
 
Scientific Research and Essays Vol. 7(2), pp. 260-269, 16 January, 2012 
Available online at http://www.academicjournals.org/SRE 
DOI: 10.5897/SRE11.1690 
ISSN 1992-2248 ©2012 Academic Journals 
 
 
 
 

Full Length Research Paper 
 

Support vector regression and rule based classifier 

comparison for power quality diagnosis 
 

Azah Mohamed*, Mohamed Fuad Faisal and Hussain Shareef 
 

Department of Electrical, Electronic and Systems, University Kebangsaan Malaysia. 
 

Accepted 18 October, 2011 

 

This paper presents a comparative study for performing automated power quality diagnosis using rule 

base classifier (RBC) and support vector regression (SVR) to identify the causes of short duration 

voltage disturbances such as voltage sag and swell. In the proposed power quality diagnosis method, a 

time frequency analysis technique called as the S-transform was used to analyse and extract features of 

voltage disturbances recorded from the power quality monitoring system. The RBC and SVR which are 

intelligent techniques were then used to identify whether the voltage disturbances were caused by 

permanent, non-permanent transient or incipient faults. Test results proved that the RBC performed 

better than the SVR in diagnosing the causes of short duration voltage disturbances. 
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INTRODUCTION 
 
One of the most important steps in power quality (PQ) 
management is to diagnose the causes of the PQ 
problems. The types of PQ problems frequently 
experienced by customers are voltage sags and 
momentary interruptions while the less frequent ones 
include harmonics, transient, flicker and noise. Voltage 
sags and momentary interruptions are commonly caused 
by faults in the power networks. Quick identification of 
network faults will allow more time for network operators to 
perform counter measure, planning and implement 
suitable mitigation measures. Network faults resulting in 
voltage sags are the most common events and can occur 
within the customer’s plant or in the utility power system. 
These faults may be categorized as permanent and 
non-permanent faults. Permanent faults are short circuits 
caused by external interferences and may cause outages 
and PQ related disturbances such as voltage sag and 
voltage swell. A permanent fault normally requires some 
form of repair before power can be restored and its outage 
times  range  from  1  min  to  many  hours  and  produces 
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sustained interruption (IEEE 1159 2009). Examples of 
permanent faults are underground cable joint faults, 
termination cable faults and flashover at medium voltage 
circuit breakers. Non-permanent faults, however, occur at 
random moments and affect the system behavior for finite 
period of time. These faults comprise either of transient 
faults which can be caused by environmental conditions, 
or intermittent faults which are caused by 
non-environmental conditions such as loose connections 
and aging components. These intermittent faults are 
called ‘incipient faults’ which occur due to partial damage 
that progressively weakens the integrity of the network 
components over time and will lead to permanent 
insulation failure (Weeks and Steiner, 1982). These 
incipient faults typically last between half-cycle (10 m/s) to 
3 half-cycles (30 m/s) in a 50 Hz power system.  During 
such period, partial discharges (PD) are present in the 
voltage and current waveforms. The primary objectives of 
PQ diagnosis are to identify the sources and causes of the 
PQ problems. Next is to identify and implement solutions 
to resolve the PQ problems. From the literature, many 
research works have been performed in developing 
various methods for performing PQ diagnosis (Santoso et 
al., 2000; Styvaktakis et al., 2002; Schmaranz et al., 2004; 



 

 
 
 
 
Chunga et al., 2007; Gerek et al., 2006; Bollen et al., 
2007). Santoso et al. (2000) showed that unique features 
which include peak amplitudes, frequency, RMS values, 
and wavelet transform coefficients can be used to identify 
causes of voltage events due to converter operation, 
transformer energization and capacitor energization. 
These features were used to build a PQ cause 
identification module using a rule-based expert system. 
However, no verification of results was made to evaluate 
the accuracy of this approach. 

The emphasis of the study is the importance of 
identifying the right features for classifying the causes of 
the PQ events. A simpler method for identifying the 
causes of voltage sags using only RMS values was 
developed by Styvaktakis et al. (2002). The method starts 
with segmenting the RMS voltage series into event and 
transition segments in which the segmentation is based on 
detecting sudden changes in the voltage magnitude. 
Classification of voltage sag causes is done by 
characterizing the segments of each phase as well as 
comparing the corresponding segments between the 
phases. Seven types of causes considered are energizing 
of cable, non-fault interruption, fault interruption, 
transformer saturation, induction motor starting, voltage 
step change and permanent fault. It is noted that the 
accuracy of the voltage sag cause identification is 92%. 
Schmaranz et al. (2004) developed an event detector and 
classifier to identify the causes of voltage sags and 
momentary interruption due to isolation faults, broken 
lines, capacitor switching, motor starting, transformer 
energizing and turbine swinging. The features used for 
performing the event and cause identification are based 
on the RMS voltages, RMS currents, values of 
fundamental frequency and phase angle jumps. These 
features are then applied to a fuzzy expert system in which 
the accuracy in identifying the causes of sags and 
momentary interruption is 86%. Gerek et al. (2006) 
implemented a PQ diagnosis method by classifying two 
causes of short duration disturbances using a common 
vector classifier and wavelet transform coefficients 
together with spectral harmonic ratios as features. The two 
causes are arcing faults or high impedance fault and motor 
startup events. The PQ diagnosis method depends on the 
change in the behavior of the voltage waveform by 
monitoring its variance. Chunga et al. (2007) developed a 
PQ diagnosis system (PQDS) based on available data 
from an existing PQ monitoring system. The PQDS which 
is a GUI based software diagnosed PQ disturbance data 
stored in the related PQ Server in order to identify the 
types, sources and causes of the disturbance. From the 
study conducted, it is noted that the PQDS is only able to 
diagnose voltage sags and harmonics and not able to 
diagnose multiple PQ disturbances in non-stationary 
waveforms. In real situations, many PQ disturbances are 
non-stationary and occur in multiple forms. In a related 
study, the performance of  two  classification  methods  for  
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diagnosing the causes of PQ disturbances was evaluated 
by Bollen et al. (2007). The first method based on expert 
system and deterministic classification is compared with 
the second method based on SVM and statistical 
classification. The list of underlying causes of 
disturbances being considered in this study includes 
energizing, non-fault interruption, fault interruption, 
transformer saturation due to fault, induction motor 
starting, transformer saturation followed by protection 
operation, single stage dip due to fault and  multistage dip 
due to fault. 

The results of the study showed that the expert system 
and the SVM gave diagnosis accuracies of 97 and 92.1%, 
respectively for diagnosing a total of 962 disturbance data. 
Ismail et al. (2009) also applied SVM to classify the causes 
of voltage sags. Two kernels functions were used, namely: 
the radial basis function (RBF) and ‘polynomial function’ 
for the SVM. Based on the result of the study, it was found 
that the SVM-polynomial kernel performed better 
compared to the SVM-RBF kernel in classifying the 
causes of voltage sags. In this research, a novel and 
practical PQ diagnosis method is proposed by classifying 
the causes of the short duration disturbances as either 
permanent or non-permanent fault. The causes due to 
permanent faults will be further categorized as network 
faults and faults in the customer’s installations. The 
non-permanent faults will be categorized either as 
transient and incipient faults. These disturbance causes 
are considered more practical in the daily operation of 
distribution networks. The aim of this paper is to evaluate 
the accuracy of the widely used artificial intelligence 
techniques, namely: rule base classifier (RBC) and 
support vector regression (SVR) in developing this PQ 
diagnosis method. The RBC is the most preferred 
technique for performing diagnosis due to its simplicity 
and practicality and has been developed in Faisal et al. 
(2011). 
 
 
MATERIALS AND METHODS 
 

Application of S-transform for identifying and diagnosing the 

voltage disturbances 
 

The S-transform (Pinnegar and Mansinha, 2003) is used to extract 
features for identifying the short duration voltage disturbances and 
causes of the disturbances which may be due to either permanent or 

non-permanent faults. Here, two S-transform indices, namely: the 
S-transform magnitude-time voltage (STMV) and the ST frequency-time 
voltage (STFV) (Faisal et al., 2011) are used as features to categorize 
the types of network faults described in Figure 1. The STMV are the 
maximum values of the elements present in the column of the S-matrix 
while the STFV are the change in values of the frequency resolutions in 
the S-matrix. Here, the S-matrix gives the output of the S-transform in 
the form of  M × N matrix in which M are the rows pertain to frequency 
and N are the columns pertain to time (Faisal et al., 2011). Each element 

of the S-matrix is a complex number. The information in the S-matrix can 
be plotted as time-frequency contours. Features of a disturbance signal 
are extracted from the S-transform analysis in terms of time-frequency  
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Figure 1. Categories of network faults. 
 

 
 
representation (TFR) curve or S-transform contour that represents the 
energy distribution at different frequency bands over a certain period of 
time. The magnitude of the ST contours can be extracted from the 
S-matrix by isolating the maximum values of the elements present in the 
column of the S-matrix. These maximum values are named as the 
STMV features. The STMV feature for the red phase is given as: 
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Where  jiRVS ,  is the S-matrix for voltage, Rv , i = 1………N, number 

of columns and j = 1………M, number of rows. 
The STMV for the red, yellow and blue phases which are the 

maximum values in all the columns of the S-matrix are given as: 

 

)max( iRSTMVR VSV                                                                           (2) 

 

)max( iYSTMVY VSV                                                       (3) 

 

)max( iBSTMVB VSV                                                              (4) 

 
Next, the integrity of STMV is evaluated against the RMS using a scatter 
plot. The minimum STMV values for 215 numbers of voltage sags data 
are calculated and plotted on a scatter plot and are compared with the 
minimum values of the RMS voltage magnitudes. All the values of the 
voltage sags meet the definition of voltage sags based on the IEEE 1159 

standard (2009) in which voltage sag values are from 10 to 90% of the 
nominal voltage. It was found that the range of STMV values to detect 
voltage sags are from 12 to 95% of the nominal STMV value. This STMV 

range of values is then used in detecting as well as for extracting 
features of voltage sags. The duration of voltage sags based on the 
STMV values are evaluated against the duration of voltage sags 
detected using the RMS technique. According to the IEEE 1159 
standard (2009), the duration of voltage sag is the duration when the 
RMS voltage sagged below 90 to 10% of the nominal voltage and then 
recovers back above 90% of the nominal voltage after the cause of the 

sag is isolated. Using the STMV, the duration of voltage sag is the 
duration when the value of the STMV sagged below 95 to 12% and 
recovers back above 95% once the cause of the voltage sag is isolated. 
Therefore, the duration calculated from the STMV values are used for 
extracting feature of a voltage sag. To evaluate the accuracy of the 
STMV in detecting voltage swell, it is also compared with the RMS 
voltage values using a scatter plot. The minimum/maximum STMV 
values for 31 numbers of voltage swell data are calculated and plotted on 
a scatter plot and both the minimum and maximum values of the RMS 

voltage magnitudes are plotted in the same figure. All the values of the 
RMS voltage swells meet the standard voltage swell value which is 
above 110% of the nominal voltage. The range of the STMV values to 
detect voltage swell are above 117%. This STMV values is then used for 
detecting voltage swell. 

According to the IEEE 1159 standard (2009), the duration of a voltage 
swell is the duration when the RMS voltage increases above 110% of its 
nominal voltage and recovers back when the voltage is below 110% of 

its nominal voltage after the cause of the voltage swell is isolated. The 
duration of a voltage swell is determined when the STMV value 
increases above 117% and recovers back when the STMV value is 
below 117% once the cause of the voltage swell is isolated. Therefore, 
the duration calculated from the STMV values are used for detecting as 
well as for extracting features of voltage swell. From the STMV values, 
four features denoted by F1, F2, F3 and F4 are selected for detecting 
short duration voltage disturbances such voltage sag and swell. The 
detailed descriptions of these features are described as shown in Table 

1. The range of values for features F1 and F2 are based on the time 
duration of the STMV in detecting voltage sags and swells which are the 
values below 0.95 and above 1.17 per unit, respectively. The range of
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Table 1. Description of features based on the STMV values. 

 

Features Description 

F1 Duration (ms) of the STMV value between 0.12 to 0.95 per unit. 

F2 Duration (ms) of the STMV value above 1.17 per unit. 

F3 The minimum STMV values between 0.12 to 0.95 per unit. 

F4 The maximum STMV values above 1.17 per unit. 

 
 
 
values for features F3 and F4 are based on the minimum and maximum 
values of the STMV in detecting voltage sags and swells, respectively. 
Thus, voltage sags and swells are characterized based on the STMV 
features (F1, F2, F3 and F4) described in Table 1. The second set of 
features is based on the ST frequency-time voltage (STFV) plot which 
indicates the changes in the frequency resolutions. For extracting the 
features of disturbances such as transients and waveform distortions, 
the STFV is developed based on the values of the frequency resolutions 

in the S-matrix. The values of the STFV will indicate the changes in the 
system frequency. For the derivation of the STFV index, consider the 
STFV for the red phase which is given by: 
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Where jiRVS , is the S-matrix for voltage, Rv , i = 1………N, number 

of columns and j = 1………M, number of rows. 
Considering the vectors of the maximum value for all the rows in the 

S-matrix for the voltages of all the three phases, the STFV for the red, 
yellow and blue phases are derived as follows: 
 

)max( jRSTFVR VSV                                              (6) 

 

)max( jYSTFVY VSV                                            (7) 

 

)max( jBSTFVB VSV                                                  (8) 

 

To systematically categorize the types of network faults, two new 
features, F5 and F6 are derived from the STFV. Feature F5 is the sum of 
the standard deviations STDVR, STDVY and STDVB for the red, yellow 
and blue phase voltage waveforms, respectively. The equation for 
feature F5 is derived as follows: 
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The next feature, F6, is the difference between the maximum and 
minimum values of the STFV plots. The equation for feature F6 is 
derived as follows: 
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Where  MAXVR = max(STFVR)-min (STFVR), 
 
MAXVY = max(STFVY)-min(STFVY), and 

MAXVB = max(STFVB)-min(STFVB) 
 
The features, F5 and F6 are used for identifying the causes of the short 
duration voltage disturbances such as voltage sag and swell. To extract 
the features, 105 numbers of data which comprised of both voltage sags 
and voltage swells were used. The actual causes of the voltage sags and 
swells were known earlier based on correlation done with the power 
utility reliability databases. Once the causes are known, the respective 

values of the features F5 and F6 were calculated and plotted on a scatter 
plot. From the scatter plots, the ranges for feature, F5 to differentiate 
between permanent faults and non-permanent faults were identified. It is 
noted that the feature F5 to classify permanent faults and 
non-permanent faults has values greater than 0.100 and less than 
0.100, respectively as shown in Table 2. Later, the non-permanent fault 
are further classified either as transient and incipient faults. Similar 
methodology was applied for feature F6. The values of feature F6 for 105 

numbers of short duration disturbance data were calculated and plotted 
on as a scatter plot. From the scatter plot, the ranges for feature F6 for 
classifying permanent faults and non-permanent faults are greater than 
0.400 and less than 0.400, respectively as shown in Table 3. The same 
features, F5 and F6, developed earlier for detecting permanent and 
non-permanent faults are now calculated for the incipient fault 
waveforms. After the non-permanent faults are detected, the respective 
values of the features F5 and F6 are calculated and plotted on a scatter 
plot. From the scatter plots, the ranges for feature F5 to differentiate 

between transient and incipient faults are identified. The transient and 
incipient faults are detected such that if the features meet the specific 
data ranges for incipient fault, then it is considered as an incipient fault. 
If the data range does not meet the limits of incipient fault, then the fault 
is categorized as a transient fault. The summary of all the F5 ranges to 
detect transient and incipient fault is shown in Table 4. Similar procedure 
was applied for feature F6. 

The range of values of feature F6 for detecting transient and incipient 

fault is shown in Table 5. All these feature values are used as inputs to 
the RBC and SVR techniques. 

 
 
Power quality diagnosis using rule based classifier and support 

vector regression 

 
PQ diagnosis was developed using the S-transform and applied to two 

artificial intelligence techniques that is, the RBC and the SVR 
techniques. The process flowchart for PQ diagnosis using the RBCs is 
shown in Figure 2 in which it begins with recording of disturbance data 
using the on-line PQ management system. These data are then 
processed using the S-transform to extract the features that 
characterize the short duration disturbances. These features are then 
applied to three RBCs in which the first RBC classifies the types of short 
duration voltage disturbances either as voltage sag/swell or other types 
of PQ disturbances, while the second RBC diagnoses the cause of 

sag/swell as either due to permanent or non-permanent faults. The third  
RBC than further classifies the non-permanent fault as either transient 
or incipient fault. And the final result of the RBC is the cause of
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Table 2. Feature F5 for classifying permanent and non-permanent faults. 

 

Feature Description 
Permanent 

fault 

Non-permanent 

fault 

F5 Square root of the sum of the standard deviations (std) for STFV. F5>0.100. F5<0.100. 

 
 
 

Table 3. Feature F6 for classifying permanent and non-permanent faults. 

 

Feature Description Permanent fault 
Non-permanent 

fault 

F6 
Square root of the difference between the maximum and minimum values of the 
STFV. 

F6>0.400 F6<0.400 

 
 
 

Table 4. Feature F5 for detecting transient and incipient faults. 

 

Feature Description Incipient fault Transient fault 

F5 Square root of the sum of the standard deviations (std) for STFV 0.00<F5<0.0270 0.0270<F5<0.100 

 
 
 
Table 5. Feature F6 for detecting transient and incipient faults. 

 

Feature Description Incipient fault Transient fault 

F6 
Square root of the difference between the maximum and minimum values of 
the STFV. 

0.00<F6<0.300 0.300<F6<0.400 
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Figure 2. Flowchart for PQ diagnosis based on S-transform and RBC. 
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Table 6. The first level RBC for classifying short duration voltage disturbance. 

 

Rules Description 

R1 If (F1>0) and (F3 <0.95), then the signal is detected as voltage sag. 

R2 If (F2>0) and (F4 >1.17), then the signal is detected as voltage swell. 

R3 
If (F2>0) and (1.032 < F4 <1.17), then the signal is detected as short duration voltage disturbance due to incipient 
fault. 

 
 
 

Table 7. The second level RBC for classifying permanent and non-permanent faults. 

 

Rules Description 

R4 If (F5>0.100) and (F6>0.400), then the cause was due to a permanent fault. 

R5 If (F5<0.100) and (F6<0.400), then the cause was due to a non-permanent fault. 

 
 
 

Table 8. The third level RBC for classifying incipient and transient faults. 

 

Rules Description 

R6 If (0.0270<F5<0.100) and (0.300<F6<0.400), then the cause was a transient fault. 

R7 If (0.000<F5<0.0270) and (0.000<F6<0.300), then the cause was due to an incipient fault. 
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Figure 3. Flowchart for PQ diagnosis based on S-transform and SVR. 

 
 
 
voltage sag/swell which is due to either permanent faults, transient faults 
or incipient faults. All the rules for the three RBCs are developed based 

on the features defined in Tables 1 to 5. The details of the first, second 
and third rules for the RBCs are explained in Tables 6, 7 and 8, 
respectively. The overall process flowchart for PQ diagnosis using the 

SVR based S-transform is shown in Figure 3 which begins with the 
recording of disturbance data using the on-line PQ management system 

(PQMS). These data are then processed using the S-transform to 
extract the features that characterize the short duration disturbances 
and these features are then applied to two SVR.  
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Table 9. Description and values of the parameters for the SVR. 

 

Parameters Descriptions Values 

 (gam) 
This is the regularization parameter, determining the trade-off between the fitting error minimization 
and smoothness. 

10 

   


2
 (sig

2
) This is the bandwidth of the RBF Kernel. 0.2 

 
 
 

Table 10. Description of the short duration voltage disturbance data to be diagnosed. 

 

Type  of  short duration voltage disturbance Cause of voltage disturbance Number of data sets 

Voltage sag/swell  Permanent fault 121 

Voltage sag/swell Non permanent fault (transient fault) 98 

Voltage swell Non permanent fault (incipient fault) 50 

 
 
 

Table 11. Results of the first RBC for detecting short duration voltage disturbances. 

 

Type of short duration voltage disturbance  Number of data sets Correct detection Wrong detection 
Accuracy in detection 

(%) 

Voltage sag and swell 121 121 0 100.0 

Voltage sags 98 98 0 100.0 

Voltage swell 50 50 0 100.0 

 
 
 
The first SVR classifies the types of short duration voltage disturbances, 
while the second SVR diagnoses the causes due to permanent or 

non-permanent faults. The second SVR then further classifies the 
non-permanent fault as either transient or incipient fault. The final results 
of the SVR will determine the causes of the short duration voltage 
disturbances and whether it was due to a permanent fault, transient fault 
or incipient fault. 

The kernel selected for the SVR is the RBF kernel. In training the SVR, 
two extra parameters are needed in which the details and values are 
explained in Table 9. 

 

 
RESULTS AND DISCUSSION 
 
The proposed PQ diagnosis method developed based on 
the modular RBC and SVR is tested for identifying the 
causes of short duration voltage disturbances which may 
be due to either permanent or non-permanent faults. For 
non-permanent faults, the developed RBC and SVR are 
then tested for identifying the causes of short duration 
voltage disturbances which may be due to either transient 
or incipient faults. The performance of the proposed PQ 
diagnosis using the RBC and SVR is evaluated with 269 
short duration voltage disturbance data obtained from the 
PQMS in Malaysia as shown in Table 10. The data 
comprises of 121, 98 and 50 voltage sag and swell data 
caused by permanent, non-permanent transient and 

incipient fault, respectively. The causes of the disturbance 
data shown in Table10 were known and validated by the 
existing reliability database provided by the power utility, 
Tenaga Nasional Berhad. 
 
 
PQ diagnosis using the rule based classifier based 

S-transform 
 
The results of the first RBC for detecting short duration 
voltage disturbances are shown in Table 11. Based on the 
results in Table 11, the first RBC successfully detect the 
various short duration voltage disturbances which are 
voltage sag, voltage swell and combined sag and swell 
with an accuracy of 100%. The results of the second and 
third RBC for diagnosing the causes of short duration 
voltage disturbances as to whether the disturbance is 
caused by a permanent fault and non-permanent fault 
categorized further as either incipient or transient fault are 
shown in Table 12. The results in Table 12 showed that the 
second and third RBCs successfully diagnosed the causes 
of the short duration voltage disturbances with an average 
accuracy of 95.8%. Overall, there are 2 errors in 
diagnosing permanent faults, 3 errors in diagnosing 
transient faults and 4 errors in diagnosing incipient faults. 
The errors in the diagnosis of permanent and 
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Table 12. Results of the second and third RBCs for diagnosing the causes of voltage disturbances. 

 

Type of network fault  Number of data sets Correct diagnosis Wrong diagnosis Accuracy in diagnosis (%) 

Permanent fault 121 119 2 98.35 

Non permanent fault (transient fault) 98 95 3 96.94 

Non permanent fault (incipient fault) 50 46 4 92.00 

 
 
 

Table 13. The classes of short duration voltage disturbances to be classified by the first 

SVR. 
 

Types of power quality disturbances Classes 

Voltage sag C1 

Voltage swell C2 

Voltage swell due to incipient fault C3 

 
 
 

Table 14. The classes of faults to be classified by the second 

SVR. 
 

Types of faults  Classes 

Permanent fault C4 

Non-permanent fault C5 

Incipient fault C6 

Transient fault C7 

 
 
 

Table 15. Features arrangement for prediction of classes of PQ disturbances. 

 

Data number F1 F2 F3 F4 Class 

Data 1 65 0 0.65147 1.00340 C1 

Data 2 0 351 1.00067 1.27632 C2 

Data 3 0 15 1.01241 1.04566 C3 

 
 
 
non- permanent faults are due to the feature values which 
are not within the specified range of feature values. The 
numerical results obtained with actual PQ data recorded in 
a power distribution system indicated that the proposed 
PQ diagnosis method is effective in diagnosing the causes 
of the disturbances which may be due to permanent faults, 
non-permanent faults categorized as either incipient or 
transient faults. 
 
 
PQ diagnosis using the support vector regression 

based S-transform 
 
The performance of the SVR based S-transform is 
dependent on the training database which was developed 
based on analyses performed on 342 number of short 

duration voltage disturbance data with known causes. 
These voltage disturbance data are different from the 269 
data used for testing both the RBC and SVR. The 
measurement data included a short pre-fault waveform 
(approximately 6 cycles long) followed by the actual 
disturbance and a post fault waveform (approximately 10 
cycles). The description of the classes of the power quality 
disturbances and types of faults to be predicted by the 
SVR based S-transform are shown in Tables 13 and 14, 
respectively. The first step in the experiments was to 
extract all the six features using the S-transform for the 
342 numbers of training data and to rearrange the features 
using the format in Table 15 in order to predict the classes 
of the short duration voltage disturbances. Table 16 shows 
examples of three PQ data that signify causes due to 
permanent fault (C4), non-permanent fault due to transient  
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Table 16. Features arrangement for prediction of causes of PQ disturbances. 

 

Data number F1 F2 F3 F4 F5 F6 Class 

Data 1 65 0 0.65147 1.00340 0.252 0.657 C4 

Data 2 0 351 1.003 1.122 0.065 0.354 C5 + C7 

Data 3 0 15 1.013 1.042 0.012 0.265 C5 + C6 
 

 

 

Table 17. Results of the first SVR for detecting short duration voltage disturbances. 

 

Type of short duration voltage disturbance 
Number of PQ 

data 
Correct detection Wrong detection 

Accuracy in detection 

(%) 

Voltage sag and swell 121 121 0 100.0 

Voltage sags 98 98 0 100.0 

Voltage swell 50 50 0 100.0 
 

 

 

fault (C5 + C7) and non-permanent fault due to incipient  
fault (C5 + C6). The features for the other 339 numbers of 
training data would also be calculated and arranged in the 
same table. The results of testing the RBF SVR with 269 
samples of PQ disturbance data with known causes are 
shown in Tables 17 and 18. The actual causes of the 
voltage disturbances were verified based on the 
correlation done with the existing PQ database provided 
by the Tenaga Nasional Berhad. Based on the results of 
the first SVR shown in Table 17 for detecting short 
duration voltage disturbances, the first SVR successfully 
detected the various classes of short duration voltage 
disturbances which are voltage sag, voltage swell and 
combined sag and swell with accuracies of 100%. From 
Table 18, the results of the second SVR for diagnosing the 
causes of voltage disturbances which may be due to 
permanent and non-permanent faults, give average 
accuracy of 95.04 and 89.43%, respectively. 

There are 6, 7 and 7 errors in diagnosing the permanent, 
transient and incipient faults, respectively. The errors in 
predicting the permanent and non-permanent faults are 
due to the low feature values which are not within the 
specified range of feature values. Comparing the PQ 
diagnosis results of the RBC and the SVR, it is noted that 
the RBC performs better than the SVR with average 
prediction accuracy of 95.8% for RBC and 91.3% for SVR. 
The fact that RBC gives better accuracy than SVR may be 
due to the fact that RBC does not require training unlike 
SVR in which its accuracy depends on its training 
performance. 
 

 

Performance comparison of the RBC and SVR in PQ 

diagnosis 
 

To further evaluate the effectiveness of the PQ diagnosis 
method using the S-transform based RBC and the 
S-transform based SVR, a comparison is made with the 

previous methods for diagnosing the causes of voltage 
sags using the RMS based RBC (Styvaktakis et al., 2002) 
and the discrete wavelet transform (DWT) based SVM 
(Ismail et al., 2009). Table 19 shows a comparison on the 
results of the four PQ diagnosis methods in terms of 
percentage accuracy. The first three methods diagnose 
the causes of short duration voltage disturbances due to 
permanent and non-permanent faults while the fourth 
method developed by Ismail et al. (2009) focused only on 
diagnosing the causes due to permanent fault. From the 
results in Table 19, the proposed S-transform based RBC 
gives the most accurate PQ diagnosis with an accuracy of 
96.4%, followed by the S-transform based SVR which 
gives diagnosis accuracy of 92.2%. The RMS based RBC 
and the DWT based RBC give diagnosis accuracies of 
90.6 and 84.8%, respectively. The proposed S-transform 
based RBC and S-transform based SVR PQ diagnosis 
method which uses the S-transform for feature extraction 
accurately identified all the PQ disturbance signatures. 
The RMS based method averages all the values for the 
voltage waveforms and thus gives inaccurate diagnosis 
results. The DWT also cannot yield all the features 
accurately under noisy environment, thus gives inaccurate 
results. The effectiveness of the RBC in performing 
diagnosis is due to the fact that it is based on the 
well-defined rules in diagnosing the causes of voltage 
sags. However, the support vector machine (SVM) heavily 
depends on the training process, during which the support 
vectors are adaptively changed according to specific 
learning rules until a certain criterion is met. 

In order for the SVM to generalize well after being 
trained, the training pairs used in the training process have 
to be chosen to be sufficiently representative. 
 

 

Conclusion 
 
A comparative study for PQ  diagnosis  is  presented  using 



 

 Mohamed et al.          269
 
 
 
Table 18. Results of PQ diagnosis by the second SVR. 

 

Causes of disturbance No. of data Correct prediction Wrong prediction Accuracy in prediction (%) 

Permanent fault 121 115 6 95.04 

Non-permanent fault (transient fault) 98 91 7 92.86 

Non-permanent fault (incipient fault) 50 43 7 86.00 

 
 
 

Table 19. Performance comparison of various PQ diagnosis methods. 

 

PQ Diagnosis methods 
No. of PQ 

data 

Correct diagnosis of 

non-permanent fault (%) 

Correct diagnosis of 

permanent fault (%) 

Average 

accuracy (%) 

Proposed S-transform based RBC 269 94.47 98.35 96.4 

Proposed S-transform based SVR  269 89.43 95.04 92.2 

RMS based RBC (Styvaktakis et al., 2002) 269 96.7 84.5 90.6 

DWT based SVM (Ismail et al., 2002) 269 N/A 84.8 84.8 
 

N/A – Not applicable. 

 
 
 
the S-transform based RBC and S-transform based SVR 
techniques. The S-transform analyses the changes in the 
system frequency and voltage magnitudes during the 
occurrence of network faults and extracts features of the 
faults. The RBC and SVR are then used to predict the 
causes of short duration voltage disturbances which may 
be due to either permanent or non-permanent faults. The 
RBC and SVR are further developed to predict either 
transient or incipient faults. Based on the test results, the 
RBC gives the most accurate results in PQ diagnosis 
compared to SVR and therefore proven to be very 
effective in diagnosing the causes of short duration 
voltage disturbances. In addition, the S-transform gives 
better performance compared to the RMS and DWT 
techniques for extracting input features to the RBC and 
SVR. Such an accurate PQ diagnosis method using the 
S-transform based RBC can provide immediate 
information for utility engineers to initiate necessary 
corrective actions to rectify the system problem, prevent 
outages and reduce down times. 
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