
Scientific Research and Essays Vol. 6(14), pp. 3094-3100, 18 July, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE10.1014
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

An NEH-based heuristic algorithm for distributed
permutation flowshop scheduling problems

Jian Gao and Rong Chen*

College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoling, Province, 116026, China.

Accepted 10 June, 2011

Distributed Permutation Flowshop Scheduling Problem (DPFSP) is a newly proposed scheduling
problem with a strong engineering background. Whereas there is a body of work on scheduling
problems in the past decades, the literature on DPFSPs is scant and in its infancy. Motivated by the
good performances of some heuristics in a very recent work, we propose a constructive heuristic
algorithm enhanced through a novel dispatching rule to deal with the DPFSP. Given multiple factories in
a DPFSP, our dispatching rule will insert a group of jobs to the factories at one time instead of inserting
one job at one time like the original rules. The time complexity of the proposed heuristic algorithm is the
same as that of the NEH with the original rule. To validate the proposed heuristic, intensive benchmark
experiments are carried out on the large problem instances, and the results show that the proposed
algorithm outperforms the existing heuristics in terms of tradeoff between solution quality and running
time.

Key words: Distributed scheduling problem, flowshop, heuristic, branch and bound.

INTRODUCTION

In the past decades, the Permutation Flowshop
Scheduling Problem (PFSP) has been a central and well
studied scheduling problem that has a strong engineering
background in manufacturing and chemical industries.
Most of the literature deals with the PFSP whereby each
job is processed by the same set of machines in the
same order, and all jobs are assumed to be assigned in
the unique factory (Yin and Li., 2011; Fondrevelle et al.,
2006; Rajendran and Ziegler, 2004; Li et al., 2010;
Chakraborty and Laha, 2007). However, such an
assumption is not suitable for modeling some real-world
scheduling problems nowadays in that more and more
companies handle large volume of manufacturing in
distributed environments in order to achieve better
product quality, lower production cost and lower

*Corresponding author. E-mail: rchen@dl.cn. Tel: +86 +411
84723669; Fax: +86 +411 84723669.

Abbreviations: DPFSP, Distributed permutation flowshop
scheduling problem; PFSP, permutation flowshop scheduling
problem.

management risks (Jia et al., 2003).
With the great shift in manufacturing from the traditional

single-factory mode to the nowadays multi-factory mode,
more factories are built to set up such distributed
manufacturing environments (Chan et al., 2005), hence
Naderi and Ruiz (2010) have recently phrased the
distributed permutation flowshop scheduling problem
(DPFSP) which generalizes the classical PFSP with a set
of factories whereby each job is allowed to be processed
in one factory with an aim to minimizing the maximum
completion time among all the factories.

Because of the computational complexity of the PFSP
(Garey et al., 1976), it has been extensively studied by
many researchers. In particular, a large amount of the
literature deals with the PFSP with makespan criterion.
Algorithms for solving PFSP can be categorized into
exact algorithms and heuristics approaches. Some exact
algorithms are mathematical programming (Yin et al.,
2010) methods, branch and bound (B&B) algorithms
(Land and Doig, 1960) and backtracking approaches.
Some early constructive heuristics include: the index
heuristic proposed by Palmer (1965), the CDS method by
Campbell et al. (1970) and the NEH algorithm by Nawaz
et al. (1983). Moreover, metaheuristic algorithms for the

PFSP have been investigated to obtain better solution
recently, such as differential evolution algorithm
(Onwubolu and Davendra, 2006), genetic algorithm
(Reeves, 1995) and particle swarm optimization
(Erdogmus, 2010), but most of those algorithms start
from the solution produced by the constructive heuristic
algorithms (e.g. NEH).

Whereas there is a body of work on the PFSP in the
past decades, the literature on DPFSPs is scant and in its
infancy. Such algorithms for solving DPFSP are mainly
discussed in the work by Naderi and Ruiz (2010). They
solve the DPFSP with mixed integer linear programming
and heuristics; some mixed integer linear programming
models have been investigated and implemented on
highly optimized CPLEX11.1 package. In evaluating their
experiment performances, only small instances (16 jobs
and 4 factories) are solved by the mixed integer linear
programming methods. To solve large instances, they
use heuristics approaches derived from existing
heuristics for the well known PFSP. Those heuristics are
extended with two alternative rules for job assignments:
one locates the job to the factory with the lowest partial
makespan; the other one tries all possible positions of all
the factories for a job and places the job in the position
that has the lowest partial makespan after including the
job. Moreover, they also present a local search approach
for the DPFSP, called variable neighborhood descent.
The approach starts from the solution of NEH heuristic
method, and moves jobs in each factory or between
factories with the aim at minimizing the maximal
makespan of the factories. Experiments on large
instances indicate that the local search methods can get
better solutions than the constructive heuristic algorithms,
while the CPU times consumed by the local search
methods are quite longer than those by heuristic
algorithms.

Motivated by the good performances of some heuristics
in a very recent work, we propose a new constructive
heuristic enhanced through a new dispatching rule for job
assignments to compute the optimal solutions to
DPFSPs. Given multiple factories in a DPFSP, our job
assignment will insert a group of jobs to the factories at
one time instead of inserting one job at one time like the
original rules. Also we use the sort method proposed by
Dong et al. (2008), namely jobs are ordered by the sum
of average processing times and standard deviations of
the processing times of the jobs. Regarding the time
complexity, the proposed heuristic is same as NEH with
the original rule. By carefully analyzing experimental
results on the benchmark instances, we find that the
proposed heuristic obtains better solutions than the
existing NEH-based heuristic algorithms, though it’s total
CPU run-times are slightly longer than those of the
existing algorithms. Statistical analyses also show that
our heuristic is significantly better than the original NEH
for DPFSP.

The remainder of this paper is organized as follows.

Gao and Chen 3095

DPFSP is formally defined, existing heuristics for DPFSP,
which is NEH method are discussed with two original
rules, and job sort methods in the NEH method. We also
present a novel rule for job assignments, and then
propose an NEH-based heuristic enhanced by this rule.
Finally experimental results are analyzed and concluded.

DISTRIBUTED PERMUTATION FLOWSHOP
SCHEDULING PROBLEM

Formally the permutation flowshop scheduling problem is
described as follows (Grabowski and Wodecki, 2004),
each of n jobs from the set {1, 2, , }J n= L has to be

processed on m machines in the order of 1, 2, , mL . Job

j, j J∈ consists of a sequence of m operations

1 2j j jm
O ,O , ,OL ; operation Ojk corresponds to the

processing of job j on machine k and is associated with a
processing time pj k. All jobs are uninterrupted. The
objective is to find a sequence of the jobs that meet a
given criterion. The criterion we think of is the maximum
completion time or makespan.

Let π be a sequence of all jobs and C(j,k) denotes the

completion time of Ojk, thenC(j,k) can be calculated by

the following formulas (Reeves, 1995).

1 2 n
= {j , j , , j }π L

1
1

11 j
C(j ,) p=

1
1 1

ii i-1 jC(j ,) C(j ,) p= + for i 2, ,n= L

ii i j kC(j ,k) C(j ,k - 1) p= + for k 2, ,m= L

1 ii i i jk
C(j ,k)=max{C(j ,k),C(j ,k-1)}+p

−
for i 2, ,n= L ; k 2, ,m= L

max
C ()= C(n,m)π

where
maxC ()π is the makespan. The task of solving a

permutation flowshop scheduling problem is to find a π

such that
max

C ()π is minimized.

When it comes to a DPFSP, we follow the definition
(Naderi and Ruiz, 2010): n jobs from the set

{1,2, , }J n= L have to be processed on F factories,

where each factory f G={1, ,F}∈ L contains the same set of

m machines, which is same as the PFSP. All factories
are able to process all jobs. When a job j is assigned to a
factory f, it can not be transferred to another factory and
all operations of it can only be processed at factory f.
Each operation Ojk is associated with a processing time
pjk. It is noted that this processing time of the operation is
available for all factories. Namely, the processing times of
Ojk in all factories are same. A schedule of jobs is a set of
job sequences, denoted by ∏ , ∏ contains F job

sequences. The intersection of any two job sequences is
empty and the union of all job sequences is the set J. The
makespan of a schedule ∏ is defined as the maximum

makespan among all factories, which can be formulated

3096 Sci. Res. Essays

as follows.

max{ }max max fC () C ()π∏ = for f G∈

where fπ denotes the job sequence of the f-th factory.

The goal of a DPFSP is to find the minimal makespan of
the DPFSP.

NEH HEURISTIC

Heuristic algorithms play an important role in scheduling
problems. Whereas exact algorithms like mixed integer
programming are used to obtain the optimized solution to
the small-sized problem, heuristics are proposed to solve
large problem instances effectively. Many researchers
have worked on developing heuristics to find a near
optimal solution in a reasonable time, that is, build a
feasible solution in polynomial time. Besides early
constructive heuristics like the index heuristic, the CDS
method and the NEH algorithm (Nawaz et al., 1983), the
newly proposed constructive methods in (Li and Li, 2007;
Li et al., 2004), as well as more complex heuristic
algorithms in (Agarwal et al., 2006). Also the NEH has
recently been improved (Dong et al., 2008; Chakraborty
and Laha, 2007), some heuristics for optimizing
maximum tardiness and makespan have been presented
(Allahverdi, 2004; Braglia and Grassi, 2009). In
comparison the NEH algorithm is still one of the most
efficient heuristics (Dong et al., 2008). Next we recall the
NEH algorithm presented (Nawaz et al., 1983).

The NEH algorithm has two steps, sorts all the jobs by
decreasing sums of processing times for the jobs on all
machines, and for the kth job, k=1, . . . , n, finds the best
position among k possible ones that minimizes the partial
makespan, then inserts it into the position.

The sorting step was improved by Li et al. (2004), they
propose to sort jobs using average processing times and
deviations of the processing times of the jobs. Dong et al.
(2008) order jobs by the sums of the average processing
times

jAVG and the standard deviations of processing

times
jSTD , where

j
AVG and

jSTD are described as

follows:

1

1 m

j i j

i

A V G p
m =

= ∑

1 / 2

2

1

1
()

1

m

j ij j

i

S T D p A V G
m =

 
= − 

− 
∑

Since a solution to a DPFSP is a set of F job sequences
(each sequence is associated with a factory), the NEH
heuristic should adapt to the DPFSP to construct multi-
factory sequences at its second step. Through the
empirical study (Naderi and Ruiz, 2010), select the
following rules to construct DPFSP solutions in NEH

methods.

Rule 1: assign job j to the factory with the lowest current
Cmax, not including job j. Once assigned, the job is
inserted in all possible positions of the job sequence and
is placed at the position with the lowest makespan.
Rule 2: assign job j to the factory which completes it at
the earliest time, that is, the factory with the lowest Cmax
when including job j. All possible positions of all factories
will be tried and job j will be placed at the position with
the lowest makespan when including j.

For convenience, we denote the NEH heuristic with Rule
1 for solving DPFSP instances as NEH1, while the NEH
heuristic with Rule 2 as NEH2. An empirical comparison
of NEH1 and NEH2 reveals that NEH2 performs better
(Naderi and Ruiz, 2010).

THE PROPOSED CONSTRUCTIVE HEURISTIC

The aforementioned NEH rules select only one job at a
time. This strategy works well because the single-factory
problem contains only one job sequence. Care should be
taken to exploit NEH rules for multiple factories in
DPFSPs. Next we present such a constructive heuristic
algorithm with a novel job insertion rule.

Unlike the previous job insertion rule, we insert F jobs
at a time, and each job is assigned to a factory. To do so,
F jobs are first selected, and the best position on each
factory as well as the makespan is computed for each of
them. Next jobs are assigned to the factories by using a
bijective mapping from jobs to factories, which has the
lowest partial Cmax in comparison to alternative job
assignments. To select the best job assignments, a
simple B&B method (Land and Doig, 1960) is adopted to
determine the optimized association between jobs and
factories. Formally, Algorithm 1 depicts the procedure of
our job insertion, which is denoted by Rule-f.

For each job, Algorithm 1 starts from computing a
factory and its position if it has the smallest partial
makespan. Then it assigns jobs by using function B&B (0,
max (L), L, P), where max (L) is the largest number of Lij
(1≤i, j≤F) to initialize the parameter b, the upper bound of
Cmax. B&B is a recursive function that runs a depth-first
search, backtracks to the parent level to escape the local
optimum, and thus to find and return the best job
placement with the smallest partial Cmax. After B&B finds
the optimized job assignments so that Cmax will be the
smallest after those F jobs are inserted into the
corresponding factories, Algorithm 1 ends with applying
this job assignment by inserting jobs into the associated
factories.

Note that the solution constructed only by Rule-f has
the same number of jobs for each factory (or difference of
a job), but a good solution may have job sequences with
different length. So a job will be placed into a factory if

the insertion does not increase the total makespan before
each execution of Rule-f. This is done in the heuristic
algorithm NEH-df for DPFSPs.

Step 1: sorts all the jobs by decreasing the sums of the

average processing times
j

AVG and the standard

deviations of processing times
jSTD , where

jAVG and

j
STD are defined earlier in the NEH heuristic; the sorted

job sequence is denoted by Js.
Step 2: repeats the following until |Js| is less than F;
insert the first job j in Js by Rule 2 and remove j from Js if
Cmax after including j does not change, otherwise, perform
Rule-f to insert F jobs at a time.
Step 3: assigns the remaining jobs by Rule 2.

In this algorithm, NEH-df first employs
j jAVG STD+ for

job ordering which has been studied by Dong et al.
(2008) and shows the good performance. Then Rule 2
and Rule-f will be performed alternately until the number
of jobs in the job list Js are less than F. Finally the
remaining jobs will be inserted by Rule 2 as NEH2 does.

Note that the time complexity of NEH-df mainly
depends on the computation of lowest makespan for job
insertion. We use Taillard (1990) accelerations, when the
CmaxI is calculated during each job insertion, which can
decrease the time complexity greatly. The times of a job
insertion for our heuristic does not increased compared to
NEH2 where Rule 2 is used. It requires to sequence all m
tasks of a job at all factories, that is, O (mF), which is
same as NEH2. Though a B&B algorithm is used during
the solution construction, the worst case of its time
complexity is only O (F!). Since F is a constant, it can be
ignorant when evaluating the time cost level of the entire
algorithm.

EXPERIMENTS

To evaluate the performance of the proposed heuristic
NEH-df, intensive computational experiments are carried
out on the DPFSP benchmark available at
http://soa.iti.es. In this paper, only large-scale instances
are concerned. Whereas the number of jobs is up to 16
and the number of machines is only 5 at most in small-
scale instances, the set of large-scale instances is
extended from the benchmark of Taillard by adding the
number of factories F from {2,3,4,5,6,7}. The Taillard
instances are composed of 12 combinations of n×m, and
for each combination there are 10 different instances.
Each instance is combined with 6 values of F to yield 6
instances of DPFSP benchmark, so the number of total
instances reaches 720. The best solutions to the
benchmark instances are obtained by implementing the
heuristic approaches proposed (Naderi and Ruiz, 2010).
Many heuristic approaches have been tested (Naderi and
Ruiz, 2010). In our experiments, we would rather

Gao and Chen 3097

consider NEH1 and NEH2 than other heuristics because
all heuristics are extensions of the well-known existing
heuristics for solving classical PFSP, and they have
much better performance than other heuristic algorithms.
For simplicity, we denote NEH2 with

j jAVG STD+ sorting

by NEH-d and NEH-df with original job sorting method by
NEH-f. The competing algorithms are incorporated in a
C++ program and implemented within VC++6.0. We run
all those algorithms on an Intel Core Duo 2.4GHz
machine with 2GB RAM under Windows XP.

To measure performance, we chose to use the
following relative percentage deviation (RPD):

= 100
alg - opt

RP D
opt

×

Where opt is the best solution published and alg stands
for the solution obtained by the heuristic algorithms. We
analyze RPD of the aforementioned experiment. From
Table 1, it can be seen that NEH-df algorithm
outperforms all the other algorithms as it has the best
average RPD. We can also see that both NEH-d and
NEH-f have better performance than their competitor
NEH2.

We also give the RPD results grouped by the
combination of m and n, as shown in Table 2. Similar
conclusion can be drawn from Table 2, that is, NEH-df
performs best for 7 out of 12 combinations of m and n.

To draw a better picture of the results, we also check
whether the differences in Table 1 and Table 2 made by
those algorithms are statistically significant. In this case,
hypotheses of normality, homocedasticity and
independence of the residuals are checked and satisfied,
and the ANOVA test is preformed. Figure 1 shows the
results, from which we can clearly observe that the NEH-
df is significantly better than the original NEH-based
heuristics, that is, NEH1 and NEH2. But there is no
statistical significance between NEH2 and NEH-d or
NEH2 and NEH-f.

The run-times of those heuristic algorithms are also
compared. Table 3 indicates the results. From the table,
we can observe that the run-times of NEH-df is slightly
larger than those of others. NEH1 is the fastest, but the
solutions produced by NEH1 are rather worse than those
of others. Furthermore, NEH-df can solve the instance
that has 500 jobs and 20 machines only in 47 ms on
average, so NEH-df is still very efficient.

CONCLUSIONS

The distributed permutation flowshop scheduling problem
is a newly proposed scheduling problem, which is in the
set of NP-hard. Several heuristic and local search
algorithms have been presented, as well as maxed
integer programming methods that can only solve small-

3098 Sci. Res. Essays

Table 1. Average relative percentage deviation (RPD) of
algorithms grouped by F.

F
Algorithms

NEH1 NEH2 NEH-d NEH-f NEH-df

2 2.90 1.19 1.18 0.95 1.03

3 3.57 1.08 1.05 0.94 0.88

4 4.26 1.19 1.01 0.89 0.69

5 4.30 0.89 0.89 0.86 0.83

6 4.61 1.00 0.85 1.05 0.95

7 4.70 0.75 0.60 0.90 0.68

Average 4.06 1.02 0.93 0.93 0.84

The 5 heuristic algorithms were carried out once for all 720 instances.
For each heuristic algorithm, average RPD results grouped by F are
listed. At the bottom of the table, the total average values of all f are

reported as well.

Table 2. Average relative percentage deviation (RPD) of algorithms grouped by m and n.

n×m
Algorithms

NEH1 NEH2 NEH-d NEH-f NEH-df

20×5 3.86 1.35 0.49 1.14 0.84

20×10 3.48 0.82 0.69 0.65 0.60

20×20 2.61 0.83 0.56 0.86 0.60

50×5 6.26 1.11 1.27 0.90 1.31

50×10 4.83 1.16 1.67 1.33 1.33

50×20 3.66 1.16 0.98 1.00 0.77

100×5 5.54 0.78 0.63 0.73 0.75

100×10 4.77 0.86 1.07 1.04 0.86

100×20 3.38 1.02 0.91 0.87 0.83

200×10 4.51 0.97 0.90 0.89 0.55

200×20 3.17 1.21 1.12 0.99 0.93

500×20 2.64 0.93 0.87 0.79 0.72

Similar to the results in table 1, average RPD results of each heuristic algorithm grouped by n×m are

listed.

Figure 1. Mean plot with intervals at 95% confidence level for the algorithm
factor. For each algorithm, RPD values of all the 720 instances are employed to
calculate its confidence intervals.

NEH-dfNEH-fNEH-dNEH2NEH1

AlgorithmsAlgorithmsAlgorithmsAlgorithms

4

3

2

1

RP
D

RP
D

RP
D

RP
D

Gao and Chen 3099

Table 3. CPU run-times of algorithms grouped by F.

F
Algorithms

NEH1 NEH2 NEH-d NEH-f NEH-df

2 392 626 685 654 673

3 266 517 594 627 632

4 218 544 535 562 607

5 155 469 491 554 576

6 184 497 478 594 609

7 125 434 489 556 581

Total 1340 3087 3272 3547 3678

The 5 heuristic algorithms are performed by 100 runs for each instance. Average CPU run-time of each instance in
milliseconds is recorded. The sums of the average run-times are listed grouped by F. In addition, the sum of the

average run-times are also calculated at the bottom of the table.

scale instances though they are exact methods. Among
those heuristics, algorithms based on NEH usually have
good performance. Two job insertion rules are employed,
where jobs are assigned to factories one by one. This
paper presents a new constructive heuristic by
introducing a novel job insertion rule for constructing
solutions to DPFSPs. It assigns a group of jobs to
factories at a time, since a DPFSP instance has many job
sequences to construct. Furthermore, we use the
strategy discussed by Dong et al. (2008) for job sorting in
the first step of NEH algorithms, where jobs are ordered
by the sum of average processing times and standard
deviations of the processing times of the jobs.
Experimental results indicate that our NEH-based
heuristic outperforms all the other heuristics on average
RPD, and also show it is significantly better than the
original heuristics. In addition, we also show that the
proposed method does not increase the time complexity.

ACKNOWLEDGEMENTS

This work is partially supported by the National Natural
Science Foundation of China under Grant No.60775028,
the Major Projects of Technology Bureau of Dalian
No.2007A14GXD42, and IT Industry Development of Jilin
Province.

REFERENCES

Agarwal A, Colak S, Eryarsoy E (2006). Improvement heuristic for the

flow-shop scheduling problem: An adaptive-learning approach. Eur.
J. Oper. Res., 169: 801-815.

Allahverdi A (2004). A new heuristic for m-machine flowshop scheduling
problem with bicriteria of makespan and maximum tardiness.
Computers & OR, 31: 157-180.

Braglia M, Grassi A (2009). A new heuristic for the flowshop scheduling
problem to minimize makespan and maximum tardiness. Int. J. Prod.
Res., 47: 273-288.

Campbell HG, Dudek RA, Smith ML (1970). Heuristic algorithm for N-
job, M-machine sequencing problem. Management Science Series B-
Application. 16: 630-637.

Chan FTS, Chung SH, Chan PLY (2005). An adaptive genetic algorithm
with dominated genes for distributed scheduling problems. Expert
Syst. Appl., 29: 364-371.

Chakraborty UK, Laha D (2007). An improved heuristic for permutation
flowshop scheduling. Int. J. Inf. Commun. Technol., 1: 89-97.

Dong X, Huang H, Chen P (2008). An improved NEH-based heuristic
for the permutation flowshop problem. Computers & OR., 35: 3962-
3968.

Erdogmus P (2010). Particle swarm optimization performance on
special linear programming problems. Sci. Res. Essays, 5: 1506-
1518.

Fondrevelle J, Oulamara A, Portmann MC (2006). Permutation
flowshop scheduling problems with maximal and minimal time lags.
Computers & OR, 33: 1540-1556.

Garey MR, Johnson DS, Sethi R (1976). The complexity of flowshop
and jobshop scheduling. Math. Operat. Res., 1: 117-129.

Grabowski J, Wodecki M (2004). A very fast tabu search algorithm for
the permutation flow shop problem with makespan criterion.
Computers & OR, 31: 1891-1909

Jia HZ, Nee AYC, Fuh JYH, Zhang YF (2003). A modified genetic
algorithm for distributed scheduling problems. J. Intel. Man., 14: 351-
362.

Land AH, Doig AG (1960). An automatic method of solving discrete
programming problems. Econometrica, 28:497-520.

Li T., Li Y (2007). Constructive Backtracking Heuristic for Hybrid
Flowshop Scheduling with Limited Waiting Times. In: International
Conference on Wireless Communications, Networking and Mobile
Computing. pp. 6671-6674.

Li XP, Wang YX, Wu C (2004). Heuristic algorithms for large flowshop
scheduling problems. In: Proceedings of the 5th world congress on
intelligent control and automation. pp. 2999-3003.

Li X, Wang J, Zhou J, Yin M (2010). An effective GSA based memetic
algorithm for permutation flow shop scheduling. In: IEEE Congress
on Evolutionary Computation, pp. 1-6.

Naderi B, Ruiz R (2010). The distributed permutation flowshop
scheduling problem. Computers & OR, 37: 754-768.

Nawaz M, Enscore Jr. EE, Ham I (1983). A Heuristic Algorithm for the
m-Machine, n-Job Flow-shop Sequencing Problem. Omega-Int. J.
Manage. Sci., 11: 91-95.

Onwubolu GC, Davendra D (2006). Scheduling flowshops using
differential evolution algorithm. Eur. J. Oper. Res., 171: 674-692.

Palmer DS (1965). Sequencing jobs through a multi-stage process in
the minimum total time: a quick method of obtaining a near optimum.
Oper. Res. Q., 16: 101-107.

3100 Sci. Res. Essays

Rajendran C, Ziegler H (2004). Ant-colony algorithms for permutation

flowshop scheduling to minimize makespan/ total flowtime of jobs.
Eur. J. Oper. Res., 155:426-438.

Reeves CR (1995). A genetic algorithm for flowshop sequencing.
Computers & OR. 22: 5-13.

Taillard E (1990). Some efficient heuristic methods for the flow-shop
sequencing problem. Eur. J. Operat. Res., 47: 65–74.

Yin M, Zou T, Gu W (2010). Reverse Bridge Theorem under Constraint

Partition, Mathematics Problems in Engineering.
doi:10.1155/2010/617398.

Yin M, Li X (2011). A hybrid bio-geography based optimization for
permutation flow shop scheduling. Sci. Res. Essays, 6(10): 2078-
2100.

