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Let T be acontraction on a complex Hilbert space H , let JT(X) be the local spectrum of T at XLIH,

and let O; (X)ﬂl' be the local unitary spectrum of T at X; I ={ZI:IC:|Z|=1}. We show that if

o, (X)NT is of Lebesgue measure zero, then IimHT”X‘

N— o0

canonical decomposition of H with respecttoT .
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INTRODUCTION

Let H and K be complex Hilbert space and let
B(H , K) be the space of all bounded linear operators
from H to K; for H =K, we simply write B(H). An
operator TDB(H) is a contraction if ||T|| <1l If
T4 B(H) is a contraction, then for every XUH,
T"X

lim . A

exists and is equal to infnZOHTnXI

|
contraction T [J B(H) is said to be a C,-contraction if
T”xl >0, for every X[IH \{O}. For an arbitrary

T4 B(H ) , we denote as usual by O'(T) the spectrum of
T and by R(Z,T)=(ZI —T)_1 the resolvent of T. In
D={z0C:|4<1},
r :{ZD C: |Z| = ]} and A(D) denotes for the disc-
algebra. If T B(H) is a contraction, then the spectrum

of T liesin D. The set g,(T):=o(T)NT is called the

unitary spectrum of T .
For an arbitrary T [ B(H) and any XUH , we define

inf

n=0

this paper, we will

Pr (X) to be the set of all ALJC for which there exists a

x:

, Where X‘TJ is the unitary part of X in the

neighborhood U, of A with u(z) analytic on U, having
values in H , such that (zI =T)u(z) = x on U, . This set

is open and contains the resolvent set p(T) of T. By

definition, the local spectrum of T at X, denoted by
o,(x) is the complement of g, (x), so it is a closed subset

of J(T). If TOB(H) is a contraction and X(JH , then
the set o, (X)ﬂ " will be called the local unitary spectrum
of T at X. Consider the case where U is a unitary
operator on H . Let E([)] be the spectral measure of U .
For given XU H , let 1, be the vector-measure defined
on the Borel subsets of [ by,uX(A)z E(A)x. One can
easily see that g, (x) = supp( « )

Generally, the local spectrum of an operator T [J B(H)

may be very "small* with respect to its usual spectrum.
Indeed, let g be a "small" part of O'(T) such that both

g and U(T)\a are closed sets. Let P be the
spectral  projection associated with g and let
H,=P,H. We know that H, is a (closed) T -
invariant subspace and G'(T‘Hg)za'. Now, we can

g
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readily verify that O (X) Uo forevery xUH,,.

Let T B(H) be a contraction and let X[1H . We can
see that £00;(X)NT if and only it R(z,T)x qZ| > 1)
admits an analytic extension to some neighborhood of .
It follows that if fD,ar(X)ﬂr for every XLOH , then
E0p(T). Hence, we have

0,(T)=U o (o= (X)NT).

Note that there exist a contraction T [] B(H) and xUH
such that o7 (X)) =@, but ,(T)=T. Indeed, let
H 2(K) be the Hardy space of K -valued analytic
functions on D and let S be the unilateral shift operator

onH2(K); (S, f)(A) = A (1). its adjoint, the backward
shift, is given by:

@w)(@:M, fOH2(K).

It is easy to verify that for every f OJH 2(K)and z0C
with [Z>1,

s -2t

Hence Usg(f)ﬂr consists of all I such that f

has no analytic extension to a neighborhood of ¢&. It
follows that if f admits an analytic extension across the

unit circle, then asn(f)ﬂr=®. However, UU(SE)z r.

Note also that for every nonzero fDHZ(K),
O, (f)=D.
Recall that a contraction TDB(H) is said to be

completely non-unitary if it has no proper reducing
subspace on which it acts as a unitary operator. As is

well known (Nikolski, 1986), if T [] B(H) is a contraction,
then there exists a canonical decomposition (with respect
to T) of the space H into two T -invariant subspaces:
H=KOL such that: i) K and L reduce T; ii

S:= T|K is a completely non-unitary contraction; iii) Z

U= T‘ L is a unitary operator, where the subspace L
is defined by:

L={xaH:[Ty=[T™ =[x} nOO.
The operator S (respectivelyU ) will be called
completely non-unitary (unitary) part of T . According to

this decomposition, every XOH can be written as

X=X; +X;. The vectorX; (respectively X;) will be
called completely non-unitary (unitary) part of X.
It can be seen that it TOB(H), Iimnm”T” =0 if

and only if O'U(T)=®. Generally, the asymptotic

behavior of the sequence {T”}nm is frequently related to

unitary spectrum of the underlying operator. This is well
illustrated by the following classical result of Nagy-Foias
(Nagy and Foias, 1966). If the unitary spectrum of a

completely non-unitary contraction TDB(H) has

‘=0 for all

Lebesgue measure zero, then Iimn_m“T”X

X O H (the proof based on unitary dilation arguments). In
this paper, we address the problem whether local and
quantitative versions of the Nagy-Foias Theorem hold.
For related results see (Allan and Ransford, 1989; Batty
et al., 1998; Mustafayev, 2010).

RESULTS

The following theorem is the main result of this paper.

Theorem 1

Let TO B(H) be a contraction and let X[OH be such

that O (X)ﬂ [ is of Lebesgue measure zero. Then, we
have:

lim[[T"X

N - oo

X

where X$ is the unitary part of X in the canonical

decomposition of the space H with respectto T .
For the proof, we need the following lemmas.

Lemma 1

Let TO B(H) be a contraction, let E be a T -invariant

subspace, and let 77:H —» H/E be the canonical
mapping. Then, the following assertions hold:

a) UT‘E(X)ﬂr =0, (X)NT forevery xOE;



c

by o (xTc)ﬂF Do, (X)NF, where X is the
completely non-unitary part of XOH in the canonical
decomposition of H .

)0 (i‘b() 0o, (X) for everyXOH , where T s the

induced mapping; T o 7T=7ToT .

Proof

a) Let XOE. It is easy to see that O (X) O a5, (X)

and so
o (x)Nro O'T‘E(X)ﬂ r.

For the reverse inclusion, let an arbitrary ¢ O o; (X)ﬂ r
be given. Then, there exists a neighborhood UE of &

with u(z) analytic on U, having values in H , such that
(ZI —T)u(z) =X on U,. Since

u(z)=R(zT)x= i z"™T"xOE,

n=0
for all zOU, with |4>1, we have m(z)=0 for all
zOU, with |7 >1. By uniqueness theorem, m(z) =0
for all zOU,, so that u(z)l:l E. Thus, we have
(ZI —T|E)U(Z)= X on U,. This
£0py_(NT .

shows that

b) Let H=K [OL be the canonical decomposition of
H andlet S= T| k - It follows from a) that

o ()N = ol )nr.

It remains to show that O (X$ ) 0o, (x). 1t A0p;(x),
then there exists a neighborhood U, of A with u(z)
analytic on U, having values in H, such that

(ZI —T)U(Z)=X on U,. Let P be the orthogonal

projecton from Honto K. Then, we have
(zP-PT)u(z) = x¢. since PT =TP = SP, we obtain

(Zl - S)PU(Z) = X7 . This shows that A O pg (X? )
o If A0 po; (X) , then there exists a neighborhood U , of
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A with u(z) analytic on U, having values in H , such
that (zl —T)u(z) =X on U, . It follows that
(ZlT— TTo T)u(z)= 7X on U ,. Consequently, we have
(2 =T )m(z) = 7 on U ,. This shows that A O p_. (7).
Recall that VO B(H) is called an isometry if
"\/x” = ||X|| for allx € H. It is well known that if V' is a non-
unitary isometry, then J(V) =D. Recall also that
XxOH is a cyclic vector of T B(H), if the set
{T”X: n= 0,1,2,...} spans the whole space H .

Lemma 2

if voO B(H) is an isometry and X[ H is a cyclic
vector of V , then

a,(v)=a,(x)NT

Proof

Assume that VH = H | that is, V is a unitary operator.
We must show that O'(V) =0, (x) By Spectral Theorem,

there exists a positive measure 4 on [ such that the
operator Mon L2(I,u) defined by Mf =€'f s
to V. Let X,

characteristic function of any Borel subset A of I and
let 1 be the constant one function on[ . Then, we have

U(V) = Supp(,u) and g,, (x) = Supp(v), where V is a
vector measure on [ that is defined byV(A)=)(A1.
since |v(a) = u(n), we have supp(x)=supp(v)
and so, J(V) =0, (X)

Assume thatVH # H . In this case J(V) =D, so that
g (V): M. It is enough to show that @, (X)= D. Let

u

K = H ©VH. By Wold's Decomposition Theorem (Nagy
and Foias, 1966), there exists a decomposition

H=H,OH, such that H, and H, reduce V,

unitary equivalent denotes the

V, =V‘ h, s unitary and V; =V‘ W, IS unitary
equivalent to the unilateral shift operator S, on H 2(K).
Let X=X, + X, where X, OH, and x, O H,. Since X,
is a cyclic vector ofV;, X, # 0, so that g, (Xl) =D.1t
remains to show that o, (x)Oao,(x). ¥ £0p,(x).
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then there exists a neighborhood U, of ¢ with u(z)
analytic on U, having values in H, such that
(zl —V)u(z) =X

on U,
H,. Then, we have (ZF’1 - P1V)U(Z)= X,. Since
PV =VP, =V,P,, we obtain (ZI —Vl)Plu(Z)= X,. This
shows that ¢ 0 o, (Xl),

. Let F’1 be the orthogonal projection from H onto

Lemma 3

Let TDB(H) be a C,-contraction and let X0 H, if
f OA(D) vanishes on o (x)NT, then f(T)x=0.

Proof

By Nagy-Foias Theorem (Nagy and Foias, 1966), there
exist an isometry V and a quasi-affinity X on H
intertwining T and V ; XT =VX. First, we claim that

o,(xx) 0o, (x). (1)

If A I:I,OT( ) then there exists a neighborhood U ; of

A with u( ) analytic on U ; having values in H , such

that( ( ) X on U, . It follows that

(2x - xTu(z)= xx (zOU,)

Consequently, we have (ZI —V)XU(Z)= XX on U,
This shows that A 0 2, (Xx)

Set

K = sparfV"Xx:n = 012..},
and

L =span{T"x:n= 012..}.

since V"Xx= XT"x (nO0O), the operator X[, isa
quasi-affinity from L to K and

(V‘K)X‘L=(X‘L)T‘L' 2

Also, since XX is a cyclic vector of V|, , by Lemma 2

a,(v[«)=a, (x)Nr.

On the other hand, taking into account Lemma 1 a) and
(1), we can write

g, (x)Nr =g, (x)Nr 0o, (x)NT.
Hence, we have

o, )Joo. (x)nr. @)

We see that under the hypotheses of the Lemma, the
Lebesgue measure of O (X)ﬂ [" is necessarily zero. It

follows from (3) that g, (V|K) has Lebesgue measure
zero and therefore, V|K is a unitary operator. Since
fO A(D) vanishes on0; (X)ﬂr, it follows that f
vanishes on (T(V|K ) and so f(V)K ={0}. Using now
the identity (2), we can write Xf (T)L = {O} . In particular,
we have Xf (T)X=O. Since X has zero kernel, we
obtain that f (T)x=0.

Lemma 4

Let TDB(H) be a C,;-contraction and let XU H . If

UT(X)ﬂr is of Lebesgue measure zero, then

[Ty = [T =[] forai nOD.

Proof

Set M =0; (X)ﬂr. Let us define a mapping
h:C(M) -~ H as a following way: Take a function
fI:IC(M). By Rudin-Carleson Theorem (Beauzamy,

1988), there exists a function f [ A(D) such that
?(f) = f(f) forall $ 0M , and

=sugf(¢)- @)

H HA(D) oM

seth(f)=f(T)x. By Lemma 3, h is a well-defined
linear mapping. On the other hand, it follows from von
Neumann inequality and the identity (4), the mapping h is

bounded. Note also that if f,g0C(M), then
h(fg) = f(T)g(T)x. Assume that the functions f_, f,



and f, on M is defined by f_(&)=¢&7 f,(£)=1
and f,(£)=¢. Then, we have

x=h(fo)=h(ff,)=f_(T)F,(T)x.

Set S =?_1(T). Then, S is a contraction on H which

commutes with T. SinceTl(T) =T, we have STXx=X

sothat ST"Xx=T"*x forall nOO. It follows that

T =[St [T < [T,

Thus, "T”x” =||x|| for all NOO. we know (Nagy and

Foias, 1966) that if T is an arbitrary contraction and z is
an eigenvector of T for the eigenvalue A =1 , then z

is also an eigenvector of T for the eigenvalue A =1.
Since ST is a contraction and STX= X, we have

ST Bx = x. It follows that ”TD‘X” = ||X” forall nO0.
We are now able to prove the Theorem 1

Proof of Theorem 1

Let H =K OL be the canonical decomposition of H
andlet S= T| « be the completely non-unitary part of T .

Let X = X; + X;, where X; is the completely non-unitary
and X$ is the unitary part of X. Let us show that

m nm”T "x¢| = 0. For this reason, set

Ko ={xOK: lim|sX| = o}

Let 77: K - K/K, be the canonical mapping and let
S:K/K, » K/K,  the

Somr=7meS. First, we claim that S is a C;-
contraction. For this, it is enough to show that for every

induced mapping;

xOK,

lim|[S m” = I|m||Sn

N — oo Nn— oo

Indeed, let

a=lim é”nx” = I|m||S”x+ K ||
NnN-oo N — oo
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Then, we have a < |imn__m||S”X”. On the other hand,

for an arbitrary € >0 there exist KOO and yOK,,

such that Hskx—yH <a+e, which implies
‘S”""x— S”y‘ <a+¢,foralln0. It follows that
s slsu-sif e[St sy

As N - o, we obtain Iimn_'m”S”X”s a+¢&, so that

Iimnm"S”x

|S a . Further, it follows from the identity

A

Sh=gH (o that S

contraction. Using Lemma 1 c), a), and b), respectively;
we have

is a completely non-unitary

ai(m)nr oo b)nr =o (¢ )nr oo (nr.

It follows that Ué(m$)ﬂr has Lebesgue measure

A

zero. Since S is a completely non-unitary C;-

contraction, by Lemma 4, 7%; =0, and so

IimHT”xC X7 =0.
N— o0 n- oo
Also, since = ‘ x4

= I|m||T“xC +T"%; | = I|m||T |x$ .
N— oo Nn— oo Nn— oo
CONCLUSION

It is easy to verify that if TDB(H), then

mnm”T” =0 if and only if ,(T)=@. In general,

the asymptotic behavior of the sequence {T”}nm is

frequently related to unitary spectrum of the underlying
operator. This is well illustrated by the classical result of
Nagy-Foias (Nagy and Foias, 1966). If the unitary
spectrum of a completely non-unitary contraction

TO B(H) has Lebesgue measure zero, then
mn_'m”T”X =0 for all XOH.

that if O; (X)ﬂr is of Lebesgue measure zero, then

N — 0o )4

version of the well known Nagy-Foias Theorem is proved.

In this note we show

Consequently, local and quantitative
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