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In the study presented, a hybrid model is proposed for monthly runoff prediction by using wavelet 
transform and feed forward neural networks. Discrete wavelet transform (DWT) and Levenberg-
Marquardt optimization algorithm based feed forward neural networks (FFNN) are considered for the 
modeling study. The study region covers the basins of Medar River which is located at the Aegean 
region of Turkey. Meteorological data, which represent the study region, were decomposed into wavelet 
sub-time series by DWT. Ineffective sub-time series were eliminated by using Mallow Cp coefficient 
based all possible regression method to prevent collinearity. Then, effective sub-time series 
components constituted the new inputs of FFNN. Some favorite evaluation measures, that is, 
determination coefficient (R

2
), adjusted determination coefficient (Adj.R

2
), Nash-Sutcliffe efficiency 

coefficient (NS), root mean squared error (RMSE), weighted mean absolute percentage error (WMAPE), 
were employed to assess modeling performances. The results determined in study indicate that the 
DWT based FFNN models (DWT-FFNN) are successful tools to model the monthly runoff series and can 
give good prediction performances than conventional methods.  
 
Key words: Wavelet transform, feed forward neural networks, Levenberg-Marquardt algorithm, monthly runoff 
prediction. 

 
 
INTRODUCTION 
 
Over the past years, artificial intelligence methods have 
been widely used in the modeling and prediction of 
hydrological variables. Especially, artificial neural 
networks (ANN), which is a nonlinear black box model 
inspired by the biological learning process of the brain, 
have been accepted an effective tool for modeling a 
complex hydrologic system (Hsu et al., 1995; Dawson 
and Wilby, 1998; Campolo et al., 1999; Coulibaly et al., 
2000; Cigizoglu, 2005; Kisi, 2004, 2008a; Cigizoglu and 
Alp, 2006; Diamantopoulou et al., 2007; Razavi and 
Araghinejad, 2009; Okkan, 2011; Fistikoglu and Okkan, 
2011; Okkan and Dalkilic, 2011; Okkan and Serbes, 
2011). A comprehensive review of the usage of ANN in 
hydrology is given by ASCE Task Committee on 
Application of the Artificial Neural Networks in Hydrology 
(ASCE, 2000a, b). 

Although ANN methods had been used extensively as 
useful tools for prediction of hydrological variables, it has 
also many drawbacks to deal with non-stationary data 
(Cannas et al., 2006; Partal, 2009). Therefore, some 
hybrid modeling approaches which include different data-
preprocessing and combine techniques have been 
developed to increase generalization capability of ANN. 
Approaches for dealing with non-stationary charac-
teristics of data are not as highly generated, nor as well 
proved, as those for hydrological prediction problems. In 
the last years, there has been an interest in hybrid 
modeling techniques. Chaotic neural networks 
(Karunasinghe and Liong, 2006), set pair analysis (SPA) 
and principle component analysis (PCA) based neural 
networks (Wang et al., 2006a; Wang et al., 2006b; Wu et 
al., 2008), the  threshold  neural  networks  (Wang  et  al.,  
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Figure 1. FFNN structure.  

  
 
 
2006a), the cluster-based hybrid neural networks 
(Cigizoglu and Kisi, 2005; Wang et al., 2006a; Wu et al., 
2008) were successfully applied to hydrological variables. 

Recently, wavelet transform, which is another data-
preprocessing technique, showed successful 
performance in hydrological applications. There are some 
appreciable studies of wavelet transform based neural 
network models (Li et al., 1999; Wang and Ding, 2003; 
Anctil and Tape, 2004; Cannas et al., 2006; Kisi, 2008b; 
Wang et al., 2009; Rajaee, 2010; Rajaee et al., 2011). 
The wavelet transform is also integrated with multiple 
linear regression (Kucuk and Agiralioglu, 2006; Kisi, 
2009, 2010) and support vector machine approach (Kisi 
and Cimen, 2011). Each of these studies showed that 
different black box models trained or calibrated with 
decomposed data resulted in higher accuracy than the 
single models that were calibrated with an 
undecomposed and noisy time series. 
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2006a), the cluster-based hybrid neural networks 
(Cigizoglu and Kisi, 2005; Wang et al., 2006a; Wu et al., 
2008) were successfully applied to hydrological variables. 

Recently, wavelet transform, which is another data-pre-
processing technique, showed successful performance in 
hydrological applications. There are some appreciable 
studies of wavelet transform based neural network 
models (Li et al., 1999; Wang and Ding, 2003; Anctil and 
Tape, 2004; Cannas et al., 2006; Kisi, 2008b; Wang et 
al., 2009; Rajaee, 2010; Rajaee et al., 2011). The 
wavelet transform is also integrated with multiple linear 
regression (Kucuk and Agiralioglu, 2006; Kisi, 2009, 
2010) and support vector machine approach (Kisi and 
Cimen, 2011). Each of these studies showed that 
different black box models trained or calibrated with 
decomposed data resulted in higher accuracy than the 
single models that were calibrated with an undecom-
posed and noisy time series. 

The main purpose of the study presented is to examine 
the applicability and generalization capability of the 
wavelet-feed forward neural networks combined model 
for the prediction of the monthly runoff values of a study 
region which is an important water resource for the Gediz 

Basin/Turkey, and to compare its performance with single 
feed forward neural networks, multiple linear regression 
(MLR), the wavelet-MLR combined model and another 
data pre-processing technique called principle 
component analysis based neural networks. Some 
favorite performance evaluation measures are employed 
to assess developed models. 
 
 
MATERIALS AND METHODS 
 
Feed forward neural networks 
 
There are many papers and books which provide a detailed 
description of the FFNN (Haykin, 1994; Hagan and Menhaj, 1994; 
Ham and Kostanic, 2001; Partal et al., 2008; Fistikoglu and Okkan, 
2011; Okkan and Serbes, 2011), and hence only a brief description 
of FFNN is given here.  The running procedure of FFNN involves 
typically two phases; forward computing and backward computing. 

In forward computing, each layer uses a weight matrix associated 
with all the connections made from the previous layer to the next 
layer (Figure 1).  

The hidden layer has the weight matrix Wij and activation function 

f 
(1)

; the output layer has the weight matrix Wjm and activation 

function f (2)
. Given the  network  input  vector  

1nxx R ,  the  output  
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of the output layer, which is the response (output) of the network 

1mxy R , can be written as: 

  

(2) (1)
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                                    (1) 

 
After the phase of forward computing, backward computing, which 
depends on the algorithms to adjust weights, is carried out. The 
process of adjusting these weights to minimize the differences 
between the actual and the desired output values is called training 
or learning of network. If these differences (errors) are higher than 
the desired values, the errors are passed backwards through the 
weights of the network. In ANN terminology, this phase is also 
called the back propagation algorithm. 

Depending on the techniques to train FFNN models, different 
back propagation algorithms have been developed. In this study, 
the Levenberg-Marquardt back propagation algorithm was used in 
training of the FFNN. The Levenberg-Marquardt back propagation 
algorithm is a second-order nonlinear optimization technique that is 
usually faster and more reliable than any other back propagation 
techniques (Coulibaly et al., 2000; Kisi, 2004; Cigizoglu and Kisi, 
2005; Fistikoglu and Okkan, 2011; Okkan, 2011).  

The Levenberg-Marquardt optimization algorithm represents a 
simplified version of Newton method applied to the training of FFNN 
(Hagan and Menhaj, 1994). The training process can be viewed as 
finding a set of weights that minimize the error (ep) for all samples in 
the training set (T). The performance function is a sum of squares 
of the errors as follows: 
 

2 2

1 1

1 1
( ) ( ) ( ) ,

2 2
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p p p

p p

E W d y e P mT
 

                                      (2)                            

 
where, T is the total number of training samples, m is the number of 
output layer neurons, W represents the vector containing all the 
weights in the network, yp  is the actual network output, and dp   is 
the desired output. 

When training with the Levenberg-Marquardt algorithm, the 
changing of weights ΔW can be computed as follows: 
 

1 [ ]T T

k k k k k kW J J I J e                                                                (3)                                                                                      

 
Then, the update of the weights can be adjusted as follows:                                                    
 

1k k kW W W                                                                                 (4)                                                        

 

where, J is the Jacobian matrix, I is the identify matrix, e is the 
network error, µ is the Marquardt parameter which is to be updated 
using the decay rate β depending on the outcome. In particular, µ is 
multiplied by the decay rate β (0<β<1) whenever E(W) decreases, 
while µ is divided by β whenever E(W) increases in a new step 
(Coulibaly et al., 2000; Fistikoglu and Okkan, 2011; Okkan, 2011; 
Okkan and Dalkilic, 2011). 

 
 
Wavelet transform 

 
The wavelet transform, developed during the last decades, is a 
decomposition method. This method provides an analyzing way of 
a signal in both time and frequency and appears to be a more 
successful than the conventional Fourier transforms that do not  
provide time-frequency analysis for the variables involve non-
stationary signals (Daubechies, 1990; Kucuk and Agiralioglu, 2006; 
Partal and Cigizoglu, 2009; Partal, 2009; Kisi and Partal, 2011). 

Assuming a  continuous  time  series  x(t),  wavelet  function  ψs,τ (t), 

 
 
 
 

called the mother wavelet, can be defined as ( ) =0t dt




 .  

,s  can be obtained through compressing and expanding 

( )t (Equation 5). 
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where s is scale or frequency factor,  τ is time factor, R is the 
domain of real number.  

ψs,τ (t) must have zero mean and be localized in both time and 

Fourier space (Wang and Ding, 2003; Kucuk and Agiralioğlu, 2006; 
Partal, 2009; Kisi, 2009). Wavelet transform of x(t) is also written 
as: 
  

1/ 2
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t
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where   is complex conjugate functions of ψ. Equation (6) 

describes that wavelet transform is the decomposition of x(t) under 
different resolution scale (Wang and Ding, 2003; Kucuk and 
Agiralioglu, 2006; Kisi, 2011; Rajaee et al., 2011; Kisi and Partal, 
2011).  

For practical applications in hydrology, researchers have access 
to a discrete time signal, rather than to a continuous time signal 
(Rajaee et al., 2011). A discretization of Eq.(6) based on 
trapezoidal rule is perhaps the simplest  discretization of the 
continuous wavelet transform. This transform produces N2 
coefficients from a data set of length N; hence unnecessary 
information is locked up within the coefficients; which may or may 
not be an appealing attributes (Rajaee et al., 2011).To overcome 
this uncertainty, discrete wavelet transforms (DWT) which present 
power of two logarithmic scaling of the translations can be used in 
practical applications (Mallat, 1989; Kucuk and Agiralioğlu, 2006; 
Partal, 2009).  

According to the Mallat algorithm, the discrete wavelet transform 
of discrete time series xi is written as: 
 

1
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where i is integer time steps, j and k are integers that control, 
respectively, the scale and time; Wj,k is wavelet coefficient for the 
scale factor s = 2j and the time factor τ = 2jk. 

In DWT method, the time series (xi) passes through two filters 
and are decomposed into wavelet sub-time series components 
without losing the information about the instant of the element 
occurrence (Mallat, 1989; Kucuk and Agiralioglu, 2006; Kisi, 2009). 
The DWT converts a signal into father and mother wavelets. Father 
wavelets represent the high-scale, low frequency components 
(approximation (A) components). Mother wavelets are repre-
sentations of the low-scale, high frequency components (detail (D) 
components). Thus, DWT allows one to study different investing 
behaviors in different time scales independently (Ma, 2006; Partal, 
2009; Rajaee et al., 2011). The sub-time series can be computed 
by using Equation (7). The DWT decomposition of a time series is 
presented in Figure 2. 
 
 

Study region and data 
 
In hydrological modeling studies, the determination of suitable input 
variables would play an important role in their  applications.  In  the 
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Figure 2. Decomposition of DWT.   

 
 
 
study, modeling strategy that predicts outputs from inputs based on 
monthly rainfall and temperature data. In addition to concurrent 
values of these data, delaying process that rainfall transforms into 
runoff, in other words the representational monthly groundwater 
storage was considered and one-month-ahead rainfall values were 
also used in modeling studies. Thus, three input data   (Pt, Tt, Pt-1) 
were prepared for the same periods of the runoff records (Pt: 
monthly rainfall; Pt-1: one-month-ahead rainfall Tt: monthly 
temperature). 

The application area covers the drainage basin of Medar River, 
which is located in the Gediz Basin of Turkey. The monthly runoff 
data of Medar River were observed by Kayalioglu flow gauging 
station (EIE 509) of II. Regional Directorate of State Hydraulic 
Works for the period between 01.10.1961 and 01.09.2005 (1962-
2005 water years). The monthly data of rainfall and temperature at 
Akhisar and Sarilar meteorological stations, which are represent the 
drainage basin of Medar River, were obtained from the State 
Meteorological Organization of Turkey. Next, Thiessen weighted 
precipitation values and arithmetical mean temperature values were 
prepared for monthly timescale, using records available at stations. 
 
 
Modeling strategy developed in the study 
 
In the study, discrete wavelet transform (DWT) was linked to feed 
forward neural networks (FFNN) for monthly runoff prediction. First, 
the input data (Pt, Pt-1, Tt) of training and testing periods were 
decomposed into a certain number of sub-time series components 
by DWT. The selection of the optimal decomposition level is one of 
the keys to determine the performance of model in wavelet domain. 
Decomposition level is generally based on signal characteristics 
and experiences to selection. For example, Chou and Wang (2004) 
showed that using only one decomposition level to model the 
streamflow time series does not easily represent the process. Kisi 
and Cimen (2011) preferred three decomposition levels in their 
monthly streamflow forecasting study. For the monthly scaled 
hydrological modeling studies, three decomposition levels can 
nearly represent annual period of the related time series.  Similarly, 
three decomposition levels were considered in this study. Thus, 
meteorological input data were decomposed using appropriate 
wavelet functions (mother wavelets) and twelve sub-time series 
components (time series of 2-months mode (D1), 4-months mode 

(D2), 8-months mode (D3) and approximation mode (A3)) were 
obtained for the training and testing period.  

This study also aimed at examining the effects of the employed 
mother wavelet type on the efficiency of proposed models. For this 
purpose, performances of four different kinds of wavelet, i.e., the 
Haar wavelet (simple wavelet-db1), Daubechies-2 (db2) wavelet 
(the most popular wavelet), Daubechies-6 (db6) wavelet and 
Daubechies-10 (db10) wavelet are investigated in the present study 
(Figure 3). For example, the three levels decomposition of the Pt 
and Tt signals that yield four sub-signals by the Daubechies-2 (db2) 
wavelet are shown in Figures 4 and 5. 

After the decomposition processes, effective sub-time series 
components should be determined. Some correlated sub-time 
series components may reduce the generalization capabilities of 
the feed forward neural networks; thus, the effective sub-time series 
components that represented the inputs of the feed forward neural 
networks were treated so as to reduce collinearity as much as 
possible. In this study, this was carried out using Mallow‟s Cp based 
all possible regression method as this is an effective way to 
determine the subset of variables in cases where there are a large 
number of potential predictor variables (Efroymson, 1960; Mallows, 
1973). 

Mallow‟s Cp is a measure of the error in the best subset model, 
relative to the error incorporating all variables. Adequate models 
are those for which Cp is roughly equal to the number of variables in 
the model (Mallows, 1973). The Cp values can be computed using 
Equation (8). 
 

2

2
( ) ( 2 1)i

p

F

MSE
C N k N i

MSE
                                                       (8) 

 
where N is the number of data, MSEi

2 is the mean of residual 
squares in the model with i variable,  MSEF

 2 is the mean of residual 
squares in the full model with k variable. 

In some studies, new series which are obtained by summing the 
effective sub-time series were used as input to the models (Partal et 
al., 2008; Partal and Cigizoglu, 2009; Kisi, 2010; Kisi and Cimen, 
2011). Unlike these studies, components of sub-time series 
determined with the all possible regression method are used as 
individual separate model inputs in this study.  

The modeling strategy developed in this study  is  summarized  in
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Figure 3. (a) The Haar wavelet; (b) Daubechies-2 (db2) wavelet; (c) Daubechies-6 (db6) wavelet; (d) Daubechies-10 (db10) wavelet.  
 
 
 

Figure 6. 
 
 

Data Normalization and Assessment of Model Performances 
 

The input and output data are normalized to prevent the model from 
being dominated by the variables with large values, as is commonly 
used in artificial intelligence models. In this study, the normalization 
processes of all data were carried out using Equation (9). 
 

min

max min

i
i

x x
z

x x





                                                                        (9) 

 

where zi is the scaled value, xi is the unscaled data, xmin and xmax 
are, respectively, the minimum and maximum values of the 
unscaled data. 

Some favorite approaches are suggested for hydrological time 
series prediction accuracy assessment according to literature 
related to training and testing of models. In this study, five 
performance measures were considered.   

All models with optimum structures of them provided the best 
training result in terms of the minimum root mean squared error 
(RMSE), weighted mean absolute percentage error (WMAPE) and 
the maximum determination coefficient (R2), adjusted determination 
coefficient (Adj.R2), and Nash-Sutcliffe coefficient (NS) were also 
employed for the testing period (Equations 10 to 14). 

RMSE evaluates the residual between desired and output data, 
and WMAPE measures the mean absolute percentage error of the 
prediction. R2 and Adj.R2 evaluate the linear relation between 
desired and output data, while NS evaluates the capability of the 
model in simulating output data away from the mean statistics. 
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where n is the number of training or testing samples, yt  is the model 
output, dt   is the observed (desired) data in the tth time period, dmean 
is the mean over the observed periods, and p is the number of the 
inputs of models. 
 
 
RESULTS 
 
In the application, a MATLAB code which involves 
Mallat‟s DWT algorithm and four different kinds of 
wavelet (db1, db2, db6 and db10) was prepared. 
Levenberg-Marquardt algorithm based FFNN model was 
also developed by a MATLAB code. To evaluate the 
generalization capability of all models, data set consisted 
of two periods. 44 years input-output data were used and 
divided into training and testing periods by proportions of 
1/2 (October 1961 to September 1983) and 1/2 (October, 
1984 to September, 2005), respectively. According to 
modeling strategy, input data of training and testing 
periods were decomposed into a certain number of sub-
time series components by DWT firstly. Afterward, the 
effective variables were selected by the Mallows Cp 
coefficients for each mother wavelet type. To evaluate 
the strength and direction of the relations between varia-
bles, different linear regression analysis combinations in 
training period were obtained using the „„all possible 
regression method‟‟ tool in Minitab software with twelve 
sub-time series components which derived from the input 
data. Performances of the models with optimum variables 
(seen as bold characters in Tables 1 to 4) are nearly the 
same as that of the full linear models (for k = 12) ; that is, 
the explained variance of the monthly runoff values, 
which have the minimum Cp values, are nearly equal to 
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Figure 4. Original time series, 2-months mode of time series (D1), 4-months mode of time series (D2), 8-months 
mode of time series (D3) and approximation mode of time series (A3) of monthly rainfall for training period 
(mother wavelet type : db2). 

 
 
 
that explained by the full linear models. Before presenting 
these determined effective sub-time series as input data 
to FFNN, the all data were normalized using Equation 9 
to prevent the models from being dominated by the 
variables with the extreme values.  

In the DWT based FFNN (DWT-FFNN) and single 
FFNN applications, the optimal number of neuron in the 
hidden layer was determined using a trial and error 
approach by varying the number of neurons from 2 to 20. 
Various types of the activation function are possible for 
FFNN modeling but sigmoid function was preferred for 
each layer in study; and the training epochs were set to 
20. In the Levenberg-Marquardt algorithm based FFNN, 
the values of µ0 and β can be taken to be 0.01 and 0.1 
respectively. These values were fixed during the whole 
training process in this study. These values are also 

recommended by Hagan and Menhaj (1994). The DWT-
FFNN results were compared with multiple linear 
regressions (MLR), DWT based MLR (DWT-MLR) and 
principle component analysis based FFNN (PCA-FFNN). 
According to the Eigen-analysis of the correlation matrix, 
Eigen values and variance proportions for the input 
vector (Pt, Pt-1, Tt) are computed as 2.011, 0.6553, 
0.3329 and 0.671, 0.218, 0.111, respectively. Thus, 
cumulative proportions were obtained as 0.671 and 0.889 
for the first and second components, which were 
considered in PCA-FFNN application. The description 
and application on the hydrology of PCA can be found in 
Wu et al. (2008). 

Table 5 presents the results of the study region, in 
terms of different performance measures.  It can be seen 
from Table 5 that DWT based FFNN  models  have  good  



1696       Sci. Res. Essays 
 
 
  

-4
-3
-2
-1
0
1
2
3
4

0

2
4

4
8

7
2

9
6

1
2
0

1
4
4

1
6
8

1
9
2

2
1
6

2
4
0

2
6
4

D
1

Months

-8

-6

-4

-2

0

2

4

6

8

0

2
4

4
8

7
2

9
6

1
2
0

1
4
4

1
6
8

1
9
2

2
1
6

2
4
0

2
6
4

D
2

Months

-12

-8

-4

0

4

8

12

0

2
4

4
8

7
2

9
6

1
2
0

1
4
4

1
6
8

1
9
2

2
1
6

2
4
0

2
6
4

D
3

Months

10

12

14

16

18

20

22

0

2
4

4
8

7
2

9
6

1
2
0

1
4
4

1
6
8

1
9
2

2
1
6

2
4
0

2
6
4

A
3

Months

0

5

10

15

20

25

30

0

2
4

4
8

7
2

9
6

1
2
0

1
4
4

1
6
8

1
9
2

2
1
6

2
4
0

2
6
4

T
t
(0

C
)

Months

 
 

Figure 5. Original time series, 2-months mode of time series (D1), 4-months mode of time series (D2),   8-
months mode of time series (D3) and approximation mode of time series (A3) of monthly temperature for training 
period (mother wavelet type : db2). 

 
 
 
performances during both training and testing, and they 
outperform MLR, DWT-MLR and PCA-FFNN models in 
terms of the performance measures. In the training 
period, the DWT-FFNN (8, 6, 1) model with db-2 wavelet 
obtained the best RMSE, WMAPE, R

2
, Adj.R

2
, and NS 

statistics of 3.5146 mm, 0.2087, 0.9551, 0.9537, and 
0.9548, respectively; while the FFNN (3, 6, 1) model 
obtained the best maximum value statistics of 117.26 
mm. Investigating the results during testing period, it can 
be seen that the same model with the same mother 
wavelet type outperforms all other models.  

According to these results, DWT-FFNN model with db-
2 wavelet is able to obtain the better prediction accuracy 
in terms of different performance measures during the 
training and testing periods. The scatter plot and 
hydrograph of the best DWT-FFNN model and single 

FFNN model developed in this study during the testing 
period are shown in Figures 7 and 8. When the testing 
period scatter graphs of the models are examined, it is 
observed that the standard deviations around the y=x line 
are far less in the DWT-FFNN models. In other words, 
when y=ax+b fitted lines in graph are examined, it is 
observed that, in DWT-FFNN model, “a” gets closer to 
the value 1, and “b” gets closer to the value 0, compared 
to the FFNN model. 

In addition to long-term statistics of these models, 
seasonal box-plot presentations were also examined. 
Seasonal mean, minimum, maximum and, median 
statistics of the models and the observed data are shown 
in Figure 9. When the box-plot graph is examined, it can 
be seen that that DWT-FFNN model proves itself better 
than FFNN model  for  all  seasons.  When  summer  and  
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Table 1. Determination of Effective Sub-time Series 

Components for the Haar wavelet (db1). 
 

Number of 

Components 

R
2
 

(%) 

Adj R
2
 

(%) 
Cp D1_Pt D2_Pt D3_Pt A3_Pt D1_Pt-1 D2_Pt-1 D3_Pt-1 A3_Pt-1 D1_Tt D2_Tt D3_Tt A3_Tt 

1 20.7 20.4 475 
      

X 
     

2 40.7 40.3 291.2 
 

X 
    

X 
     

3 57.4 56.9 138.9 
 

X 
    

X X 
    

4 64.3 63.7 76.8 X X 
    

X X 
    

5 67.4 66.8 49.7 X X 
   

X X X 
    

6 69 68.2 37.7 X X 
   

X X X 
  

X 
 

7 70.3 69.5 26.9 X X 
   

X X X 
  

X X 

8 71.5 70.6 18 X X X 
  

X X X 
  

X X 

9 72.3 71.4 12.2 X X X 
 

X X X X 
  

X X 

10 72.7 71.6 11.1 X X X 
 

X X X X 
 

X X X 
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Figure 6. The modeling strategy developed in the study. 

 
 

Table 1. Determination of Effective Sub-time Series Components for the Haar wavelet (db1). 
 

Number of 
Components 

R
2
 

(%) 
Adj R

2
 

(%) 
Cp D1_Pt  D2_Pt  D3_Pt  A3_Pt  D1_Pt-1  D2_Pt-1  D3_Pt-1  A3_Pt-1  D1_Tt  D2_Tt  D3_Tt  A3_Tt 
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7 70.3 69.5 26.9 X  X  
 

 
 

 
 

 X  X  X  
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8 71.5 70.6 18 X  X  X  
 

 
 

 X  X  X  
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9 72.3 71.4 12.2 X  X  X  
 

 X  X  X  X  
 

 
 

 X  X 

10 72.7 71.6 11.1 X  X  X  
 

 X  X  X  X  
 

 X  X  X 

11 72.9 71.7 11.1 X  X  X  X  X  X  X  X  
 

 X  X  X 

12 72.9 71.6 13 X  X  X  X  X  X  X  X  X  X  X  X 
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Table 2. Determination of Effective Sub-time Series Components for the Daubechies-2 (db2) wavelet. 
 

Number of 
Components 

R2 (%) Adj R2 (%) Cp 
 

D1_Pt 
 

D2_Pt 
 

D3_Pt 
 

A3_Pt 
 

D1_Pt-1 
 

D2_Pt-1 
 

D3_Pt-1 
 

A3_Pt-1 
 

D1_Tt 
 

D2_Tt 
 

D3_Tt 
 

A3_Tt 

1 37.4 37.2 441.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 

 

 

 

 

 

 

 

 

 

 

2 55.4 55 242.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 

 

X 

 

 

 

 

 

 

 

 

3 64 63.6 148 

 

X 

 

 

 

 

 

 

 

 

 

 

 

X 

 

X 

 

 

 

 

 

 

 

 

4 72.5 72.1 54.5 

 

X 

 

X 

 

 

 

 

 

 

 

 

 

X 

 

X 

 

 

 

 

 

 

 

 

5 73.9 73.4 40.6 

 

X 

 

X 

 

 

 

 

 

 

 

 

 

X 

 

X 

 

 

 

 

 

 

 

X 

6 75 74.5 30 

 

X 

 

X 

 

 

 

 

 

 

 

X 

 

X 

 

X 

 

 

 

X 

 

 

 

 

7 76.5 75.8 16.2 

 

X 

 

X 

 

 

 

 

 

 

 

X 

 

X 

 

X 

 

 

 

X 

 

 

 

X 

8 77.5 76.8 6.6 

 

X 

 

X 

 

 

 

X 

 

 

 

X 

 

X 

 

X 

 

 

 

X 

 

 

 

X 

9 77.5 76.7 8 

 

X 

 

X 

 

 

 

X 

 

X 

 

X 

 

X 

 

X 

 

 

 

X 

 

 

 

X 

10 77.6 76.7 9.8 

 

X 

 

X 

 

X 

 

X 

 

 

 

X 

 

X 

 

X 

 

 

 

X 

 

X 

 

X 

11 77.6 76.6 11.2 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

 

 

X 

 

X 

 

X 

12 77.6 76.6 13 

 

X 

 

X 

 

X 

 

X 

 

X 
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Table 3. Determination of Effective Sub-time Series Components for the Daubechies-6 (db6) wavelet. 
 

Number of  

Components 
R

2
 (%) Adj R

2
 (%) Cp 

 
D1_Pt 

 
D2_Pt 

 
D3_Pt 

 
A3_Pt 

 
D1_Pt-1 

 
D2_Pt-1 

 
D3_Pt-1 

 
A3_Pt-1 

 
D1_Tt 

 
D2_Tt 

 
D3_Tt 

 
A3_Tt 

1 42.8 42.6 369.6 
 

 
 

 
 

 
 

 
 

 
 

 
 

X 
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X 
 

 
 

 
 

 
 

 
 

X 
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X 
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X 
 

 
 

 
 

X 
 

 
 

X 
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X 
 

 
 

X 
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X 
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X 
 

 
 

X 
 

X 
 

X 
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X 
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X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 

 
 
autumn statistics are taken as a basis specially, 
DWT-FFNN represents the distribution of runoff 
data well. 

DISCUSSION 
 

In this study, periodicity characters of the  

meteorological data were considered since time 
series decomposed by DWT produce detailed 
information about the endogenous structure of the  
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Table 4. Determination of Effective Sub-time Series Components for the Daubechies-10 (db10) wavelet. 
 

Number of 
Components 

R
2
 

(%) 
Adj R

2
 

(%) 
Cp 

 
D1_Pt 

 
D2_Pt 

 
D3_Pt 

 
A3_Pt 
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D2_Pt-1 
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data. The effective ones of the decomposed 
series were determined by Mallow Cp based all 
possible regression analysis (Tables 1 to 4) and 
then imposed as an input vector to MLR and 
FFNN to model the rainfall-runoff relation of a 
basin in Turkey.  

The Levenberg-Marquardt back propagation 
(BP) algorithm was used in training of the FFNN 
models. Other fast BP algorithms such as 
conjugate gradient and scaled conjugate gradient 
may be preferred.  

The effective decomposed series can be also 
selected by other statistical approaches. However, 
Mallows Cp based all possible regression analysis 
is a quite effective way to determine the subset of 
decomposed series in cases where there are a 
large number of potential predictors.  

The contribution of an appropriate mother 
wavelet type was also investigated. Four different 
popular wavelet types (db1, db2, db6 and db10) 
were used with three decomposition levels. In 
addition to these, other Daubechies‟s wavelets 

and some irregular wavelets such as Bior1.1, 
Rboi1.1, Coif1, Sym3, and Meyer wavelets may 
be used in similar applications.  

Table 5 presents the predictions performed by 
the different kind of models. Because the pheno-
menon of the hydro-meteorological time series 
have the inherent complexities and nonlinearities, 
the performance of single MLR model was not 
suitable. On the contrary, DWT increased the 
efficiency of all MLR and FFNN models. The best 
model structures were also provided in Table 5. 
Here, DWT-FFNN model with db-2 wavelet 
denotes a three layered model comprising eight 
inputs, six hidden and one output node. This 
model is able to obtain the better prediction 
accuracy in terms of different performance 
measures and seasonal statistics during the 
training and testing periods.    

Although FFNN has an ability to model complex 
and nonlinear relations, the structure of it is hard 
to determine and it can be determined using a 
trial-and-error approach. Therefore, DWT based 

MLR (DWT-MLR) models that may be much 
easier to interpret are used as an alternative way 
to FFNN for monthly rainfall-runoff modeling.  

In addition to the input data used in the study, to 
increase the performance of the model, previous 
runoff series (Qt-1, Qt-2,…Qt-p) can be included into 
the models, considering the autocorrelation effect. 
The data used in the study are regarded to be 
sufficient considering the model parsimony for the 
models to enable them to function properly. 

In the study, the Mallat algorithm was used for 
the DWT of monthly meteorological time-series. 
The other DWT algorithms (e.g., Trous algorithm) 
and the other types of wavelet transform (e.g., fast 
wavelet transform) may be used for the 
construction of the different neuro-computing 
models (e.g., support vector machines, other 
neural network algorithms, fuzzy logic) for the 
future studies. In addition to these, other data- 
preprocessing techniques (e.g., factor analysis, 
set pair analysis) may be compared with the 
wavelet transform.  
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Table 5. Prediction performance measures of different models for the training (a) and testing (b) periods. 
 

(a)  Training 

Model Mother wavelet type   RMSE (mm) WMAPE R
2
 Adj. R

2
 NS Min (mm) Max (mm) 

Observed -   - - - - - 0.37 119.00 

MLR -   9.9378 0.6014 0.6388 0.6347 0.6388 -7.28 75.13 

DWT-MLR Haar (db1)   8.6077 0.5340 0.7290 0.7172 0.7290 -10.17 81.72 

DWT-MLR db2   7.8463 0.4963 0.7749 0.7678 0.7749 -11.33 72.38 

DWT-MLR db6   7.9450 0.5207 0.7692 0.7610 0.7692 -12.89 69.84 

DWT-MLR db10   8.3221 0.5421 0.7467 0.7388 0.7467 -10.66 70.42 

FFNN (3, 6, 1) -   7.4692 0.4242 0.7961 0.7938 0.7960 1.30 117.26 

PCA-FFNN (2, 9, 1) -   7.4621 0.4079 0.8004 0.7988 0.7964 0.73 115.48 

DWT-FFNN (11, 7, 1) Haar (db1)   5.1559 0.2881 0.9036 0.8994 0.9028 1.06 114.08 

DWT-FFNN (8, 6, 1) db2   3.5146 0.2087 0.9551 0.9537 0.9548 0.57 117.09 

DWT-FFNN (9, 9, 1) db6   4.6746 0.2668 0.9225 0.9198 0.9201 0.72 103.80 

DWT-FFNN (8, 7, 1) db10   5.5132 0.3032 0.8900 0.8866 0.8888 0.72 98.80 

  

(b) Testing 

Model Mother wavelet type   RMSE (mm) WMAPE R
2
 Adj. R

2
 NS Min (mm) Max (mm) 

Observed -   - - - - - 0.01 75.30 

MLR -   7.4743 0.8302 0.5731 0.5682 0.4210 -8.69 55.97 

DWT-MLR Haar (db1)   7.2792 0.8675 0.6364 0.6205 0.4509 -17.78 60.55 

DWT-MLR db2   6.5913 0.8270 0.6939 0.6843 0.5498 -11.58 49.94 

DWT-MLR db6   7.6831 0.9366 0.6218 0.6083 0.3882 -16.78 50.47 

DWT-MLR db10   7.8111 0.9999 0.5999 0.5873 0.3677 -13.79 48.18 

FFNN (3, 6, 1) -   6.4689 0.7215 0.6304 0.6262 0.5663 1.30 74.75 

PCA-FFNN (2, 9, 1) -   5.5330 0.5819 0.7035 0.7012 0.6827 0.69 64.11 

DWT-FFNN (11, 7, 1) Haar (db1)   6.4405 0.5791 0.6732 0.6589 0.5701 0.28 66.12 

DWT-FFNN (8, 6, 1) db2   4.7174 0.4263 0.8047 0.7986 0.7694 0.11 67.87 

DWT-FFNN (9, 9, 1) db6   6.1506 0.5365 0.7178 0.7078 0.6079 0.03 64.13 

DWT-FFNN (8, 7, 1) db10   5.3493 0.5031 0.7342 0.7259 0.7034 0.18 60.27 

 
 
 
Conclusion 
 
The current study presented the application of 
DWT based models (DWT-MLR and DWT-FFNN) 
compared with FFNN and MLR models used 
undecomposed data, for modeling of monthly 

runoff of Medar River, based on the 
meteorological data. The results determined in 
study indicate that the DWT based methods are 
successful tools to model the monthly runoff 
series of the study region and can give good 
prediction performances than conventional 

models. Although DWT-FFNN and FFNN methods 
are powerful artificial intelligence techniques, 
DWT-MLR makes the running time considerably 
faster with an appropriate accuracy. In terms of 
the best accuracy, the DWT-FFNN model with db-
2 mother wavelet resulted in RMSE and WMAPE
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Figure 7. The scatter plots of FFNN (3, 6, 1) and DWT-FFNN (8, 6, 1) models in the testing period. 
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Figure 8. The hydrographs of FFNN (3, 6, 1) and DWT-FFNN (8, 6, 1) models in the testing period. 

 
 
 
reductions and, R

2
, Adj.R

2
 and NS increases relative to 

that of the other models. This model has generalization 
capability and thus can more easily capture monthly 

runoff data. These results were improbable, however the 
explanation may be that it is able to simulate nonlinear of 
rainfall-runoff  relationships  in  this  arid  region  which  is  
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Figure 9.  Box-plots of the observed and predicted seasonal mean runoff (  : mean value). 

 
 
 
located at the Aegean coast of Turkey and have typical 
Mediterranean climate characteristics. For the future 
studies, the presented model structures could be used to 
model monthly/daily rainfall-runoff relations in some semi-
arid regions of Turkey. The author also suggests that this 
technique can be also applied to other hydrological 
variables and other water resources problems to 
reconfirm the effectiveness of the approach.  
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