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A quaternion is an ordered combination of four real numbers. It can also be expressed as a sum of a 
scalar and a vector in three dimensional Euclidian space. Quaternion algebra allows the division of 
vectors. Since the current vector algebra does not allow the division of vectors; in many branches of 
mechanics, when a vectoral quantity falls to the denominator of an expression, the general tendency is 
to use its magnitude rather than its vector character. Once the vector division is defined by the 
quaternion algebra, it becomes possible to redrive the equations that have vector quantities in their 
denominators. In this study, basic equations of stress in strength of materials are reviewed according 
to the rules of quaternion algebra. It is shown that this new point of view brings a more powerful and 
consistent system. The normal stress becomes a scalar quantity. Area and moment of inertia of a 
cross-section becomes a vectoral quantity. Direction of shearing stresses change and becomes a more 
consistent convention especially in torsion problems. The most striking results are obtained in shear 
flow. 
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INTRODUCT�ON 
 
The use of vectors has a variety of applications in many 
branches of mechanics. For example, position, 
displacement, velocity, acceleration, and force are 
vectors according to their definitions. Besides, some 
simple operations defined on vectors, bring a powerful 
algebra. The resultant of forces acting to a point, can be 
obtained by using the addition of vectors, according to 
the parallelogram law. The vector product of lever arm 
and a force gives the moment of a force with respect to a 
point; while scalar product of force and the path gives the 
work done by this force. 

As it is seen in the above examples, vector algebra 
brings a powerful tool in the branches related to physics. 
However, it becomes unsufficient when a vectoral 
quantity falls to the denominator of an arithmetical 
expression, since the division of vectors is not defined in 
the current vector algebra. The general tendency is to 
use the magnitude of the vector in the denominator. This 
type of solution brings some defects to the spirit of the 
problem, of course. 
 
 
MATERIALS AND METHODS 
 
Quaternion algebra 
 
A quaternion is defined by the combination of four real numbers: 

),,,( 3210 aaaa=A                 (1) 

 
where a0, a1, a2, a3, are real numbers and A is a quaternion. Capital 
boldface Arial letters denote quaternions. It is possible to consider a 
quaternion as a combination of a vector and a scalar. A quaternion 
A = (a0, a1, a2, a3) can be expressed in the form (Kosenko,1998): 
 

)( 3322110 eee aaaa +++=A                              (2) 

 
where e1, e2, and e3 are the orthogonal unit vectors in a three 
dimensional Cartesian coordinate system. Boldface letters denote 
vectors. Equation (2) can be written in the form: 
 

)( u+= αA                   (3) 
 
where � is a scalar and u is a vector in three dimensional Euclidian 
space. The conjugate of the quaternion given in equation (3) is 
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The norm of a quaternion is: 
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Zero and unit quaternions are defined as: 
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The product of two quaternions of A = (� + u) and B = (β + v), 
(where β is a scalar and v is a vector) is: 
 

)()()( vuuvvuvu ×+++⋅−=++= βαβαβαBA
                           (7) 
 
where )(⋅ stands for the dot product and )(×  stands for the cross 
product defined for the vectors. Then the norm of a quaternion 
given in Equation (5) can be given as the following as well: 
 

∗= AAA                                (8) 

 
The inverse A-1 of a quaternion A should satisfy the condition:  
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Equations (8) and (9) give us the inverse of a quaternion 
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which can be written in the form: 
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Division of two quaternions can be expressed in two types, left 
division and right division respevtively: 
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The difference between left division and right division comes from 
the fact that the quaternion product is not commutative because of 
the cross product in Equation (7). Then, with the definition given in 
Equation (3) any vector u can be interprated as a vector quaternion 
whose scalar part is zero: 
 

)  (0 u+=A                               (13) 
 
Once any vector in three dimensional Euclidian space is expressed 
as a quaternion, then one can speak about the inverse of vectors 
and the division of vectors becomes possible. By using Equations 
(12) and (13) and choosing left division, division of two unit vectors 
gives unity if they are in the same direction and gives their cross 
product if they are perpendicular to each other. 
 
 
Unit vector division quaternion 
 
Okay (2010) defined division of two orthonormal vectors in three 
dimensional Euclidian space, as follows: 
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Qij is the unit vector division quaternion and is defined as: 
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Analysis of cross-sectional properties 
 
The properties of a cross section that are used in the 
elementary equations of strength of materials are its 
area, its first moment (sometimes called statical 
moment), its moment of inertia (sometimes called second 
moment) and its polar moment of inertia. All those 
physical quantities are treated to be scalar in many 
strength of materials books (Hibbeler, 1994; Popov, 
1999; Shanley, 1957; Pytel and Singer, 1987). Actually 
none of them are scalar according to their physical 
definitions. Before starting the analysis of cross sectional 
properties, let us set the Cartesian coordinate system in 
our problems let x1 be the axis along the axis of the 
beam, x2 be directed upwards and x3 be in the direction 
of the cross product of 21 ee × .  

The inclination of the area plays an important role in the 
analysis of the problems. Besides the angle between the 
area and the applied force becomes very important when 
the stress on this area is calculated. Even though the 
direction of the force does not change, the character of 
the stress changes when the inclination of the area 
changes. 

The area of a cross section can easily be interprated as 
a vector which is in the same direction with the outnormal 
of the mentioned surface and its magitude is the amount 
of the area itself. This type of thinking can also be 
handled by recalling the definition of an area of a 
parallellogram as the cross product of the vectors forming 
itself (Beer and Johnston, 1996). Therefore the cross 
sectional area of a beam which is settled in a Cartesian 
Coordinate frame, in the way defined above, is: 

 

1eA A=               (16) 
 
We can emphasise the vector character of an area by 
Equation (16). Although, this type of definition is used by 
many authors (Halliday and Resnick, 1974; Eringen, 
1967); they do not use them in this form when area falls 
to the denominator of an equation. 

The first moment of an area is defined as (Beer and 
Johnston, 1996): 
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A
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where Qz is the first moment of a section with repect to its 
horizontal centroidal axis, y is the distance of the 
differential  area  element  from  the  horizontal centroidal  



 
 
 
 
axis and A is the area of the mentioned section. All the 
quantities in Equation (17) are treated to be scalar 
whereas they are not. Now, let us assign their vectoral 
characters and apply the product of two quaternions 
given in Equation (7), since all vectors can be treated as 
vector quaternions. The right-hand side of Equation (17) 
becomes: 
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Equation (18) shows that first moment of an area is a 
vector in e3 direction, but negative sense: 
 

3eQ zz Q−=               (19) 
 
Now, let us apply the same procedure for moment of 
inertia. Moment of inertia of a cross section with respect 
to its centroidal horizontal axis is defined as (Beer and 
Johnston, 1996): 
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Repeating the same procedure as it is done in first 
moment; the right hand side of Equation (20) becomes: 
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According to Equation (21) the moment of inertia of a 
cross section comes out to be a vector in the same 
direction with the longitudinal axis of the beam: 
 

1eI zz I=               (22) 
 
It should be noted that the indices in Equations (19) and 
(22) do not denote any components but show that the 
moments are taken with respect to the axis in the 
subscript. With the same analysis as it is performed for 
moment of inertia, polar moment of inertia of a cross 
section, also comes out to be vector in the same direction 
with the moment of inertia: 
 

1eJ J=               (23) 
 
whose magnitude can be obtained from the equation 
(Beer and Johnston, 1996): 
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where r is the distance between the differential element 
dA and centroid of the cross section. 
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In this section, we saw that cross sectional properties 
of an area are all vectoral quantities. Moment of 
inertia,polar moment of inertia and area itself are in the 
same direction with the longitudinal axis of the beam and 
first moment is a vector in the horizontal transverse 
direction passing through the centroid of the cross 
section. 
 
 
Normal stress in axial loading 
 
The vectoral character of normal stress is not clearly 
identified in the textbooks written by different authors. 
According to Beer and Johnston, (1996) the normal 
stress in a member of cross sectional area A subjected to 
an axial load P is obtained by dividing the magnitude P of 
the load by the area A: 
 

A
P=σ              (25) 

 
This definition is given by many other authors (Hibbeler, 
1994; Popov, 1999; Shanley, 1957; Pytel and Singer, 
1987). Although, Equation (25) defines the normas stress 
to be scalar, it is not stated in those references that 
whether the normal stress is vectoral or scalar. Besides, 
many authors show the normal stress by arrows in the 
figures and speak about the direction of the normal 
stress, even its definition is a scalar quantity.Higdon 
states that: 
 

“Since stress is not a vector, the laws of vector 
addition do not apply the stresses that act on 
different planes.” (Higdon et al., 1985). 

 
On the other hand, from Continuum Mechanics point of 
view, stress acting a point is defined as a vector (Eringen, 
1967): 
 

lklk t it =                         (26) 
 
where tk is the stress vector acting on the surface whose 
normal is the unit vector ik (or ek in our text), tkl is the 
stress tensor and il is the unit vector in l direction. 
Whether the normal stress is defined as a vector or a 
scalar the sign convention for the normal stress is always 
the same. If the member is pulled by the force which is 
the tension case, it is trested to be positive; vice versa, if 
it is compressed by the force, that is the compression 
case, it is treated to be negative. This type of sign 
convention brings an important inconsistancy that, even 
though the stress vectors are in opposite directions on 
the opposite faces of an element, they are treated to 
have the same sign according to the sign convention 
given above. 

One the other hand; if we want to find the normal stress 
on  the  right  hand  side  of a beam subjected to a tensile  
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Figure 1. Sign convention for shearing stress. 

 
 
 
axial load and whose logitudinal axis is x1, for this case, 
the axial load and the cross sectional area are vectors in 
the same direction with the longitudinal axis of the beam. 
Then the normal stress on this face is calculated by the 
help of unit vector division quaternion to be: 
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Equation (27) shows that normal stress is scalar quantity. 
If we want to find the stress acting on the left hand side of 
the same beam; for this time both the force vector and 
the area vector become negative and the stress 
becomes: 
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Thus a more consistent result is obtained for the sign 
convention problems. Same consistency would be 
obtained for the compression case as well. 
 
 
The simple shear 
 
The shearing stress due to the transverse loading is 
defined as the magnitude of the shear force divided by 
the cross sectional area A ( Beer and Johnston, 1992): 
 

A
V=τ               (29) 

 
The same inconsistencies exist in the shearing stress 
problem as one has in normal stress problems. Although, 
its definition given as a scalar quantity, they are shown by 
using arrows in the figures. Another inconsistency exists 
in the sign convention of the shearing stress, as well. The 
positive and negative shearing stress cases are given in 
(Figure 1). 

The   positive  shear  stress  is  given  by  case (a)  and  

negative shear stress is given by case (b). For example, 
for the positive case, the shearing stress acting on the 
right face is directed upwards and the one acting on the 
left face is directed downwards. However they are both 
named to be positive although they have opposite signs. 
When the quaternion algebra is used, the shearing stress 
is obtained as a vector: 
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As it is seen from Equation (30) that the shearing stress 
is a vector which is both perpendicular to the force vector 
and the area vector. Although, this seems to be strange, 
it can easily be observed that each type of shear loading 
introduces a rotation on the applied element as it is seen 
from (Figure 1). The same result would be obtained if the 
left hand side of the element is considered by using 
quaternion algebra. Similar results can be recieved for 
the negative loading that is given in case (b) in (Figure 1). 
The quaternion model for stress gives rather good results 
for axial loading and transverse shar problems, especially 
from sign convention point of view. 
 
 
Stresses on an oblique plane 
 
The prismatic bar shown in (Figure 2) is loaded by a 
tensile force P and we will consider the stresses acting 
on the oblique plane on the right hand side of the bar that 
makes an angle θ with the vertical.  
Let the cross sectional area on the left to be A0, then the 
area of the oblique plane becomes: 
 

θθ cos
  0A

A =           (31) 

 
If we want to find the stresses on the inclined plane by 
using classical approach, first we try to find the 
components of the internal force P. The perpendicular 
and  the  parallel components to the mentioned plane are  
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Figure 2. Internal forces acting on an oblique plane of an axially loaded member. 

 
 
 
respectively:  
 

θθ sin     ,  cos  PVPF ==             (32) 
 
Then the normal stress acting on this inclined plane can 
be obtained as: 
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and similarly the shearing stress is obtained: 
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If we want to solve the same problem by using quaternion 
algebra, we do not need to find the components of the 
internal force P since it already lies on the x-axis. But we 
have to find the components of the area Aθ since it is 
vector and it does not lie on any principal plane of 
rectangular coordinates. Directions of the vectors in 
(Figure 2) are: 
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where 
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Then the stresses on the inclined plane can be found by 
dividing the force vector P by the area vector Aθ by the 
help of unit vector division quaternion:  
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Therefore stress tensor is a quaternion. We can rewrite 
equation (38) in the following form: 
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We may see Equation (39) is exactly the same with the 
Equations (33) and (34) if we substitute Equation (37) 
into the mentioned equations. The only difference is 
taking the normal stress as scalar.  
 
 
Bending stresses 
 
 
Normal stress caused by pure bending is given in all 
engineering books in the same way. If a bending moment 
in the horizontal (z) direction is applied to a cross section 
as shown in (Figure 3), then the normal stress at any 
point A is given in Equation (40) (Beer and Johnston, 
1992). The double arrow in z direction in (Figure 3) 
shows the direction of the bending moment Mz.  
 

y
I

M

z

z
x       −=σ               (40) 

 
Here, σx is a vector in x direction (according to classical 
approaches that do not obey Quaternion algebra), Mz is a 
vector in z direction and no clarification is given about the 
character of y. Moment of inertia Iz is treated as a scalar 
of course, since it appears in the denominator. 

If the distance from the neutral axis y is treated as a 
vector;  then  the  normal  stress  becomes  a  vector  in x  
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Figure 3. Bending moment acting at a rectangular cross-section. 

 
 
 
direction. This is not a contradiction with the way they 
follow. However, it is not understood that the product in 
Equation (40) is a vector product and the result comes 
out just in the opposite sign if we follow the order in the 
mentioned equation. The order of multipliers is important 
in the cross product, as we remember from our 
preliminary vector algebra. On the other hand, if y is 
treated as scalar, the how can one obtain a vector in x 
direction by multiplying a vector in z direction by some 
scalars (that are the distance y and the moment of inertia 
Iz)? Knowing that the moment of inertia is vector in x 
direction according to Equation (22) and substituting the 
vector characters of physical quantities, then the normal 
stress due to the bending moments is found as: 
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Equation (41) shows that the stress due to a bending 
action is a scalar. This is something that we are 
expecting, since the bending stresses are normal 
stresses. 
 
 
Torsional stresses 
 
The maximum shearing stress due to torsional loading 
(Figure 4) occurs at outmost fibres of a circular shaft and 
is given by the equation ( Beer and Johnston, 1992): 

 
 
 
 

J
cT=maxτ           (41) 

 
where T is the magnitude of the applied torque, c is the 
radius of the circular shaft and J is the polar moment of 
inertia of the cross section of the shaft. No direction is 
given to the shearing stresses due to the torsional 
loading ( Beer and Johnston, 1992).  

However, some authors show the direction of the 
shearing stresseses according to torsional loading in their 
figures, but they can not give them their names by giving 
appropriate indices (Popov, 1999; Hibbeler, 1994). 

When quaternion algebra is used to determine the 
shearing stresses according to torsion, we will use the 
fact that the applied torque T and the polar moment of 
inertia J are both vectors in the positive direction of x1 
(which is x in Figure 4) and the radius of the shaft c is 
also a vector. Then the shearing stress becomes: 
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where uc is the unit vector directed along the radius 
vector c and c is the magnitude (that is the length) of the 
radius vector c. The physical meaning of Equation (42) 
can be explained in (Figure 5). 

Figure 5 is the exaggerated view of infinitesimal 
element A in (Figure 4). Since shearing stresses occur in 
the shafts that are subjected to torsion; the shear forces 
formed by this process is shown on the edges of the 
mentioned infinitesimal element. These forces are 
denoted by V in (Figure 5). As it is mentioned earlier, they 
form a couple and cause a twist in the direction 
perpendicular to this surface. This is the shearing stress 
τmax which is consistent with the shearing stress 
presented in Equation (30). The figure is also consistent 
with Equation (42). 
 
 
Longitudinal shearing stress due to transverse 
loading 
 
The longitudinal shearing stress caused by transverse 
loading is given by the equation (Beer and Johnston, 
1992): 
 

It
VQ

xy =τ              (43) 

 
where V is the shearing force acting on the cross section, 
Q is the first moment of the area that shearing stress is 
acting, I is the moment of inertia of the section and t is 
the thickness or the width of the section. Then τxy is the 
shearing stress acting at a certain point. All the physical 
quantities  on  the  right  hand  side  of   Equation (43) are  
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Figure 4. A shaft subjected to torque T. 

 
 
 

 
 
Figure 5. Torsional stress on the outer face of a shaft. 

 
 
 
vectoral and by using quaternion algebra, the longitudinal 
shearing stress becomes: 
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It is seen from Equation (44) that the longitudinal 
shearing stress is a vector in x3 direction. This is 
something expected since the shearing forces making the 
couple, in transverse loading; occur in x1 direction.  

Up to now, it is shown that, the shearing stresses 
according to any type of loading; simple, torsional or 
transverse,   can   consistently   be   handled    by    using 

quaternion algebra. Especially the directions always give 
the correct manner. 
 
 
Shear flow 
 
Shear flow is defined as the shear force per unit length. 
The equation for shear flow is given as (Beer and 
Johnston, 1992): 
 

I
VQ

q =           (45) 

 
Although, the shear flow is given in scalar form in 
Equation (45), sense of q is pronounced and said to be 
the same as the sence of the shear force V in vertical 
parts (Beer and Johnston, 1992). Besides, when the 
shear flow q is sketched in a figure, it is designated by 
small arrows following each other as it is shown in 
(Figure 6). These two facts show that shear flow is 
accepted to be a vector. When the shear flow is accepted 
to be a vector, the following questions can not be 
answered: 
 
(1) How can the direction of shear flow change at point B 
of (Figure 6a)? In other words, what changes the 
definition of shear flow - which is given in Equation (45) 
that gives a horizontal flow in the flanges and a vertical 
flow in the web? 
(2) Two equal and opposite shear flows come to point G 
from points E and E’ in Figure (6b). If they are vectors, 
they should cancel each other. However, in the 
mentioned  figure, they are summing up and even both of  
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Figure 6. Shear flow variation in (a) a channel (b) an I section. 

 
 
 
them change their direction when they come together.  

Now, let us investigate the shear flow in quaternion 
algebra. The shear flow can be obtained: 
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The shear flow comes out a scalar quantity which is 
much more consistent. 
 
 
DISCUSSION AND CONCLUSIONS 
 
In this study, quaternion algebra is used to reevaluate the 
equations related to find the stress tems in elementary 
equations of strength of materials. Vector division 
becomes possible by using quaterion algebra. This 
becomes a very important aspect in the equations of 
strength, since vector quantities can be found in the 
denominators of some Equations like (27), (30), (42) etc.  

Using this algebra, a clear distinguish can be made 
between vectoral scalar quantities. For example, normal 
stress comes out a scalar quantity, as it is mentioned in 
Equation (27); or the direction of shearing stresses 
comes out perpendicular to both the shear forces and the 
cros sectional area as it is given in Equation (30).  

Besides more consistent results can be obtained, 
especially in sign convention. The unconsistent case 
occured in shear flow is compensated by using the 
quaternion algebra. Describing the stress acting at a 
point   by   using   the   quaternion   model   will  be  more  

appropriate than the existing tensor model.  
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