
 
The graphical representation of the fitness function 
according to the number of generation is given in Figures 
6 and 7. Population size is selected as 100 
experimentally. In Figure 6, the genetic algorithm is trying 
to minimize the defined fitness function as it is evidently 
seen. When the optimal results are approximating to the 
zero, it is not clearly seen on the graphic after 57th 
generation. That is the reason why to expose the region 
near zero on the graphic, it is also sketched by using a 
logarithmic scale in Figure 7. In this graphic, the change 
of the fitness function can also be seen clearly near zero. 
When the genetic algorithm is stopped the obtained 
optimal solution is 0.00041 mm as an end effector error 
of the robot. On the other hand, in Figure 7, there is no 
change on the fitness function after seventieth 
generation. In Table 8, the sample outputs of the Elman 
neural networks and genetic algorithm are given. As it is 
clearly seen that the second Elman neural network gave 

a result for θ3 with different integer part from the desired 
value. Therefore, since the floating-parts of the values 
were used in the genetic algorithm, the output of second  
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Table 8. Sample results of the inverse kinematics for puma 560 robotic manipulator. 
 

 θθθθ1(°°°°) θθθθ2(°°°°) θθθθ3(°°°°) θθθθ4(°°°°) θθθθ5(°°°°) θθθθ6(°°°°) Error (mm.) 

Desired value 30.088100123 26.4619968742 35. 0019726393 15.2706900181 18.151077294 37.7592149001 0.00029 

Elman Network 1 30.0866014425 26.479100985 35. 003619870 15.2779871599 18.158000258 37.763980010 3.19358 

Elman network 2 30.087569120 26.478071130 34. 991358752 15.285015411 18.15188750 37.754112980 3.896197 

Elman network 3 30.075666001 26.492377582 35. 012980025 15.276088501 18.16222980 37,766598001 3.658421 

The result after the genetic algorithm 30.088100118 26.4619968745 35. 0019726389 15.2706900180 18.151077291 37.7592149014 0.00041 
 
 
 

 

Magnified 

 
 
Figure 5. The symbolic end effector error representation (fitness function in the genetic algorithm). 

  
 
 

Elman network for this joint is not good. However, 
since the floating parts of each Elman network are 
given to the genetic algorithm, the better 
chromosomes will survive during the generations. 
Since the integer part was not given to the genetic 

algorithm, the chromosome obtained result for θ3 
from the second Elman network will not survive. 
To show the performance of the genetic algorithm 
in this study, all solutions in test set of Elman 
networks are given to the genetic algorithm to be 
improved. After this improvement, the MSE value  

was computed as 0.0000008099 for the test data  
set. 
 
 
DISCUSSION 
 
Obtained result from the neural network based 
inverse kinematics solution part was improved by 
using genetic algorithm. The three Elman 
networks were used to use possibility of having 
the best result in the initial population of the 

genetic algorithm. In the initial population of the 
genetic algorithm, the best solution either 
obtained from neural network or from randomly 
generated solutions will survive, others will die. 
The genetic algorithm was stopped when there is 
no change on the end effector error. In this case, 
the obtained angle values were substituted in the 
direct kinematics equation of the robotic 
manipulator to obtain the Cartesian position 
information, then by using Euclidian distance 
equation given in Equation 9, the error for the end  
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Figure 6. The fitness function change according to the number of generation. 

  
 
 

 
 
Figure 7. The fitness function change according to the number of generation using a logarithmic scale. 

  
 
 
effector was obtained as 0.00029 mm. According to the 
application, the genetic algorithm can be stopped earlier 
if the satisfactory result is obtained. The satisfactory 
results were obtained as shown in Figures 6, 7 and Table 
8. On the other hand, considering the MSE computations 
for each Elman network and whole solution system with 
genetic algorithm, the error for the test set was also 
reduced significantly. 
 
 
CONCLUSIONS 
 
In this study, a  hybrid  approach  using  neural  networks  

and genetic algorithms for the inverse kinematics 
problem solution of the robotic manipulators based on 
end effector error minimization was presented. Since the 
neural networks work with acceptable error, the error has 
to be minimized after neural network based inverse 
kinematics solution in the sensitive applications. Puma 
560 robotic manipulator was used as a case study to 
show the performance of the proposed solution method. 
The proposed approach combines the characteristics of 
genetic algorithms as an evolutionary algorithm and the 
neural networks. Three Elman neural networks were 
used in parallel to have the possibility of better decimal 
parts in the initial population of the genetic algorithm. The  
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decimal part of the neural network result was improved 
up to ten digits by using a genetic algorithm. The genetic 
algorithm was used online in the solution. The result of 
each neural network was placed in the initial population 
of the genetic algorithm with randomly generated 
solutions. The genetic algorithm tries to find the best 
decimal part of the solution based on using fitness 
function defined as end effector error. The usage of the 
genetic algorithm reduced the end effector errors to 
micrometer levels, significantly. That is why the improved 
solution can be used for redundant robotic manipulators 
especially for critical applications. 
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