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Distributed Permutation Flowshop Scheduling Problem (DPFSP) is a newly proposed scheduling 
problem with a strong engineering background. Whereas there is a body of work on scheduling 
problems in the past decades, the literature on DPFSPs is scant and in its infancy. Motivated by the 
good performances of some heuristics in a very recent work, we propose a constructive heuristic 
algorithm enhanced through a novel dispatching rule to deal with the DPFSP. Given multiple factories in 
a DPFSP, our dispatching rule will insert a group of jobs to the factories at one time instead of inserting 
one job at one time like the original rules. The time complexity of the proposed heuristic algorithm is the 
same as that of the NEH with the original rule. To validate the proposed heuristic, intensive benchmark 
experiments are carried out on the large problem instances, and the results show that the proposed 
algorithm outperforms the existing heuristics in terms of tradeoff between solution quality and running 
time. 
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INTRODUCTION 
 
In the past decades, the Permutation Flowshop 
Scheduling Problem (PFSP) has been a central and well 
studied scheduling problem that has a strong engineering 
background in manufacturing and chemical industries. 
Most of the literature deals with the PFSP whereby each 
job is processed by the same set of machines in the 
same order, and all jobs are assumed to be assigned in 
the unique factory (Yin and Li., 2011; Fondrevelle et al., 
2006; Rajendran and Ziegler, 2004; Li et al., 2010; 
Chakraborty and Laha, 2007). However, such an 
assumption is not suitable for modeling some real-world 
scheduling problems nowadays in that more and more 
companies handle large volume of manufacturing in 
distributed environments in order to achieve better 
product quality, lower production cost and lower  
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management risks (Jia et al., 2003). 
With the great shift in manufacturing from the traditional 

single-factory mode to the nowadays multi-factory mode,  
more factories are built to set up such distributed 
manufacturing environments (Chan et al., 2005), hence 
Naderi and Ruiz (2010) have recently phrased the 
distributed permutation flowshop scheduling problem 
(DPFSP) which generalizes the classical PFSP with a set 
of factories whereby each job is allowed to be processed 
in one factory with an aim to minimizing the maximum 
completion time among all the factories. 

Because of the computational complexity of the PFSP 
(Garey et al., 1976), it has been extensively studied by 
many researchers. In particular, a large amount of the 
literature deals with the PFSP with makespan criterion. 
Algorithms for solving PFSP can be categorized into 
exact algorithms and heuristics approaches. Some exact 
algorithms are mathematical programming (Yin et al., 
2010) methods, branch and bound (B&B)   algorithms 
(Land and Doig, 1960) and backtracking approaches. 
Some early constructive heuristics include: the index 
heuristic proposed by Palmer (1965), the CDS method by 
Campbell et al. (1970) and the NEH algorithm by Nawaz 
et al. (1983). Moreover, metaheuristic  algorithms  for  the 



 
 
 
 
PFSP have been investigated to obtain better solution 
recently, such as differential evolution algorithm 
(Onwubolu and Davendra, 2006), genetic algorithm 
(Reeves, 1995) and particle swarm optimization 
(Erdogmus, 2010), but most of those algorithms start 
from the solution produced by the constructive heuristic 
algorithms (e.g. NEH). 

Whereas there is a body of work on the PFSP in the 
past decades, the literature on DPFSPs is scant and in its 
infancy. Such algorithms for solving DPFSP are mainly 
discussed in the work by Naderi and Ruiz (2010). They 
solve the DPFSP with mixed integer linear programming 
and heuristics; some mixed integer linear programming 
models have been investigated and implemented on 
highly optimized CPLEX11.1 package. In evaluating their 
experiment performances, only small instances (16 jobs 
and 4 factories) are solved by the mixed integer linear 
programming methods. To solve large instances, they 
use heuristics approaches derived from existing 
heuristics for the well known PFSP. Those heuristics are 
extended with two alternative rules for job assignments: 
one locates the job to the factory with the lowest partial 
makespan; the other one tries all possible positions of all 
the factories for a job and places the job in the position 
that has the lowest partial makespan after including the 
job. Moreover, they also present a local search approach 
for the DPFSP, called variable neighborhood descent. 
The approach starts from the solution of NEH heuristic 
method, and moves jobs in each factory or between 
factories with the aim at minimizing the maximal 
makespan of the factories. Experiments on large 
instances indicate that the local search methods can get 
better solutions than the constructive heuristic algorithms, 
while the CPU times consumed by the local search 
methods are quite longer than those by heuristic 
algorithms. 

Motivated by the good performances of some heuristics 
in a very recent work, we propose a new constructive 
heuristic enhanced through a new dispatching rule for job 
assignments to compute the optimal solutions to 
DPFSPs. Given multiple factories in a DPFSP, our job 
assignment will insert a group of jobs to the factories at 
one time instead of inserting one job at one time like the 
original rules. Also we use the sort method proposed by 
Dong et al. (2008), namely jobs are ordered by the sum 
of average processing times and standard deviations of 
the processing times of the jobs. Regarding the time 
complexity, the proposed heuristic is same as NEH with 
the original rule. By carefully analyzing experimental 
results on the benchmark instances, we find that the 
proposed heuristic obtains better solutions than the 
existing NEH-based heuristic algorithms, though it’s total 
CPU run-times are slightly longer than those of the 
existing algorithms. Statistical analyses also show that 
our heuristic is significantly better than the original NEH 
for DPFSP.  

The remainder of this paper is organized as follows. 
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DPFSP is formally defined, existing heuristics for DPFSP, 
which is NEH method are discussed with two original 
rules, and job sort methods in the NEH method. We also 
present a novel rule for job assignments, and then 
propose an NEH-based heuristic enhanced by this rule. 
Finally experimental results are analyzed and concluded. 
 
 

DISTRIBUTED PERMUTATION FLOWSHOP 
SCHEDULING PROBLEM 
 

Formally the permutation flowshop scheduling problem is 
described as follows (Grabowski and Wodecki, 2004), 
each of n jobs from the set {1, 2, , }J n= L  has to be 

processed on m machines in the order of 1, 2, , mL . Job 

j, j J∈ consists of a sequence of m operations 

1 2j j jm
O ,O , ,OL ; operation Ojk corresponds to the 

processing of job j on machine k and is associated with a 
processing time pj k. All jobs are uninterrupted. The 
objective is to find a sequence of the jobs that meet a 
given criterion. The criterion we think of is the maximum 
completion time or makespan. 

Let π  be a sequence of all jobs and C(j,k)  denotes the 

completion time of Ojk, thenC(j,k)  can be calculated by 

the following formulas (Reeves, 1995). 

1 2 n
= {j , j , , j }π L  

1
1

11 j
C(j , ) p=  

1
1 1

ii i-1 jC(j , ) C(j , ) p= +  for i 2, ,n= L  

ii i j kC(j ,k) C(j ,k - 1) p= +  for k 2, ,m= L  

1 ii i i jk
C(j ,k)=max{C(j ,k),C(j ,k-1)}+p

−
for i 2, ,n= L  ; k 2, ,m= L  

max
C ( )= C(n,m)π  

where 
maxC ( )π  is the makespan. The task of solving a 

permutation flowshop scheduling problem is to find a π

such that 
max

C ( )π  is minimized. 

When it comes to a DPFSP, we follow the definition 
(Naderi and Ruiz, 2010): n jobs from the set 

{1,2, , }J n= L  have to be processed on F factories, 

where each factory f G={1, ,F}∈ L  contains the same set of 

m machines, which is same as the PFSP. All factories 
are able to process all jobs. When a job j is assigned to a 
factory f, it can not be transferred to another factory and 
all operations of it can only be processed at factory f. 
Each operation Ojk is associated with a processing time 
pjk. It is noted that this processing time of the operation is 
available for all factories. Namely, the processing times of 
Ojk in all factories are same. A schedule of jobs is a set of 
job sequences, denoted by ∏ , ∏  contains F job 

sequences. The intersection of any two job sequences is 
empty and the union of all job sequences is the set J. The 
makespan of a schedule ∏  is defined as the maximum 

makespan among all factories, which  can  be  formulated  
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as follows. 
 

max{ }max max fC ( ) C ( )π∏ =  for f G∈  

 

where fπ  denotes the job sequence of the f-th factory. 

The goal of a DPFSP is to find the minimal makespan of 
the DPFSP.  
 
 
NEH HEURISTIC 
 
Heuristic algorithms play an important role in scheduling 
problems. Whereas exact algorithms like mixed integer 
programming are used to obtain the optimized solution to 
the small-sized problem, heuristics are proposed to solve 
large problem instances effectively.  Many researchers 
have worked on developing heuristics to find a near 
optimal solution in a reasonable time, that is, build a 
feasible solution in polynomial time. Besides early 
constructive heuristics like the index heuristic, the CDS 
method and the NEH algorithm (Nawaz et al., 1983), the 
newly proposed constructive methods in (Li and Li, 2007; 
Li et al., 2004), as well as more complex heuristic 
algorithms in (Agarwal et al., 2006). Also the NEH has 
recently been improved (Dong et al., 2008; Chakraborty 
and Laha, 2007), some heuristics for optimizing 
maximum tardiness and makespan have been presented 
(Allahverdi, 2004; Braglia and Grassi, 2009). In 
comparison the NEH algorithm is still one of the most 
efficient heuristics (Dong et al., 2008). Next we recall the 
NEH algorithm presented (Nawaz et al., 1983). 

The NEH algorithm has two steps, sorts all the jobs by 
decreasing sums of processing times for the jobs on all 
machines, and for the kth job, k=1, . . . , n, finds the best 
position among k possible ones that minimizes the partial 
makespan, then inserts it into the position. 

The sorting step was improved by Li et al. (2004), they 
propose to sort jobs using average processing times and 
deviations of the processing times of the jobs. Dong et al. 
(2008) order jobs by the sums of the average processing 
times 

jAVG and the standard deviations of processing 

times
jSTD , where 

j
AVG  and 

jSTD are described as 

follows: 
 

1

1 m

j i j

i

A V G p
m =

= ∑  

1 / 2

2

1

1
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1

m

j ij j
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− 
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Since a solution to a DPFSP is a set of F job sequences 
(each sequence is associated with a factory), the NEH 
heuristic should adapt to the DPFSP to construct multi-
factory sequences at its second step. Through the 
empirical study (Naderi and Ruiz, 2010), select the 
following  rules  to  construct  DPFSP  solutions  in  NEH  

 
 
 
 
methods. 
 
 
Rule 1: assign job j to the factory with the lowest current 
Cmax, not including job j. Once assigned, the job is 
inserted in all possible positions of the job sequence and 
is placed at the position with the lowest makespan. 
Rule 2: assign job j to the factory which completes it at 
the earliest time, that is, the factory with the lowest Cmax 
when including job j. All possible positions of all factories 
will be tried and job j will be placed at the position with 
the lowest makespan when including j. 
 
For convenience, we denote the NEH heuristic with Rule 
1 for solving DPFSP instances as NEH1, while the NEH 
heuristic with Rule 2 as NEH2. An empirical comparison 
of NEH1 and NEH2 reveals that NEH2 performs better 
(Naderi and Ruiz, 2010). 
 
 

THE PROPOSED CONSTRUCTIVE HEURISTIC 
 
The aforementioned NEH rules select only one job at a 
time. This strategy works well because the single-factory 
problem contains only one job sequence. Care should be 
taken to exploit NEH rules for multiple factories in 
DPFSPs. Next we present such a constructive heuristic 
algorithm with a novel job insertion rule.  

Unlike the previous job insertion rule, we insert F jobs 
at a time, and each job is assigned to a factory. To do so, 
F jobs are first selected, and the best position on each 
factory as well as the makespan is computed for each of 
them. Next jobs are assigned to the factories by using a 
bijective mapping from jobs to factories, which has the 
lowest partial Cmax in comparison to alternative job 
assignments. To select the best job assignments, a 
simple B&B method (Land and Doig, 1960) is adopted to 
determine the optimized association between jobs and 
factories. Formally, Algorithm 1 depicts the procedure of 
our job insertion, which is denoted by Rule-f. 

For each job, Algorithm 1 starts from computing a 
factory and its position if it has the smallest partial 
makespan. Then it assigns jobs by using function B&B (0, 
max (L), L, P), where max (L) is the largest number of Lij 
(1≤i, j≤F) to initialize the parameter b, the upper bound of 
Cmax. B&B is a recursive function that runs a depth-first 
search, backtracks to the parent level to escape the local 
optimum, and thus to find and return the best job 
placement with the smallest partial Cmax. After B&B finds 
the optimized job assignments so that Cmax will be the 
smallest after those F jobs are inserted into the 
corresponding factories, Algorithm 1 ends with applying 
this job assignment by inserting jobs into the associated 
factories. 

Note that the solution constructed only by Rule-f has 
the same number of jobs for each factory (or difference of 
a job), but a good solution may have job sequences with 
different length. So a job will be placed into  a  factory  if 



 
 
 
 
the insertion does not increase the total makespan before 
each execution of Rule-f. This is done in the heuristic 
algorithm NEH-df for DPFSPs. 
 
Step 1: sorts all the jobs by decreasing the sums of the 

average processing times 
j

AVG and the standard 

deviations of processing times 
jSTD , where 

jAVG  and 

j
STD  are defined earlier in the NEH heuristic; the sorted 

job sequence is denoted by Js. 
Step 2: repeats the following until |Js| is less than F; 
insert the first job j in Js by Rule 2 and remove j from Js if 
Cmax after including j does not change, otherwise, perform 
Rule-f to insert F jobs at a time. 
Step 3: assigns the remaining jobs by Rule 2. 

In this algorithm, NEH-df first employs 
j jAVG STD+  for 

job ordering which has been studied by Dong et al. 
(2008) and shows the good performance. Then Rule 2 
and Rule-f will be performed alternately until the number 
of jobs in the job list Js are less than F. Finally the 
remaining jobs will be inserted by Rule 2 as NEH2 does. 

Note that the time complexity of NEH-df mainly 
depends on the computation of lowest makespan for job 
insertion. We use Taillard (1990) accelerations, when the 
CmaxI is calculated during each job insertion, which can 
decrease the time complexity greatly. The times of a job 
insertion for our heuristic does not increased compared to 
NEH2 where Rule 2 is used. It requires to sequence all m 
tasks of a job at all factories, that is, O (mF), which is 
same as NEH2. Though a B&B algorithm is used during 
the solution construction, the worst case of its time 
complexity is only O (F!). Since F is a constant, it can be 
ignorant when evaluating the time cost level of the entire 
algorithm.  
 
 
EXPERIMENTS 
 

To evaluate the performance of the proposed heuristic 
NEH-df, intensive computational experiments are carried 
out on the DPFSP benchmark available at 
http://soa.iti.es. In this paper, only large-scale instances 
are concerned. Whereas the number of jobs is up to 16 
and the number of machines is only 5 at most in small-
scale instances, the set of large-scale instances is 
extended from the benchmark of Taillard by adding the 
number of factories F from {2,3,4,5,6,7}. The Taillard 
instances are composed of 12 combinations of n×m, and 
for each combination there are 10 different instances. 
Each instance is combined with 6 values of F to yield 6 
instances of DPFSP benchmark, so the number of total 
instances reaches 720. The best solutions to the 
benchmark instances are obtained by implementing the 
heuristic approaches proposed (Naderi and Ruiz, 2010). 
Many heuristic approaches have been tested (Naderi and 
Ruiz,   2010).   In   our   experiments,   we   would   rather 
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consider NEH1 and NEH2 than other heuristics because 
all heuristics are extensions of the well-known existing 
heuristics for solving classical PFSP, and they have 
much better performance than other heuristic algorithms. 
For simplicity, we denote NEH2 with 

j jAVG STD+  sorting 

by NEH-d and NEH-df with original job sorting method by 
NEH-f. The competing algorithms are incorporated in a 
C++ program and implemented within VC++6.0. We run 
all those algorithms on an Intel Core Duo 2.4GHz 
machine with 2GB RAM under Windows XP.  

To measure performance, we chose to use the 
following relative percentage deviation (RPD): 

 

= 100
alg - opt

RP D
opt

×  

 
Where opt is the best solution published and alg stands 
for the solution obtained by the heuristic algorithms. We 
analyze RPD of the aforementioned experiment. From 
Table 1, it can be seen that NEH-df algorithm 
outperforms all the other algorithms as it has the best 
average RPD. We can also see that both NEH-d and 
NEH-f have better performance than their competitor 
NEH2. 

We also give the RPD results grouped by the 
combination of m and n, as shown in Table 2. Similar 
conclusion can be drawn from Table 2, that is, NEH-df 
performs best for 7 out of 12 combinations of m and n.  

To draw a better picture of the results, we also check 
whether the differences in Table 1 and Table 2 made by 
those algorithms are statistically significant. In this case, 
hypotheses of normality, homocedasticity and 
independence of the residuals are checked and satisfied, 
and the ANOVA test is preformed. Figure 1 shows the 
results, from which we can clearly observe that the NEH-
df is significantly better than the original NEH-based 
heuristics, that is, NEH1 and NEH2. But there is no 
statistical significance between NEH2 and NEH-d or 
NEH2 and NEH-f.  

The run-times of those heuristic algorithms are also 
compared. Table 3 indicates the results. From the table, 
we can observe that the run-times of NEH-df is slightly 
larger than those of others. NEH1 is the fastest, but the 
solutions produced by NEH1 are rather worse than those 
of others. Furthermore, NEH-df can solve the instance 
that has 500 jobs and 20 machines only in 47 ms on 
average, so NEH-df is still very efficient. 
 
 
CONCLUSIONS 
 
The distributed permutation flowshop scheduling problem 
is a newly proposed scheduling problem, which is in the 
set of NP-hard. Several heuristic and local search 
algorithms have been presented, as well as maxed 
integer programming methods that can only  solve  small- 
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Table 1. Average relative percentage deviation (RPD) of 
algorithms grouped by F.  
 

F 
Algorithms 

NEH1 NEH2 NEH-d NEH-f NEH-df 

2 2.90  1.19  1.18  0.95  1.03  

3 3.57  1.08  1.05  0.94  0.88  

4 4.26  1.19  1.01  0.89  0.69  

5 4.30  0.89  0.89  0.86  0.83  

6 4.61  1.00  0.85  1.05  0.95  

7 4.70  0.75  0.60  0.90  0.68  

Average 4.06  1.02  0.93  0.93  0.84  
 

The 5 heuristic algorithms were carried out once for all 720 instances. 
For each heuristic algorithm, average RPD results grouped by F are 
listed. At the bottom of the table, the total average values of all f are 

reported as well. 
 
 
 

Table 2. Average relative percentage deviation (RPD) of algorithms grouped by m and n. 
 

n×m 
Algorithms 

NEH1 NEH2 NEH-d NEH-f NEH-df 

20×5 3.86  1.35  0.49  1.14  0.84  

20×10 3.48  0.82  0.69  0.65  0.60  

20×20 2.61  0.83  0.56  0.86  0.60  

50×5 6.26  1.11  1.27  0.90  1.31  

50×10 4.83  1.16  1.67  1.33  1.33  

50×20 3.66  1.16  0.98  1.00  0.77  

100×5 5.54  0.78  0.63  0.73  0.75  

100×10 4.77  0.86  1.07  1.04  0.86  

100×20 3.38  1.02  0.91  0.87  0.83  

200×10 4.51  0.97  0.90  0.89  0.55  

200×20 3.17  1.21  1.12  0.99  0.93  

500×20 2.64  0.93  0.87  0.79  0.72  
 

Similar to the results in table 1, average RPD results of each heuristic algorithm grouped by n×m are 

listed. 
 
 
 

 
 

Figure 1. Mean plot with intervals at 95% confidence level for the algorithm 
factor. For each algorithm, RPD values of all the 720 instances are employed to 
calculate its confidence intervals. 
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Table 3. CPU run-times of algorithms grouped by F. 
 

F 
Algorithms 

NEH1 NEH2 NEH-d NEH-f NEH-df 

2 392 626 685 654 673 

3 266 517 594 627 632 

4 218 544 535 562 607 

5 155 469 491 554 576 

6 184 497 478 594 609 

7 125 434 489 556 581 

Total 1340 3087 3272 3547 3678 
 

The 5 heuristic algorithms are performed by 100 runs for each instance. Average CPU run-time of each instance in 
milliseconds is recorded. The sums of the average run-times are listed grouped by F. In addition, the sum of the 

average run-times are also calculated at the bottom of the table.  

 
 
 
scale instances though they are exact methods. Among 
those heuristics, algorithms based on NEH usually have 
good performance. Two job insertion rules are employed, 
where jobs are assigned to factories one by one. This 
paper presents a new constructive heuristic by 
introducing a novel job insertion rule for constructing 
solutions to DPFSPs. It assigns a group of jobs to 
factories at a time, since a DPFSP instance has many job 
sequences to construct. Furthermore, we use the 
strategy discussed by Dong et al. (2008) for job sorting in 
the first step of NEH algorithms, where jobs are ordered 
by the sum of average processing times and standard 
deviations of the processing times of the jobs. 
Experimental results indicate that our NEH-based 
heuristic outperforms all the other heuristics on average 
RPD, and also show it is significantly better than the 
original heuristics. In addition, we also show that the 
proposed method does not increase the time complexity. 
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