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This paper represents a simple and easy to learn method for analysis and design of third-order charge 
pump phase-locked loop (PLL) and provides analytical equations for calculating the desired 
specifications such as phase margin (PM), damping ratio and small signal settling time. The proposed 
method is based on dominant pole approximation. In other words, this method is based on the 
approximation of the transfer function of the third-order PLL through transfer function as a second 
order system. The validity of the obtained analytical equations has been verified in two examples. 
Simulation results of the introduced method demonstrate precision in designed parameters. 
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INTRODUCTION 
 
Phase-locked loops (PLLs) are widely used in high speed 
data communication systems. They are generally used 
for clock recovery and frequency synthesizing of wireless 
communication systems. The most desirable features of 
a PLL in high speed communication systems are stability 
characteristics, fast locking time, low power, small area 
and immunity to process, voltage, and temperature (PVT) 
variations (Yin et al., 2011). For example, a wider loop 
bandwidth is directly translated to a faster locking, and 
hence, the bandwidth must be maximized to minimize 
lock time. There are a great number of papers devoted to 
analysis and design of second-order charge pump PLL 
(Ping-Hsuan et al., 2011; Monterio et al., 2004; 
Carlosena et al., 2008; Carlosena and Lazaro,  2006; 
Gardner, 1980; You and He, 2004; Lakshmikumar, 2009; 
Woo et al., 2008; Razavi, 2001). But, the existing 
methods are not efficient in analysis of higher order 
architectures such as type II third-order PLL because 
there is an additional pole in transfer function that 
degrades the phase margin (PM) and causes peaking in 
the frequency response. Therefore,  finding  an  analytical 

 
 
 
Abbreviations: PLL, Phase-locked loop; PVT, process, 
voltage, and temperature; PFD, phase frequency detector; 
VCO, voltage controlled oscillator; PM, phase margin. 

approach for the designing of the third-order PLLs is still 
a topic of interest among researchers. Hence, in this work 
we tried to produce a method for finding the optimal 
location of the third pole and introduce analytical 
equations for designing the system specifications such as 
PM and damping ratio. The frequency domain analysis of 
third-order PLLs has been presented in different papers 
(Carlosena et al., 2008; Carlosena and Lazaro, 2006; 
Gardner, 1980) but, the transient analysis has not been 
investigated. The equations governing the third-order PLL 
have been extracted in (You and He, 2004) but, there is 
not any method for the designing of important 
specifications in it. In this paper, a simple and easy to 
understand method is introduced for analysis of the third-
order PLL. In the proposed method, the close-loop 
transfer function of the third-order PLL is approximated 
through a second-order transfer function using the 
dominant pole approximation. It is relatively easy to 
design a PLL with the given specifications using the 
proposed procedure and the design can then be 
evaluated using computer simulation. 
 
 
Third-order charge pump phase-locked loop (PLL) 
 
There are several structures of PLLs and most of the 
presented architectures are  based  on  charge  pump.  A  



 
 
 
  

  
 
Figure 1. Structure of the third-order charge pump PLL. 

 
 
  

  
 
Figure 2. Systematic model of the third-order charge 

pump PLL. 

 
 
 
conventional charge pump third-order PLL consists of 
phase frequency detector (PFD), charge pump, loop filter 
and the voltage controlled oscillator (VCO). A charge 
pump consists of two switched current sources that pump 
charge into or out of the loop filter. The structure of the 
PLL and its systematic model, are shown in Figures 1 
and 2, respectively.  

The PFD compares the phase or frequency difference 
between the input (Vin) and output (Vout) signals and 
generates an error signal. Then, the charge pump 
converts the error signal pulses into analog current 
pulses. The analog current mode pulses are then 
integrated and converted to a voltage Vcont through the 
loop filter. Also, the noise and the high frequency 
components at the output of the charge pump will be 
removed by the loop filter which includes Rp, Cp and C2. 
The resulted integrated signal at the output of the loop 
filter drives the VCO which generates a signal with a 
specific frequency depending on its input voltage. Here, 
C2 is used to suppress the sudden jump on the VCO 
control voltage due to charge injection and clock feed 
through SW1 and SW2 in Vcont also improves the transient 
characteristics. This additional capacitance increases the 
PLL order to three. The open loop transfer function of this 
third-order type II PLL is shown in Equation 1. 

Adrang          191 
 
 
 

2 2 2

1 1
( )

2 ( )
1 1

p VCO p p p p
vopen

p p p pp

I K R C s R C s
H s K

R C R CC C
s s s s

b b



 
 

    
    

   

 (1) 

 
Where, KVCO is the VCO gain, Ip is the charge pump 
current, b=1+Cp/C2, and Kv=IpKVCO /[2π(C2+Cp)]. 

In the first step, the PM is calculated. To determine the 
PM, the magnitude of the open loop gain has been 
plotted with respect to frequency ω and the crossover 
frequency (ωPM) has been determined. Bode diagram of 
the magnitude and phase of the third-order PLL for the 
stability analysis is shown in Figure 3. From Figure 3, we 
obtain:  
 

40
)/1log(

1 
ppCR

x

    

(2) 

 

20
)/1log()log(

2 
 ppPM CR

x


   (3) 

 
Knowing that x1+x2=20logKv, the crossover frequency will 
be given by: 
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Furthermore, the PM equals: 
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As shown in Figure 3, by decreasing KV, the crossover 
frequency moves toward the origin and this degrades the 
PM. Assuming that X=RpCpωPM , Equation 6 can be 
rewritten as: 
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The PM will be maximized if the first derivative with 
respect to X is set to zero. As a result, the maximum PM 
will be achieved when: 
 

bCRX PMpp  
         

(8) 

 

Substituting this value of X in Equation 7, it will be 
obtained that: 
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Figure 3. Bode plots open loop transfer function of the PLL. 

 
 
  

  
 
Figure 4. Phase margin as a function of X=RpCpωPM. 

 
 
 

                          (9) 

 
Thus, the maximum PM is only a function of b or the ratio 
of Cp to C2. In Figure 4, the phase is plotted against 
margin as a function of X. As shown, the PM will be 

maximized when bX  . On the other hand, for a given 

value of b if Equation 8 is satisfied, the maximum PM will 
be calculated from Equation 9. Therefore, the PM can be 
increased by increasing b or the ratio Cp/C2. For example, 
assuming b=20, maximum available PM is 64.8°. 
Substituting Equation 4 in Equation 8, we have: 
 

bCRK ppv 2)(
                                   

(10) 

 

Roots locus analysis and proposed approach
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Figure 5. Roots locus plot for type II third-order PLL. 

 
 
 
The open loop transfer function of a type II third-order 
PLL can be rewritten as: 
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Where, z=1/(RpCp), p=b/(RpCp)=bz and K=IpKVCO /(2πC2). 
By comparing K and KV : 
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Substituting Equations 4 and 12 in Equation 8 gives the 
following equation: 

 

        (13) 

 
The parameter KPM max is the desired gain to achieve the 
maximum PM. Figure 5 shows the roots locus plot of the 
type II third-order PLL as a function of K. 

As depicted in Figure 5, for K=0 in s=0 to K=K1B in 
break point (s=s1B), the roots are complex and damping 
ratio (ξ) varies between 0 and 1. For adjusting damping 
ratio (0≤ ξ≤1), K should be less than or equal to K1B 
therefore we must determine the value of K1B. The closed 
loop characteristic equation is required for calculating the 
break point (s1B). 
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In order to determine the break points, the roots of 
dK/ds=0 should be calculated. 
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In Equation 15, p=bz, therefore, by solving it, we have: 
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Where,  )9)(1()3(25.0  bbb . Knowing that 

s1, 2B are real, thus b≥9. Substituting s1B from Equation 16 
into Equation 14, K1B can be calculated as: 
 

1

)(22

1







 bz
K B

    

(17)

 
 
If Equation 13 is satisfied, PM will be maximized. 
Moreover, in order to adjust damping ratio between 0 and 
1, the following condition must be satisfied: 
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Equation 18 is used to plot Figure 6 as a function of b. 
Numerical computation and Figure 6 show that Equation 

18 is true only for minimum value of b that is 9b  and 

from Equation 9, PMmax=53°. This means that if Equation 
13 is satisfied and b>9 then, K>K1B and all poles of the 
closed loop system become real and the damping ratio 
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Figure 6. Plots to compare Equation 18. 

 
 
 
will always be equal to 1. Therefore, we cannot 
simultaneously maximize PM and adjust ξ for desired 
settling time or bandwidth. This implies that there is a 
trade-off between the maximum PM and damping ratio. In 
this paper, a technique is introduced to adjust b, ξ and 
PM simultaneously. The design can be evaluated using 
computer simulation. 

 
 
Analysis of the closed loop system 
 
Beside the open loop response, it is also needed to 
analyze the closed loop response from which two major 
factors can be calculated: damping ratio, and natural 
frequency. In order to have a faster locking time, usually 
the damping factor should approach 1, and the natural 
frequency should be smaller than one tenth of the input 
frequency (You and He, 2004). The closed loop transfer 
function of the third-order PLL described above is given 
as: 
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Assuming that, 0≤K≤K1B and considering the roots locus 
plot, the closed loop system has one real pole and two 
conjugate complex poles. Therefore, the denominator of 
Equation 19 can be written as: 
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Where, ωn and α are the natural frequency and real pole 
of the closed-loop system, respectively. 
Also, Figure 7 shows the pole-zero placement of the 
closed-loop system. Using Equation 20 we have: 
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To approximate this third-order system by a second-order 
system, the dominant pole approximation is used. In this 
work, the ratio α/ξωn should be greater than 5 or 10. In 
this condition, we can write α=mξωn for m≥5. Substituting 
α in Equation 21 we have: 
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Figure 7. Pole-zero placement of the closed loop system. 

 
 
 

 

  
 
Figure 8. Variation of ‘b’ as a function of ‘m’ for ξ1=0.707 and ξ2=0.9. 

 
 
 
Equation 22 results: 
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Therefore, the PLL parameters are calculated from 
Equations 23 to 25. Meanwhile, Figure 8 shows the 
variation of b in terms of m for two different values of ξ. 
As it can be seen, b will be increased by increasing the m 

value. Equation 24 helps us to determine b. 
According to Equation 23, ξωn will be decreased by 

increasing the m, Rp and Cp values. Moreover, since ts is 
proportional to 1/(ξωn) (Lakshmikumar, 2009), the small 
signal settling time will be decreased. Thus, we should 
not select large values for m, Rp and Cp. On the other 
hand, this approximation is correct while K≤K1B. In other 
words: 
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Design rules and simulation results 
 
In order to investigate the validity of the proposed 
approach, two interesting examples of the parameter 
adjustments for given damping ratio are presented and
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Table 1. Parameters for two examples (previous simulation). 
 

 Example1 Example 2 

Damping ratio (ξ) 0.707 0.9 

b 13.2 20.6 

Cp (pf) 12.2 12.2 

C1 (pf) 1 0.6 

Rp (KΩ) 10 10 

Ip (μA) 562 791 

ωn (Mrad/s) 12.7 15.6 

ωPM (Mrad/s) 16.5 24 

PM(degree) 56° 63° 

 
 
 

Table 2. Equation 26 condition for the two examples. 
 

 Example1 Example 2 
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simulated here. 
 
Example 1 
 
The design is started to reach ξ1=0.707. Since, larger 
values of b lead to greater PM, m=10 is selected and 
according to Equation 24, we have b=13.2 and 
Cp/C1=12.2. With this value of b, using Equation 9, PM 
will be undoubtedly less than 59°. Assuming C1=1 pf, 
then Cp=12.2 pf. Also, if Rp=10 KΩ then using Equation 
23, ωn= 12.7 Mrad/s. The subsequent step is calculation 
of the Ip value. Assuming KVCO=20×10

6
 Hz/V (Carlosena 

and Lazaro, 2006) (usual value of KVCO), based on 
Equations 11 and 25, we can write: 
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So, Ip=562μA. Eventually from Equation 4, ωPM=16.5 
Mrad/s and using Equation 7, PM =56°. Equation 23 
implies that the settling time will be reduced if Rp 
becomes small. But it will increase the power 
consumption significantly because according to Equation 
27, if Rp is decreased by a factor of n and other 
parameters are fixed, Ip should be increased by a much 
larger factor of n

2
 to reach same specifications. For 

example, if Rp=1KΩ, then Ip will be 100 times higher (56.2 

mA) and this value is very large. 
According to Equation 27, if KVCO is increased, we can 

select smaller Ip and Rp. This causes reduction in the 
power consumption and the settling time. A wide tuning 
rang VCO with larger values of KVCO has been proposed 
in Kim et al. (2008) and Nakamura et al. (2006) 
 
Example 2  
 
Now, the design procedure for ξ2=0.9 is presented. For 
m=10 we have b=20.6, similar to the previous example, 
C1=1pf and Cp=35.7 pf. From Equation 23, by increasing 
the Cp value, ξωn will be reduced and ts will be increased 
and this is not desirable (Yin et al., 2011). Hence, similar 
to the pervious example, we choose Cp=12.2pf therefore, 
C1=0.6 pf. Also, if Rp=10KΩ, using Equation 23, ωn= 15.6 
Mrad/s. As a result from Equation 27, Ip=791 μA. Finally 
from Equation 4, ωPM=24 Mrad/s and according to 
Equation 7, PM=63°. Table 1, summarizes the 
parameters of the two examples. 

Note that as discussed above, the design is valid only 
when the Equation 26 condition is satisfied. Table 2 
depicts the Equation 26 condition for the two examples. 
In order to determine the precision of the introduced 
approach, the frequency response and also the step 
response of the former examples have been simulated in 
MATLAB and are demonstrated in Figures 9 and 10, 
respectively. The results of the two examples are 
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Figure 9. The frequency responses for ξ1=0.707 and ξ2=0.9. 

 
 
 

 

 

 Time (s)                                              ×10-7  
 
Figure 10. The step responses for ξ1=0.707 and ξ2=0.9. 
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Table 3. Simulation results for ξ1=0.707, ξ2=0.9 and m=10. 
 

After simulation Example 1 Example 2 

Damping ratio (ξ) 0.707 0.88 

Rise Time (ns) 64 49 

Settling Time (ns) 392 351 

Overshoot 24% 18% 

m 10 10.5 

ωn (Mrad/s) 12.8 15.3 

ωPM (Mrad/s) 18 25 

PM(degree) 56° 63° 

 
 
 
compared in Table 3. The simulations show the exact 
agreement between the simulation results and the results 
from the proposed approach for analysis and design. 
 
 
CONCLUSION 
 
A systematic method for analysis and design of the third-
order charge pump PLL has been presented. In the 
presented analysis procedure, the results obtained for 
second-order PLL has been used as an approximation in 
the design of third-order PLL. It is easy to design the PLL 
with desired specifications such as PM, damping ratio, 
natural frequency and small signal settling time using the 
proposed analytical equations. Also, validity of the 
proposed technique is verified by simulation of the PLL 
system in MATLAB. All simulation results show a very 
good precision in the designed parameters. 
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