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Switching Median Filter with Boundary Discriminative Noise Detection (BDND) is one of the useful 
methods that are capable to restore digital images which have been extremely corrupted by universal 
impulse noise. Following the fundamental framework of the switching median filter, the construction of 
BDND can be divided into two stages. The first stage classifies the pixels into either “noise” or “noise-
free” pixels, while the second stage restores the image by changing only the intensity values of the 
“noise” pixels. Unfortunately, the originally proposed BDND employs sorting operations in both of its 
stages. This condition makes the originally proposed BDND computationally expensive. Therefore, in 
this paper, an implementation of BDND with reduced computational time is suggested. This reduction is 
achieved mainly by manipulating the local histograms’ properties. Experimental results show that the 
proposed implementation successfully produces the same results as the originally proposed BDND, but 
with much shorter processing time. 
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INTRODUCTION 
 
One of the noises that are commonly corrupting digital 
images is the impulse noise. This type of noise can be 
contributed by many factors such as by faulty imaging 
sensors and from malfunction memory cells in storage 
devices. Besides, impulse noise also can be created 
during the transmission of the signal through noisy 
channel (Chan et al., 2005). In general, the impulse noise 
can be considered as an additive noise. This noise 
changes the value of some pixels at random locations 
into either relatively high or relatively low intensity value. 
Noise pixels with high intensity values appear as white 
dots on the image  (that  is  salt),  while  noise  pixels  with  
 
 
 
*Corresponding author. E-mail: haidi_ibrahim@ieee.org. 

low intensity values appear as black dots on the image 
(that is pepper). Therefore, impulse noise is also named 
as the salt-and-pepper noise (Petrou and Bosdogianni, 
2000). As the impulse pixels are having a relatively high 
contrast toward their surrounding, even at low percentage 
of corruption, the impulse noise can degrade the 
appearance of the image significantly (Ibrahim et al., 
2008). Therefore, it is crucial for us to remove the 
impulse noise before any subsequent image processing 
operations such as image segmentation and pattern 
recognition. Commonly, median filter which is a nonlinear 
filter is employed to reduce the impulse noise in digital 
images due to its sensitivity towards outliers (Eng and 
Ma, 2001). The standard median filter (SM) operates by 
defining a contextual region by using a sliding window of 

size W  W. It replaces the  intensity  value  of  the  centre  
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pixel with the median value calculated from the samples 
within the defined contextual region. However, there are 
a few drawbacks associated with SM. SM is not able to 
filter the image with an extremely high level of impulse 
noise. Besides, SM also does not differentiate 
uncorrupted pixels from corrupted pixels, and thus 
changes all the pixel intensity values of the image. 
Furthermore, SM also cannot perform very well in 
preserving lines and edges. Therefore, several variations 
of median filter have been introduced such as the detail-
preserving median filter (DMF) (Sun and Neuvo, 1994), 
tri-state median filter (TSMF) (Chen et al., 1999), 
progressive switching median filter (PSMF) (Wang and 
Zhang, 1999), classifier-augmented median filter (Chang 
and Chen, 2004), switching median filter with boundary 
discriminative noise detection (BDND) (Ng and Ma, 
2006), fuzzy median filter (FMF) (Luo, 2006), 
multichannel weighted median filter (MWM) (Li et al., 
2006), difference-type noise detector for adaptive median 
filter (DNDAM) (Yuan and Tan, 2006), 3D median filter 
(Jiang and Crookes, 2006), directional weighted median 
filter (DWM) (Dong and Xu, 2007), simple adaptive 
median filter (SAMF) (Ibrahim et al., 2008), fuzzy 
switching median filter (FSM) (Toh et al., 2008), switching 
median filter with highly effective impulse noise detection 
algorithm (Duan and Zhang, 2010), new adaptive 
switching median filter (Akkoul et al., 2010) and modified 
decision based un-symmetric trimmed median filter 
(MDBUTMF) (Esakkirajan et al., 2011). Among these 
new median filtering techniques, BDND has been claimed 
to have a good performance in reducing the universal 
impulse noise. Although BDND can reduce four types of 
impulse noise; this method requires a long processing 
time due to a few factors. Therefore, in this paper, an 
alternative and efficient implementation of BDND which 
requires much shorter processing time is suggested. 

The rest of this paper is organized as follows:  first, we 
explain the impulse noise model used in this paper; after 
that we describe the construction of the originally 
proposed BDND; then, we present our approach in 
implementing BDND; next, we compare the performance 
of this new implementation towards the originally 
proposed BDND and finally, we conclude our finding. 
 
 
NOISE MODEL 
 
Although the work by Ng and Ma (2006) used four 
impulse noise models; in this paper only one impulse 
noise model has been implemented. This is sufficient for 
this research because the main problem that we want to 
tackle   in   this   paper   is   the  high  computational  time  

 
 
 
 
associated with BDND and not the noise filtering ability. 
To simplify the explanations of this noise model, lets 
consider p(i) as the probability density function of 

intensity i in an image of size M  N pixels and the level 
of impulse noise that corrupting the image is 100 P%, 
where 0≤P≤1. The noise model that we used is the “noise 
Model 1” in Ng and Ma (2006). Some examples of image 
corrupted by this type of noise are shown in Figure 1. If 
the image is an eight-bit depth grayscale image, this 
noise model assumes that the impulse noise is being 
presented by only two intensity values which is either 
intensity 0 or intensity 255. Pepper is being presented by 
intensity 0, while salt is being presented by intensity 255. 
In this noise model, the number of salts is assumed to be 
equal to the number of peppers that degraded the image; 
this model can be described by the following equation: 
 

255 salt;:5.0

2550 pixels; free noise:1
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ORIGINALLY PROPOSED BDND 
 
Similar to other switching median methods, the 
construction BDND can be divided into two stages. The 
first stage is the detection stage where the pixels are 
classified into either “noise” or “noise free” pixels. The 
second stage of the method is the noise correction stage 
where the “noise” pixels are fixed. In the originally 
proposed BDND by Ng and Ma (2006), the detection 
stage has eight steps: 
 
 
Step 1 
 
Define a contextual region around the current pixel by 
using a local window of size 21 × 21. 
 
 
Step 2 
 
Sort the pixels in the window in ascending order to create 
the sorted vector vo. Find the median value of vo, med. 

 
 
Step 3 
 
Create vector vD which contains the different value 
between each pair of adjacent pixels in vo. 
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Figure 1. The original, clean Lena image (a), Lena image corrupted by 25% of 

impulse noise (b),  Lena image corrupted by 50% of impulse noise (c) and Lena 
image corrupted by 75% of impulse noise (d). 

 
 
 
Step 4 
 
For the intensity value between 0 and med, find the 
maximum value of vD. The corresponding pixel in vo is 
defined as the boundary b1. 
 
 
Step 5 
 
For the intensity value between med and 255, find the 
maximum value of vD. The corresponding pixel in vo is 
defined as the boundary b2. 
 
 
Step 6 

 
The middle cluster is defined as the range from b1 to b2. If 
the current pixel falls within this range, it is considered as 

“noise free” pixel and the classification process for this 
pixel is completed. Else, the pixel will be further  
investigated by using Step 7. 
 
 
Step 7 
 
Define a contextual region around the current pixel by 
using a local window of size 3 × 3 and repeat Steps 2 to 
5. 
 
 
Step 8 
 
The middle cluster is defined as the range from b1 to b2. If 
the current pixel falls within this range, it is considered as 
“noise free” pixel. Else, the pixel is considered as “noise” 
pixel. 
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Figure 2. A portion of an image that is being filtered by using a median filter of size 3 × 3. 

 
 
 
The noise correction stage of BDND consists of two 
steps. In the first step, the maximum filtering window size, 

WM  WM has to be determined based on the global noise 
density estimation. The maximum window size is limited 
to the size of 7 × 7 pixels. In the second step, only “noise” 
pixels will be filtered while the “noise free” pixels are 
remain unaffected. For each “noise” pixel starting by 
using a filtering window of size 3 × 3, the number of 
“noise free” pixels N is calculated. If N is less than half of 
the area covered by the current filtering window, the size 
of the filtering window is extending one pixel in all the four 
sides of the window. The expansion of size of the filtering 
window will stop when N is greater or equal to the half of 
the filtering window area or when the filtering window has 

a size of WM  WM. However, if there is still not a single 
“noise free” sample exists within the filtering window, 
although the size of the filtering window already reach WM 

× WM, BDND will then continue to expand until at least it 
has one “noise free” pixel within its contextual region. 
After that, the filtering process is done by finding the 
median value from the sorted “noise free” pixels within 
the window area. 
 
 
NEW IMPLEMENTATION OF BDND 
 
A long processing time is required by the originally 
proposed BDND mainly due to the following three factors: 

1) In both noise detection and noise correction stages, 
the sorting operations are used to find the median value 
(some of the sorting algorithms are presented in Moses 
(2009). 
2) In noise detection stage, BDND uses two detection 
windows to classify the input pixels to either “noise” or 
“noise free” pixels. The primary detection window is a big 
window which is 21 × 21 pixels and thus requires long 
processing time. 
3) In noise correction stage, BDND employs an adaptive 
filtering. The filtering window is not fixed but changing 
accordingly to the local noise density. 
 
In order to reduce the problems as pointed by points 1 
and 2, a similar work to Kong and Ibrahim (2010) is used 
in this paper. With the intention of avoiding the usage of 
sorting operations, the method employed in Huang et al. 
(1979) which exploits local histogram is utilized here to 
find the median value. To ease our understanding, lets 
consider the portion of the image as shown in Figure 2 
which is being filtered by a median filter of size 3 × 3. The 
black thick square region presents the contextual region 
defined by this sliding window. The values shown in the 
figure present the pixel intensity values. At this filter’s 
position, a local histogram h(i) as shown in Figure 3a is 
created. Histogram h(i) presents the number of 
occurrences of intensity value i within the contextual 
region. Then, a local cumulative density function (cdf) as 
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(a) 

 
(b) 
 

 
 

Figure 3. The local histogram defined by the window shown in Figure 2 (a) and the 
corresponding cumulative density function cdf (b). 

 
 
 
shown in Figure 3b is created. The cdf is defined as: 
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1

)cdf(                             (2) 

 
Where T is the number of samples within the contextual 
region that contribute to the calculation of the median 
value (in this example, T = 3 × 3 = 9). The median value 
is identified as the intensity value i where the cdf reaching 
the value is equal or greater than 0.5. For the example 
shown in Figure 3b, the median value is equal to 2. 

The usage of local histograms can avoid us from using 
sorting operations and thus can save some of our 

processing time, especially if the image is being filtered 

by a filter with big dimensions (for example 21  21 
pixels). Besides, the creation of local histogram is simple 
if the filter is moved one pixel per time. Figure 4 shows 
the same image portion as shown in Figure 2, but when 
the filter is moved one pixel to the right. Figure 5 shows 
the common region and the differences between Figures 
2 and 4. Using the example shown by these figures, the  
samples defined by the contextual region in Figure 4 
actually can be initiated base on the samples from Figure 
2. The samples in Figure 4 are defined as the samples in 
Figure 2 with added samples from Figure 5c and 
deducted samples from Figure 5b. The samples in Figure 
2 are (0, 0, 0, 1, 2, 3, 4, 6, 6). Therefore, the samples in 
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Figure 4. The image in Figure 2 when the filter is shifted one pixel to the 

right. 
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(c)  
 
Figure 5. The common region between Figures 2 with 4 (a), the portion 

of the contextual region that only belongs to Figure 2 (b) and the portion 
of the contextual region that only belongs to Figure 4 (c). 



 

 

 

Ibrahim et al.          5529 
 
 
 

Table 1. Suggested number of local histograms based on global noise density estimation . 
 

Noise density Number of local histograms 

%20%0  3 local histograms (corresponding to windows of size 3 × 3, 5 × 5 and 7 × 7) 

%40%20  4 local histograms (corresponding to windows of size 3 × 3, 5 × 5, 7 × 7 and 9 × 9) 

%70%40  5 local histograms (corresponding to windows of size 3 × 3, 5 × 5, …, 11 × 11) 

%70  13 local histograms (corresponding to windows of size 3 × 3, 5 × 5, …, 27 × 27) 

 
 
 
Figure 4 can be defined as (0, 0, 0, 1, 2, 3, 4, 6, 6) + (5, 
2, 3) – (1, 0, 6) = (0, 0, 2, 2, 3, 3, 4, 5, 6). Thus, the 
histogram can be updated by considering only two 
columns at one time and therefore saving a lot of 
processing time. The processing time can be reduced 
further if the window slides continuously, where the 
current local histogram can be created by the previous 
local histogram. Therefore, in our implementation, the 
window slides from left to right for the odd rows and from 
right to left for the even rows. The calculation of median 
value by using this method is faster than when we create 
new local histogram from the whole contextual region. 
Therefore, in our implementation of BDND, the detection 
stage has been reduced into seven steps as follows: 
 

 

Step 9 
 

Create two local histograms h1 and h2 which are defined 
by contextual regions around the current pixel, 
corresponds to window of size 21 × 21 and window of 
size 3 × 3 by using the aforementioned method 
(histogram h2 is still need to be created, although it might 
not be used in certain condition in order to ensure the 
continuity of the window’s sliding path). 
 
 

Step 10 
 

Find the median value, med from h1. 
 

 

Step 11 
 

For the intensity value between 0 and med in h1, find the 
largest histogram’s bins gap. The intensity value 
corresponds to this condition is defined as the boundary 
b1. 
 
 
Step 12 
 
For the intensity value between med and  255  in  h1,  find  

the largest histogram’s bins gap. The intensity value 
corresponds to this condition is defined as the boundary 
b2. 
 
 
Step 13 
 
The middle cluster is defined as the range from b1 to b2. If 
the current pixel falls within this range, it is considered as 
“noise free” pixel and the classification process for this 
pixel is completed. Otherwise, the pixel will be further 
investigated by using Step 14. 
 
 
Step 14 
 
Repeat Steps 10 to 13 by using h2. 
 
 
Step 15 
 
The middle cluster is defined as the range from b1 to b2. If 
the current pixel falls within this range, it is considered as 
“noise free” pixel; otherwise, the pixel is considered as 
“noise” pixel. 

It is worth noting that the originally proposed BDND 
which employs sorting operations requires eight steps in 
its noise detection stage. On the other hand, our 
implementation of BDND by using local histogram only 
requires seven steps. This suggests that our proposed 
implementation is faster than the original BDND. To 
tackle the third problem associated with BDND which is 
regarding to the expansion of filter at each “noise” pixel 
locations, in our implementation of BDND, regardless 
whether the current pixel is “noise” or “noise free” pixel, a 
few local histograms are created. These local histograms 
are associated together with their corresponding total 
number of “noise free” samples, T. The total number of 
local histograms used is decided based on the global 

noise density estimation , this is given in Table 1. 
Following  the  rules  set  by  the original  BDND,  in our  
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Figure 6. Image Lena corrupted by 25% of impulse noise (that is P = 

0.25) (a), output from SM with size 7 × 7 (b) and output from BDND 
using sorting operations (c) and output from BDND using local 
histograms (d). 

 
 
 
implementation, the local histogram that is used for the 
filtering process is selected based on T. 
 
 
EXPERIMENTAL RESULTS 
 
Here, the originally proposed BDND by Ng and Ma 
(2006) is referred as BDND (sorting) while our 
implementation of BDND is referred as BDND 
(histogram). The performance of BDND (histogram) was 
compared with BDND (sorting) and SM (with filter size 7 
× 7 pixels). For both BDND (sorting) and SM, the median 
values were found by using the sorted pixel values. In 
this paper, the bubble sort which is a well known sorting 
technique has been implemented in both BDND (sorting) 
and SM. The grayscale image of “Lena” with size 512 × 
512 pixels as shown in Figure 1a was used for the 
evaluation purpose. This image was then corrupted by 
impulse noise from level 0 to 95% with the incremental 
step in corruption is set to 1%. Next, each corrupted 
version was filtered by using SM, BDND (sorting) and 

BDND (histogram). The filtered images are compared 
based on visual inspection, root mean square error 
(RMSE) value and processing time. Figures 6 to 8 shows 
some of the filtered outputs. As shown by these figures, 
the appearance of the outputs obtained from BDND 
(histogram) is same as the outputs from BDND (sorting). 
Unlike SM, both implementations are able to reduce 
impulse noise level even when the noise level is high. 
Furthermore, these figures also show that BDND 
produces sharper images as compared with SM. In this 
paper, the size of the input image is 512 × 512 pixels. 
Thus, the RMSE value is defined as: 

 

2511

0

511

0
2

),(),(
512

1
RMSE

x y

yxgyxf                        (3) 

 
Where g is the original clean image, f is the output from 
the restoration process and (x, y) are the spatial 
coordinates. The smaller the value of RMSE, the better 
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Figure 7. Image Lena corrupted by 50% of impulse noise (that is P 

= 0.50) (a), output from SM with size 7 × 7 (b), output from BDND 
using sorting operations (c) and output from BDND using local 
histograms (d). 

 
 
 

 
 
Figure 8. Image Lena corrupted by 75% of impulse noise (that is P = 0.75) (a), 

output from SM with size 7 × 7 (b), output from BDND using sorting operations 
(c) and output from BDND using local histograms (d). 
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Figure 9. The graph of RMSE value versus level of corruption in Lena image. 

 

 
 

 
 

Figure 10. The graph of processing time (in seconds) versus level of 
corruption in Lena image. 

 
 
 
the restoration is. Figure 9 shows the graph of RMSE 
value versus the level of corruption. As shown by this 
graph, the plots of BDND (sorting) and BDND (histogram) 
are overlapped with each other. This suggests that both 
implementations produce the same outputs. We also can 
see that the RMSE value of BDND is lower than the 
RMSE value of SM. This shows that BDND has better 
restoration ability as compared with SM. 

In order to compare the output from BDND (sorting) 
with the output from BDND (histogram), we use the 
image similarity measure (ISM) as follows: 

)512/(),(),(ISM 2
511

0

511

0

21

x y

yxfyxf                            (4) 

 
Where f1 is the output from BDND (sorting) and f2 is the 
output from BDND (histogram). In this paper, we found 
that ISM is always equal to zero; indicates that the BDND 
(histogram) produce exactly the same outputs as what 
have been produced by BDND (sorting). 

Figure 10 shows the graph of processing time versus 
the   level  of  corruption.  As  shown  by  this  graph,  the  



 

 

 

 
 
 
 
processing time required by BDND (sorting) is much 
higher than what is needed by BDND (histogram) and 
SM. BDND (sorting) requires between two to three 
minutes to completely process the image. On the other 
hand, BDND (histogram) requires only less than two 
seconds to process and produce exactly the same result. 
Therefore, this shows that the usage of local histograms 
in finding the median values can significantly reduce the 
processing time. 
 
 
Conclusion 
 
In this paper we presented an effective implementation of 
BDND. This implementation obtained the median values 
in both noise detection and noise cancellation stages 
through local histograms. The reduction in the processing 
time is achieved by manipulating the creation of local 
histograms and the window’s movement during filtering 
process. Although several versions of local histogram are 
needed in this implementation, this approach significantly 
reduces the computational time needed by BDND. 
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