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In the present investigation, we study the influence of heat and mass transfer on blood flow through 
tapered artery with a stenosis. The non-Newtonian nature of blood in small arteries is analyzed 
mathematically by considering the blood as Phan-Thien-Tanner fluid. The representation for the blood 
flow is through an axially symmetrical stenosis. Symmetry of the distribution of the wall shearing stress 
and resistive impedance and their growth with the developing stenosis is another important feature of 
our analysis. Exact solutions are evaluated for velocity, temperature, concentration, resistance 
impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of 
different type of tapered arteries (that is, converging tapering, diverging tapering, non tapered artery) 
are examined for different parameters of interest. 
 
Key words: Phan-Thien-Tanner fluid, blood flow, tapered artery, stenosis, exact solutions, heat and mass 
transfer. 

 
 
INTRODUCTION 
 
Recently, study of the effects of heat and mass transfer 
on blood has become quite interesting to many 
researchers both from the theoretical and experimental 
point of view because the quantitative prediction of blood 
flow rate and heat generation are of great importance for 
diagnosing blood circulation illness and for the 
noninvasive measurement of blood glucose (Chakravarty 
and Sen, 2005). Ma et al. (1994) studied heat and mass 
transfer in a separated flow region for high Prandtl and 
Schmidt numbers under pulsatile conditions. They 
analyzed in detail the arterial system and the 
hemodynamic factors that affect significantly blood phase 
transport and the vessel wall characteristics. Kawase and 
Ulbrecht (1983) examined the heat and mass transfer in 
non-Newtonian fluids. According to them the effect of 
non-Newtonian property  of  blood is  small  in  the  larger 
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arteries where the shear rate is high. A vast amount of 
literature is available to study the non-Newtonian property 
of different fluid flows (Nadeem et al., 2009a, b; Abd El 
Hakeem, 2009; Phan-Thien and Tanner, 1977; Phan-
Thien, 1978; Mekheimer and El Kot, 2008; Ellahi, 2010; 
Afsar Khan et al., 2012; Ellahi et al., 2010; Asghar et al., 
2008; Ellahi, 2009). Valencia and Villanueva (2006) 
reported the unsteady flow and mass transfer in models 
of stenotic arteries considering fluid-structure interaction. 
The effect of heat transfer on the motion of blood in a 
diseased artery has been modeled by Ogulu and Abbey 
(2005). The influence of pulsatile laminar flow and 
heating protocol on temperature distribution in a single 
blood vessel and tumor tissue receiving hyperthermia 
treatment was taken into account by Khanafer et al. 
(2007). Motivated from the above analysis, we have 
studied the effects of heat and mass transfer on Phan-
Thien-Tanner fluid model for blood flow through a tapered 
artery with a stenosis. To the best of author’s knowledge 
no investigation  has been  made to study the  blood  flow 
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Figure 1. Geometry of an axially symmetrical stenosis in the artery. 
 
 
 

by treating blood as Phan-Thien-Tanner fluid. The Phan-
Thien-Tanner fluid is a non-Newtonian viscoelastic fluid 
model having shear thinning and shear thickening 
properties making it quite a useful model for blood flow 
analysis. Hence we are presenting a new original 
contribution for blood flow literature. Exact solutions of 
the simplified governing equations along with the 
boundary conditions of stenosed symmetric artery have 
been calculated. The expressions for velocity, 
temperature, concentration, resistance impedance, wall 
shear stress and shearing stress at the stenosis throat 
have been examined. The graphical behavior of different 
type of tapered arteries has been examined for different 
parameters of interest. Streamlines have been plotted at 
the end of the article. 
 
 

PROBLEM FORMULATION 
 

Let us consider an incompressible Phan-Thien-Tanner 
fluid having constant viscosity   and density   in a 

tube having length .L  We are considering a cylindrical 

coordinate system  zr  , ,   such that u  and w  are the 

velocity component in r  and z  direction respectively. 

Further we assume that 0r  is taken as the axis of the 

symmetry of the tube. Heat and mass transfer 
phenomena is taken into account by giving temperature 

1T  and concentration 1C  to the wall of the tube, while at 

the centre of the tube we are considering axial symmetry 
condition on both temperature and concentration. The 
geometry of the stenosis which is assumed to be axially 
symmetric can be described as in Ellahi (2010). 
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where  zd  is the radius of the tapered arterial segment 

in the stenotic region, d0  is the radius of the non-tapered 

artery in the non-stenoic region,   is the tapering 

parameter, b  is the length of stenosis, 2n  is a 

parameter determining the shape of the constriction 

profile and referred to as the shape parameter, a  and b  

indicates its location as shown in Figure 1. The 

parameter   is defined as in Figure 1 in which 
  

denotes the maximum height of the stenosis located at 
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The equations governing the steady incompressible fluid 
are defined as 
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In the above equations, p  is the pressure; ,u  w  are 

the respective velocity components in the radial and axial 

directions respectively; T  is the temperature; C  is the 

concentration of fluid; k  denotes the thermal 

conductivity; pc  is the specific heat at constant pressure; 

mT    is   the   temperature   of  the   medium;   D    is  the 



 
 
 
 

coefficient of mass diffusivity, TK  is the thermal-diffusion 

ratio. 
The constitutive equation for Phan-Thien-Tanner fluid is 

defined by Abd El Hakeem (2009), Phan-Thien and 
Tanner (1977) and Phan-Thien (1978) as 
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in which   is shear stress tensor, T  denotes the 

transpose, v  is velocity,   is extensional parameter, D  

is the deformation rate tensor, 1k  is the relaxation time, 

  is the constant viscosity coefficient and 
  denotes 

Oldroyd’s upper-convected derivative. 
We introduce the non-dimensional variables 
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Here 0u  is the velocity averaged over the section of the 

tube of the width .0d  

Here Equation (9) was used; Equations (3) to (8) - the 
appropriate equations describing the steady flow of an 
incompressible Phan-Thien-Tanner fluid in the case of 

mild stenosis  1
0




d
  subject to the additional 

conditions (Mekheimer and El Kot, 2008) 
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Using the dimensionless quantities, the governing 
continuity, momentum, energy and concentration 
equation in dimensionless form are as in Equations (11) 
to (15) 
 

,0









z

w

r

u

r

u
                                                    (11) 

 

,0




r

p
                                                                   (12) 

 

 
,

~1

r

r

rz

p rz








 
                                                      (13) 

 

,0~1





























rzr

r

w
B

r
r

rr



                                (14) 

 

,0
11


































r
r

rr

S

r
r

rrS

r

c


                       (15) 

 

where rB  rc PE  is Brinkmann number. 
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Figure 2. Geometry of the axially stenosied tapered artery for 
different tapered angle. 

 
 
 
with the above simplifications and upon the division of the 
expressions for the two non vanishing stresses, 

Equations (16a) and (16b) the function f  is cancelled out 

resulting in 
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Linear PTT Model 

 

Using Equations (16c) when 0~ rr  and 0~   and 

substituting Equation (18) into (16b), we obtain 
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Exponential PTT Model 

 

Using Equation (16d) when 0~ rr  and 0~   and 

substituting Equation (18) into (16b), we obtain 
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The final expressions for energy and mass concentration 
equations take the form 
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The corresponding boundary conditions are 
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in which  tan  where   is called tapered angle and 

for converging tapering  ,0  non-tapered artery 

 0  and the diverging tapering  0  as shown in 

Figure 2. 

 
 
Solution of the problem 

 
Exact solution 

 
The exact solution of Equations (19) to (21) subjected to 
the boundary conditions (22a) and (22b) directly given as 
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We can define the volumetric flow rate Q  by 
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Substituting Equation (25a) into (28) we get 
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From the Cardan-Tartaglia formula for the solution of 
algebraic cubic equation, the real solution of Equation 
(29) is 
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Substituting Equation (25b) into (28) we get 
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The corresponding stream function can be found using 
the following formula 
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Resistance impedance 

 
The expression for resistance impedance is obtained 
from Equation (31) and is defined as follows 
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The simplified form of Equation (26) takes the following 
form 
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Expression for the wall shear stress 
 

The non zero dimensionless shear stress is shown as 
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With the help of Equation (34) we can find the expression 

for wall shear stress at hr   as 
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We can note that the shearing stress at the stenosis 
throat, that is the wall shear at the maximum height of the 

stenosis located at 
n

n
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The final expression for the dimensionless resistance to 

 , wall shear stress rz  and the shearing stress at the 

throat s  are defined as 
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Figure 3. Variation of velocity profile for ,3.0Q  ,2n  

,0.01   ,3.0  ,2.0  .5.0z   
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Figure 4. Variation of velocity profile for ,3.0Q  ,5.0We  

,0.01   ,1.0  ,2n  .5.0z  
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0  and 0  are the resistance to flow and the wall shear 

stress for a flow in a normal artery (no stenosis). 
 
 

NUMERICAL RESULTS AND DISCUSSION 
 

To observe  the  quantitative  effects  of  the  extensional 
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Figure 5. Variation of velocity profile for ,3.0Q  ,5.0We  

,0.01   ,3.0  ,2n  .5.0z  
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Figure 6. Variation of velocity profile for ,3.0Q  ,2n  

,0.01   ,3.0  ,2.0  .5.0z  

 
 
 

parameter  , Weissenberg number We , the stenosis 

shape n  and maximum height of the stenosis   for 

converging tapering, diverging tapering and non-tapered 
arteries for Phan-Thien-Tanner fluid Figures 3 to 14 are 

plotted. The variation of axial velocity for  , We  and   

for the case of a converging tapering, diverging tapering 
and non-tapered arteries are displayed in Figures 4 to 6 . 
In Figures 4 to 6 we observed that with an increase in 

We  and  , velocity profile increases while it decreases 

with an increase in  . It is also seen that for the  case  of
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Figure 7. Variation of wall shear stress for ,3.0Q  ,2.0  ,0.01   

,2n  .5.0We  
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Figure 8. Variation of wall shear stress for ,3.0Q  ,2.0  ,0.01   

,2n  .2.0  

 
 
 

converging tapering velocity, it gives larger values as 
compared to the case of diverging tapering and non-
tapered arteries. Figures 7 to 9 show how the converging 
tapering, diverging tapering and non-tapered arteries 

influence on the wall shear stress rz . It is observed  that 

with an increase in ,We    and n  shear stress 

decreases, the stress yield diverging tapering with 

tapered angle 0 , converging tapering with tapered 

angle 0  and non-tapered  artery  with  tapered  angle
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Figure 9. Variation of wall shear stress for ,3.0Q  ,2.0  ,0.01   

,5.0We  .2.0  
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Figure 10. Variation of resistance for ,3.0Q  ,1b  ,1L  ,0.01   

,5.0  .5.0We  

 
 
 

0 . In Figures 10 to 13 we noticed that the 

impedance resistance increases for converging tapering, 
diverging tapering and non-tapered arteries when we 
increase n  and  , while it decreases  with  the  increase 

in We . We also observed that resistive impedance in a 

diverging tapering appear to be smaller than those in 
converging tapering because the flow rate is higher in the 
former   than   that   in   the   latter,   as   anticipated  and
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Figure 11. Variation of resistance for ,3.0Q  ,1b  ,1L  ,0.01   ,8.0  

.11n  
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Figure 12. Variation of resistance for ,3.0Q  ,1b  ,1L  ,0.01   

,2n  .5.0We  

 
 
 

impedance resistance attains its maximum values in the 
symmetric stenosis case (n=2) .  Finally  Figures  14  and 

15 are prepared to see the variation of the shearing 
stress at  the  stenosis  throat 

s   with   . It  is  analyzed
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Figure 13. Variation of shear stress at the stenosis throat for ,3.0Q  

.5.0We  
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Figure 14. Variation of shear stress at the stenosis throat for ,5.0We  

.2.0  

 
 
 
through figures that shearing stress at the stenosis throat 
increases with an increase in ,  Q  and We . Figures 16 

and 17 show the variation of temperature profile for 
different values of Brickmann number 

rB  and 

Weissenberg number .We  It is observed that with an 

increase in Brickmann number ,rB  temperature profile 

increases; while it decreases with an increase in 

Weissenberg number We ; also temperature profile gives 

the large values for converging tapering as compared to 
the diverging and non-tapered artery.
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Figure 14. Variation of shear stress at the stenosis throat for 

,5.0We  .2.0  
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Figure 15. Variation of shear stress at the stenosis throat for 

,5.0F  .2.0  

 
 
 

Figures 18 to 20 are prepared to see the variation of 

concentration profile for Brickmann number ,rB  

Weissenberg number We  and Soret number rS . It is 

analyzed that with an increase in Brickmann number rB  

and Soret number rS  concentration profile decreases, 

while it increases with an increase in Weissenberg 

number We . It is also observed that concentration profile 

has an opposite behavior as compared to the 
temperature profile. Trapping phenomena have been 
discussed through Figures 21 to 24. It is observed that 

with   an   increase   in   Weissenberg   number  We ,  the 
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Figure 16. Variation of temperature profile for ,3.0Q  ,2n  

,0.01   ,3.0  ,2.0  ,5.0z  .5.0rB  
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Figure 17. Variation of temperature profile for ,3.0Q  ,2n  

,0.01   ,3.0  ,2.0  ,5.0z  .5.0We  

 
 
 

stenosis shape n  and maximum height of the stenosis 

 , number of trapping bolus increases and size of the 

trapping bolus decreases, while with an increase in 
extensional parameter ,  number of trapping bolus 

decreases and size of the trapping bolus increases. 
 
 
Conclusion 
 
The effects of Phan-Thien-Tanner fluid model for blood 
flow    through   a   tapered   artery   with   a  stenosis  are
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Figure 18. Variation of concentration profile for ,3.0Q  ,2n  ,0.01   

,3.0  ,2.0  ,5.0z  ,5.0We  ,5.0rS  .5.0cS  
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Figure 19. Variation of concentration profile for ,3.0Q  ,2n  ,0.01   

,3.0  ,2.0  ,5.0z  ,5.0rB  ,5.0rS  .5.0cS  

 
 
 

investigated. The main points of presented analysis are 
listed below 
 

1) It is observed that with an increase in We  and   

velocity   profile   increases;  while  it  decreases  with  an 

increase in .  

2) It is noticed that for the case of converging tapering, 
velocity gives larger values as compared to the case of 
diverging tapering and non-tapered arteries. Because for 
converging tapering, flow easily passed from the arteries. 
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Figure 21. Stream lines for different values of    a  1.0   b  2.0  other parameters are ,   ,1.0  ,1.0Q  ,4.0  

,3.0We  .2n  
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Figure 22. Stream lines for different values of n   c  2n   d  4n  other parameters are ,   ,1.0  ,01.0  ,4.01   

,3.0We  .2.0Q  
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Figure 23. Stream lines for different values of We   e  1.0We   f  2.0We  other parameters are ,   ,1.0  ,1.0  ,4.0  

,3.0Q  .2n  
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Figure 24. Stream lines for different values of    g  1.0   h  2.0  other parameters are ,   ,1.0We  ,1.0  ,4.0  

,3.0Q  .2n  

 
 
 

3) With an increase in ,We    and n  shear stress 

decreases; the stress yield diverging tapering with 

tapered angle 0  , converging tapering with tapered 

angle 0  and non-tapered artery with tapered angle 

.0  

4) We notice that the impedance resistance increases for 
converging tapering, diverging tapering and non-tapered 
arteries when we increase n  and  ; while it decreases 

with increase in We . 

5) It is analyzed through figures that shearing stress at 

the stenosis throat increases with an increase in ,  Q  

and We . 

6) Temperature profile has opposite behaviour for 

Brickmann number rB and Weissenberg number We . 

7) It is analyzed that with an increase in Brickmann 

number rB  and Soret number rS  concentration profile 

decreases; while it increases with an increase in 

Weissenberg number We . 

8) It is observed that with an increase in Weissenberg 

number We , the stenosis shape n  and maximum height 

of the stenosis  , number of trapping bolus increases 

and size of the trapping bolus decreases; while with an 
increase in extensional parameter ,  number of trapping 

bolus decreases and size of the trapping bolus increases. 
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