Full Length Research Paper

Contractions on Hilbert space with the smallest local unitary spectra

Cesim Temel
Department of Mathematics, Faculty of sciences, Yuzuncu Yil University, 65080 Van, Turkey. E-mail: cesimtemel@yahoo.com. Tel: +90 043222510 25-29.

Accepted 20 June, 2012

Abstract

Let T be a contraction on a complex Hilbert space H, let $\sigma_{T}(x)$ be the local spectrum of T at $x \in H$, and let $\sigma_{T}(x) \cap \Gamma$ be the local unitary spectrum of T at $x ; \Gamma=\{z \in C:|z|=1\}$. We show that if $\sigma_{T}(x) \cap \Gamma$ is of Lebesgue measure zero, then $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=\left\|x_{T}^{u}\right\|$, where x_{T}^{u} is the unitary part of x in the canonical decomposition of H with respect to T.

Key words: Hilbert space, contraction, local spectrum.

INTRODUCTION

Let H and K be complex Hilbert space and let $B(H, K)$ be the space of all bounded linear operators from H to K; for $H=K$, we simply write $B(H)$. An operator $T \in B(H)$ is a contraction if $\|T\| \leq 1$. If $T \in B(H)$ is a contraction, then for every $x \in H$, $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|$ exists and is equal to $\inf _{n \geq 0}\left\|T^{n} x\right\|$. A contraction $T \in B(H)$ is said to be a C_{1}-contraction if $\inf _{n \geq 0}\left\|T^{n} x\right\|>0$, for every $x \in H \backslash\{0\}$. For an arbitrary $T \in B(H)$, we denote as usual by $\sigma(T)$ the spectrum of T and by $R(z, T)=(z I-T)^{-1}$ the resolvent of T. In this paper, we will $D=\{z \in C:|z|<1\}$, $\Gamma=\{z \in C:|z|=1\}$, and $A(D)$ denotes for the discalgebra. If $T \in B(H)$ is a contraction, then the spectrum of T lies in \bar{D}. The set $\sigma_{u}(T):=\sigma(T) \cap \Gamma$ is called the unitary spectrum of T.
For an arbitrary $T \in B(H)$ and any $x \in H$, we define $\rho_{T}(x)$ to be the set of all $\lambda \in C$ for which there exists a
neighborhood U_{λ} of λ with $u(z)$ analytic on U_{λ} having values in H, such that $(z I-T) u(z)=x$ on U_{λ}. This set is open and contains the resolvent set $\rho(T)$ of T. By definition, the local spectrum of T at x, denoted by $\sigma_{T}(x)$ is the complement of $\rho_{T}(x)$, so it is a closed subset of $\sigma(T)$. If $T \in B(H)$ is a contraction and $x \in H$, then the set $\sigma_{T}(x) \cap \Gamma$ will be called the local unitary spectrum of T at x. Consider the case where U is a unitary operator on H. Let $E(\cdot)$ be the spectral measure of U. For given $x \in H$, let μ_{x} be the vector-measure defined on the Borel subsets of Γ by $\mu_{x}(\Delta)=E(\Delta) x$. One can easily see that $\sigma_{U}(x)=\operatorname{supp}\left(\mu_{\mathrm{x}}\right)$.

Generally, the local spectrum of an operator $T \in B(H)$ may be very "small" with respect to its usual spectrum. Indeed, let σ be a "small" part of $\sigma(T)$ such that both σ and $\sigma(T) \backslash \sigma$ are closed sets. Let P_{σ} be the spectral projection associated with σ and let $H_{\sigma}=P_{\sigma} H$. We know that H_{σ} is a (closed) T invariant subspace and $\sigma\left(\left.T\right|_{H_{\sigma}}\right)=\sigma$. Now, we can
readily verify that $\sigma_{T}(x) \subset \sigma$ for every $x \in H_{\sigma}$.
Let $T \in B(H)$ be a contraction and let $x \in H$. We can see that $\xi \in \rho_{T}(x) \cap \Gamma$ if and only if $R(z, T) x(|z|>1)$ admits an analytic extension to some neighborhood of ξ. It follows that if $\xi \in \rho_{T}(x) \bigcap \Gamma$ for every $x \in H$, then $\xi \in \rho(T)$. Hence, we have

$$
\sigma_{u}(T)=\bigcup_{x \in H}\left(\sigma_{T}(x) \bigcap \Gamma\right)
$$

Note that there exist a contraction $T \in B(H)$ and $x \in H$ such that $\sigma_{T}(x) \cap \Gamma=\varnothing$, but $\sigma_{u}(T)=\Gamma$. Indeed, let $H^{2}(K)$ be the Hardy space of K-valued analytic functions on D and let S be the unilateral shift operator on $H^{2}(K) ;\left(S_{K} f\right)(\lambda)=\lambda f(\lambda)$. Its adjoint, the backward shift, is given by:

$$
\left(s^{*} f\right)(\lambda)=\frac{f(\lambda)-f(0)}{\lambda}, f \in H^{2}(K) .
$$

It is easy to verify that for every $f \in H^{2}(K)$ and $z \in C$ with $|z|>1$,

$$
\left(z I-S^{*}\right)^{-1} f(\lambda)=\frac{z^{-1} f\left(z^{-1}\right)-\lambda f(\lambda)}{1-\lambda z}
$$

Hence $\sigma_{s_{k}^{*}}(f) \cap \Gamma$ consists of all $\xi \in \Gamma$ such that f has no analytic extension to a neighborhood of ξ. It follows that if f admits an analytic extension across the unit circle, then $\sigma_{S_{K}^{*}}(f) \cap \Gamma=\varnothing$. However, $\sigma_{u}\left(S_{K}^{*}\right)=\Gamma$. Note also that for every nonzero $f \in H^{2}(K)$, $\sigma_{S_{K}}(f)=\bar{D}$.
Recall that a contraction $T \in B(H)$ is said to be completely non-unitary if it has no proper reducing subspace on which it acts as a unitary operator. As is well known (Nikolski, 1986), if $T \in B(H)$ is a contraction, then there exists a canonical decomposition (with respect to T) of the space H into two T-invariant subspaces: $H=K \oplus L$ such that: i) K and L reduce T; ii) $S:=\left.T\right|_{K}$ is a completely non-unitary contraction; iii) Z $U:=\left.T\right|_{L}$ is a unitary operator, where the subspace L is defined by:
$L=\left\{x \in H:\left\|T^{n} x\right\|=\left\|T^{* n} x\right\|=\|x\|\right\} \quad n \in \mathfrak{\aleph}$.
The operator S (respectively U) will be called completely non-unitary (unitary) part of T. According to this decomposition, every $x \in H$ can be written as $x=x_{T}^{c}+x_{T}^{u}$. The vector $x_{T}^{c} \quad$ (respectively x_{T}^{u}) will be called completely non-unitary (unitary) part of x.

It can be seen that if $T \in B(H), \lim _{n \rightarrow \infty}\left\|T^{n}\right\|=0$ if and only if $\sigma_{u}(T)=\varnothing$. Generally, the asymptotic behavior of the sequence $\left\{T^{n}\right\}_{n \in \mathbb{K}}$ is frequently related to unitary spectrum of the underlying operator. This is well illustrated by the following classical result of Nagy-Foias (Nagy and Foias, 1966). If the unitary spectrum of a completely non-unitary contraction $T \in B(H)$ has Lebesgue measure zero, then $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$ for all $x \in H$ (the proof based on unitary dilation arguments). In this paper, we address the problem whether local and quantitative versions of the Nagy-Foias Theorem hold. For related results see (Allan and Ransford, 1989; Batty et al., 1998; Mustafayev, 2010).

RESULTS

The following theorem is the main result of this paper.

Theorem 1

Let $T \in B(H)$ be a contraction and let $x \in H$ be such that $\sigma_{T}(x) \cap \Gamma$ is of Lebesgue measure zero. Then, we have:
$\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=\left\|x_{T}^{u}\right\|$,
where x_{T}^{u} is the unitary part of x in the canonical decomposition of the space H with respect to T.

For the proof, we need the following lemmas.

Lemma 1

Let $T \in B(H)$ be a contraction, let E be a T-invariant subspace, and let $\pi: H \rightarrow H / E$ be the canonical mapping. Then, the following assertions hold:
a) $\sigma_{\left.T\right|_{E}}(x) \cap \Gamma=\sigma_{T}(x) \cap \Gamma$ for every $x \in E$;
b) $\quad \sigma_{T}\left(x_{T}^{c}\right) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma$, where x_{T}^{c} is the completely non-unitary part of $x \in H$ in the canonical decomposition of H.
c) $\sigma_{\hat{T}}(\pi x) \subset \sigma_{T}(x)$ for every $x \in H$, where \hat{T} is the induced mapping; $\hat{T} \circ \pi=\pi \circ T$.

Proof

a) Let $x \in E$. It is easy to see that $\sigma_{T}(x) \subset \sigma_{\left.T\right|_{E}}(x)$, and so

$$
\sigma_{T}(x) \cap \Gamma \subset \sigma_{\left.T\right|_{E}}(x) \cap \Gamma .
$$

For the reverse inclusion, let an arbitrary $\xi \in \rho_{T}(x) \cap \Gamma$ be given. Then, there exists a neighborhood U_{ξ} of ξ with $u(z)$ analytic on U_{ξ} having values in H, such that $(z I-T) u(z)=x$ on U_{ξ}. Since
$u(z)=R(z, T) x=\sum_{n=0}^{\infty} z^{-n-1} T^{n} x \in E$,
for all $z \in U_{\xi}$ with $|z|>1$, we have $\pi u(z)=0$ for all $z \in U_{\xi}$ with $|z|>1$. By uniqueness theorem, $\pi u(z)=0$ for all $z \in U_{\xi}$, so that $u(z) \in E$. Thus, we have $\left(z I-\left.T\right|_{E}\right) u(z)=x \quad$ on U_{ξ}. This shows that $\xi \in \rho_{\left.T\right|_{E}}(x) \cap \Gamma$.
b) Let $H=K \oplus L$ be the canonical decomposition of H and let $S=\left.T\right|_{K}$. It follows from a) that
$\sigma_{T}\left(x_{T}^{c}\right) \bigcap \Gamma=\sigma_{S}\left(x_{T}^{c}\right) \bigcap \Gamma$.
It remains to show that $\sigma_{S}\left(x_{T}^{c}\right) \subset \sigma_{T}(x)$. If $\lambda \in \rho_{T}(x)$, then there exists a neighborhood U_{λ} of λ with $u(z)$ analytic on U_{λ}, having values in H, such that $(z I-T) u(z)=x$ on U_{λ}. Let P be the orthogonal projection from H onto K. Then, we have $(z P-P T) u(z)=x_{T}^{c}$. Since $P T=T P=S P$, we obtain $(z I-S) P u(z)=x_{T}^{c}$. This shows that $\lambda \in \rho_{S}\left(x_{T}^{c}\right)$. c) If $\lambda \in \rho_{T}(x)$, then there exists a neighborhood U_{λ} of
λ with $u(z)$ analytic on U_{λ} having values in H, such that $(z I-T) u(z)=x$ on U_{λ}. It follows that $(z \pi-\pi \circ T) u(z)=\pi x$ on U_{λ}. Consequently, we have $(z I-\hat{T}) \pi u(z)=\pi x$ on U_{λ}. This shows that $\lambda \in \rho_{\hat{T}}(\pi x)$.

Recall that $V \in B(H)$ is called an isometry if $\|V x\|=\|x\|$ for all $x \in H$. It is well known that if V is a nonunitary isometry, then $\sigma(V)=\bar{D}$. Recall also that $x \in H$ is a cyclic vector of $T \in B(H)$, if the set $\left\{T^{n} x: n=0,1,2, \ldots\right\}$ spans the whole space H.

Lemma 2

If $V \in B(H)$ is an isometry and $x \in H$ is a cyclic vector of V, then
$\sigma_{u}(V)=\sigma_{V}(x) \bigcap \Gamma$.

Proof

Assume that $V H=H$, that is, V is a unitary operator. We must show that $\sigma(V)=\sigma_{V}(x)$. By Spectral Theorem, there exists a positive measure μ on Γ such that the operator M on $L^{2}(\Gamma, \mu)$ defined by $M f=e^{i t} f$ is unitary equivalent to V. Let χ_{Δ} denotes the characteristic function of any Borel subset Δ of Γ and let 1 be the constant one function on Γ. Then, we have $\sigma(V)=\operatorname{supp}(\mu)$ and $\sigma_{V}(x)=\operatorname{supp}(v)$, where v is a vector measure on Γ that is defined by $v(\Delta)=\chi_{\Delta} 1$. Since $\|v(\Delta)\|=\mu(\Delta)$, we have $\operatorname{supp}(\mu)=\operatorname{supp}(v)$ and so, $\sigma(V)=\sigma_{V}(x)$.

Assume that $V H \neq H$. In this case $\sigma(V)=\bar{D}$, so that $\sigma_{u}(V)=\Gamma$. It is enough to show that $\sigma_{V}(x)=\bar{D}$. Let $K=H \Theta V H$. By Wold's Decomposition Theorem (Nagy and Foias, 1966), there exists a decomposition $H=H_{0} \oplus H_{1}$ such that H_{0} and H_{1} reduce V, $V_{0}=\left.V\right|_{H_{0}}$ is unitary and $V_{1}=\left.V\right|_{H_{1}} \quad$ is unitary equivalent to the unilateral shift operator S_{K} on $H^{2}(K)$. Let $x=x_{0}+x_{1}$, where $x_{0} \in H_{0}$ and $x_{1} \in H_{1}$. Since x_{1} is a cyclic vector of $V_{1}, x_{1} \neq 0$, so that $\sigma_{V_{1}}\left(x_{1}\right)=\bar{D}$. It remains to show that $\sigma_{V_{1}}\left(x_{1}\right) \subset \sigma_{V}(x)$. If $\xi \in \rho_{V}(x)$,
then there exists a neighborhood U_{ξ} of ξ with $u(z)$ analytic on U_{ξ} having values in H, such that $(z I-V) u(z)=x$
on U_{ξ}. Let P_{1} be the orthogonal projection from H onto H_{1}. Then, we have $\left(z P_{1}-P_{1} V\right) u(z)=x_{1}$. Since $P_{1} V=V P_{1}=V_{1} P_{1}$, we obtain $\left(z I-V_{1}\right) P_{1} u(z)=x_{1}$. This shows that $\xi \in \rho_{V_{1}}\left(x_{1}\right)$.

Lemma 3

Let $T \in B(H)$ be a C_{1}-contraction and let $x \in H$, if $f \in A(D)$ vanishes on $\sigma_{T}(x) \cap \Gamma$, then $f(T) x=0$.

Proof

By Nagy-Foias Theorem (Nagy and Foias, 1966), there exist an isometry V and a quasi-affinity X on H intertwining T and $V ; X T=V X$. First, we claim that
$\sigma_{V}(X x) \subset \sigma_{T}(x)$.

If $\lambda \in \rho_{T}(x)$, then there exists a neighborhood U_{λ} of λ with $u(z)$ analytic on U_{λ} having values in H, such that $(z I-T) u(z)=x$ on U_{λ}. It follows that
$(z X-X T) u(z)=X x \quad\left(z \in U_{\lambda}\right)$

Consequently, we have $(z I-V) X u(z)=X x$ on U_{λ}. This shows that $\lambda \in \rho_{V}(X x)$

Set
$K=\overline{\operatorname{span}}\left\{V^{n} X x: n=0,1,2, \ldots\right\}$,
and
$L=\overline{\operatorname{span}}\left\{T^{n} x: n=0,1,2, \ldots\right\}$.
Since $V^{n} X x=X T^{n} x(n \in \mathbb{\aleph})$, the operator $\left.X\right|_{L}$ is a quasi-affinity from L to K and
$\left.\left(\left.V\right|_{K}\right) X\right|_{L}=\left.\left(\left.X\right|_{L}\right) T\right|_{L}$.

Also, since $X x$ is a cyclic vector of $\left.V\right|_{K}$, by Lemma 2
$\sigma_{u}\left(\left.V\right|_{K}\right)=\sigma_{\left.V\right|_{K}}(X x) \cap \Gamma$.
On the other hand, taking into account Lemma 1 a) and (1), we can write
$\sigma_{\left.V\right|_{K}}(X x) \cap \Gamma=\sigma_{V}(X x) \cap \Gamma \subset \sigma_{T}(x) \bigcap \Gamma$.

Hence, we have
$\sigma_{u}\left(\left.V\right|_{K}\right) \subset \sigma_{T}(x) \cap \Gamma$.
We see that under the hypotheses of the Lemma, the Lebesgue measure of $\sigma_{T}(x) \cap \Gamma$ is necessarily zero. It follows from (3) that $\sigma_{u}\left(\left.V\right|_{K}\right)$ has Lebesgue measure zero and therefore, $\left.V\right|_{K}$ is a unitary operator. Since $f \in A(D)$ vanishes on $\sigma_{T}(x) \cap \Gamma$, it follows that f vanishes on $\sigma\left(\left.V\right|_{K}\right)$, and so $f(V) K=\{0\}$. Using now the identity (2), we can write $X f(T) L=\{0\}$. In particular, we have $X f(T) x=0$. Since X has zero kernel, we obtain that $f(T) x=0$.

Lemma 4

Let $T \in B(H)$ be a C_{1}-contraction and let $x \in H$. If $\sigma_{T}(x) \cap \Gamma$ is of Lebesgue measure zero, then $\left\|T^{n} x\right\|=\left\|T^{* n} x\right\|=\|x\|$ for all $n \in \mathbb{\aleph}$.

Proof

Set $M=\sigma_{T}(x) \cap \Gamma$. Let us define a mapping $h: C(M) \rightarrow H$ as a following way: Take a function $f \in C(M)$. By Rudin-Carleson Theorem (Beauzamy, 1988), there exists a function $\bar{f} \in A(D)$ such that $\bar{f}(\xi)=f(\xi)$ for all $\xi \in M$, and

$$
\begin{equation*}
\|\bar{f}\|_{A(D)}=\sup _{\xi \in M}|f(\xi)| . \tag{4}
\end{equation*}
$$

Set $h(f)=\bar{f}(T) x$. By Lemma 3, h is a well-defined linear mapping. On the other hand, it follows from von Neumann inequality and the identity (4), the mapping h is bounded. Note also that if $f, g \in C(M)$, then $h(f g)=\bar{f}(T) \bar{g}(T) x$. Assume that the functions f_{-1}, f_{0}
and f_{1} on M is defined by $f_{-1}(\xi)=\xi^{-1}, f_{0}(\xi)=1$ and $f_{1}(\xi)=\xi$. Then, we have
$x=h\left(f_{0}\right)=h\left(f_{-1} f_{1}\right)=\bar{f}_{-1}(T) \bar{f}_{1}(T) x$.
Set $S=\bar{f}_{-1}(T)$. Then, S is a contraction on H which commutes with T. Since $\bar{f}_{1}(T)=T$, we have $S T x=x$ so that $S T^{n} x=T^{n-1} x$ for all $n \in \mathbb{\aleph}$. It follows that
$\left\|T^{n-1} x\right\|=\left\|S T^{n} x\right\| \leq\left\|T^{n} x\right\| \leq\left\|T^{n-1} x\right\|$.
Thus, $\left\|T^{n} x\right\|=\|x\|$ for all $n \in \mathbb{\aleph}$. We know (Nagy and Foias, 1966) that if T is an arbitrary contraction and z is an eigenvector of T for the eigenvalue $\lambda=1$, then z is also an eigenvector of T^{*} for the eigenvalue $\lambda=1$. Since $S T$ is a contraction and $S T x=x$, we have $S^{*} T^{*} x=x$. It follows that $\left\|T^{* n} x\right\|=\|x\|$ for all $n \in \mathbb{N}$.

We are now able to prove the Theorem 1

Proof of Theorem 1

Let $H=K \oplus L$ be the canonical decomposition of H and let $S=\left.T\right|_{K}$ be the completely non-unitary part of T. Let $x=x_{T}^{c}+x_{T}^{u}$, where x_{T}^{c} is the completely non-unitary and x_{T}^{u} is the unitary part of x. Let us show that $\lim _{n \rightarrow \infty}\left\|T^{n} x_{T}^{c}\right\|=0$. For this reason, set
$K_{0}=\left\{x \in K: \lim _{n \rightarrow \infty}\left\|S^{n} x\right\|=0\right\}$.

Let $\pi: K \rightarrow K / K_{0}$ be the canonical mapping and let $\hat{S}: K / K_{0} \rightarrow K / K_{0}$ the induced mapping; $\hat{S} \circ \pi=\pi \circ S$. First, we claim that \hat{S} is a $C_{1}-$ contraction. For this, it is enough to show that for every $x \in K$,
$\lim _{n \rightarrow \infty}\left\|\hat{S}^{n} \pi x\right\|=\lim _{n \rightarrow \infty}\left\|S^{n} x\right\|$.
Indeed, let

$$
\alpha=\lim _{n \rightarrow \infty}\left\|\hat{S}^{n} \pi x\right\|=\lim _{n \rightarrow \infty}\left\|S^{n} x+K_{0}\right\|
$$

Then, we have $\alpha \leq \lim _{n \rightarrow \infty}\left\|S^{n} x\right\|$. On the other hand, for an arbitrary $\mathcal{E}>0$ there exist $k \in \mathcal{X}$ and $y \in K_{0}$, such that $\left\|S^{k} x-y\right\| \leq \alpha+\varepsilon$, which implies $\left\|S^{n+k} x-S^{n} y\right\| \leq \alpha+\varepsilon$, for all $n \in \mathbb{N}$. It follows that
$\left\|S^{n+k} x\right\| \leq\left\|S^{n+k} x-S^{n} y\right\|+\left\|S^{n} y\right\| \leq \alpha+\varepsilon+\left\|S^{n} y\right\|$.
As $n \rightarrow \infty$, we obtain $\lim _{n \rightarrow \infty}\left\|S^{n} x\right\| \leq \alpha+\varepsilon$, so that $\lim _{n \rightarrow \infty}\left\|S^{n} x\right\| \leq \alpha$. Further, it follows from the identity $\hat{S}^{*}=\left.S^{*}\right|_{K_{0}^{\perp}}$ that \hat{S} is a completely non-unitary contraction. Using Lemma 1 c), a), and b), respectively; we have
$\sigma_{\hat{S}}\left(\pi x_{T}^{c}\right) \cap \Gamma \subset \sigma_{S}\left(x_{T}^{c}\right) \cap \Gamma=\sigma_{T}\left(x_{T}^{c}\right) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma$.
It follows that $\sigma_{\hat{S}}\left(\pi x_{T}^{c}\right) \cap \Gamma$ has Lebesgue measure zero. Since \hat{S} is a completely non-unitary C_{1} contraction, by Lemma $4, \pi x_{T}^{c}=0$, and so
$\lim _{n \rightarrow \infty}\left\|T^{n} x_{T}^{c}\right\|=\lim _{n \rightarrow \infty}\left\|S^{n} x_{T}^{c}\right\|=0$.
Also, since $\left\|T^{n} x_{T}^{u}\right\|=\left\|x_{T}^{u}\right\|$ for all $n \in \mathbb{\aleph}$, we have that
$\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=\lim _{n \rightarrow \infty}\left\|T^{n} x_{T}^{c}+T^{n} x_{T}^{u}\right\|=\lim _{n \rightarrow \infty}\left\|T^{n} x_{T}^{u}\right\|=\left\|x_{T}^{u}\right\|$.

CONCLUSION

It is easy to verify that if $T \in B(H)$, then $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|=0$ if and only if $\sigma_{u}(T)=\varnothing$. In general, the asymptotic behavior of the sequence $\left\{T^{n}\right\}_{n \in \mathbb{K}}$ is frequently related to unitary spectrum of the underlying operator. This is well illustrated by the classical result of Nagy-Foias (Nagy and Foias, 1966). If the unitary spectrum of a completely non-unitary contraction $T \in B(H)$ has Lebesgue measure zero, then $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$ for all $x \in H$. In this note we show that if $\sigma_{T}(x) \cap \Gamma$ is of Lebesgue measure zero, then $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=\left\|x_{T}^{u}\right\|$. Consequently, local and quantitative version of the well known Nagy-Foias Theorem is proved.

REFERENCES

Allan GR, Ransford TJ (1989). Power-dominated elements in a Banach algebra. Studia Math. 94:63-79.
Batty CJK, van Neerven J, Räbiger F (1998). Local spectra and individual stability of uniformly bounded C_{0}-semigroups. Trans. Amer. Math. Soc. 350:2071-2085.
Beauzamy B (1988). Introduction to operator theory and invariant subspaces. North-Holland, Amsterdam. p. 358

Mustafayev HS (2010). Asymptotic behavior of polynomially bounded operators. C. R. Acad. Sci. Paris. Ser. I(348):517-520.
Nagy Sz, Foias C (1966). Harmonic analysis of operators on Hilbert space. Akademiai Kiaido, Budapest, p. 474.
Nikolski NK (1986). Treatise on the shift operator. Springer Heidelberg, p. 491.

