Full Length Research Paper

Contractions on Hilbert space with the smallest local unitary spectra

Cesim Temel

Department of Mathematics, Faculty of sciences, Yuzuncu Yil University, 65080 Van, Turkey. E-mail: cesimtemel@yahoo.com. Tel: +90 0432 225 10 25-29.

Accepted 20 June, 2012

Let T be a contraction on a complex Hilbert space H, let $\sigma_T(x)$ be the local spectrum of T at $x \in H$, and let $\sigma_T(x) \cap \Gamma$ be the local unitary spectrum of T at x; $\Gamma = \{z \in C : |z| = 1\}$. We show that if $\sigma_T(x) \cap \Gamma$ is of Lebesgue measure zero, then $\lim_{n \to \infty} \lVert T^n x \rVert = \lVert x_T^u \rVert$, where x_T^u is the unitary part of x in the canonical decomposition of H with respect to T.

Key words: Hilbert space, contraction, local spectrum.

INTRODUCTION

Let H and K be complex Hilbert space and let B(H,K) be the space of all bounded linear operators from H to K; for H=K, we simply write B(H). An operator $T\in B(H)$ is a contraction if $\|T\|\leq 1$. If $T\in B(H)$ is a contraction, then for every $x\in H$, $\lim_{n\to\infty} \left\|T^nx\right\|$ exists and is equal to $\inf_{n\geq 0} \left\|T^nx\right\|$. A contraction $T\in B(H)$ is said to be a C_1 -contraction if $\inf_{n\geq 0} \left\|T^nx\right\|>0$, for every $x\in H\setminus\{0\}$. For an arbitrary $T\in B(H)$, we denote as usual by $\sigma(T)$ the spectrum of T and by $R(z,T)=(zI-T)^{-1}$ the resolvent of T. In this paper, we will $D=\left\{z\in C: |z|<1\right\}$, $\Gamma=\left\{z\in C: |z|=1\right\}$, and A(D) denotes for the discalgebra. If $T\in B(H)$ is a contraction, then the spectrum of T lies in \overline{D} . The set $\sigma_u(T):=\sigma(T)\cap \Gamma$ is called the unitary spectrum of T.

For an arbitrary $T \in B(H)$ and any $x \in H$, we define $\rho_T(x)$ to be the set of all $\lambda \in C$ for which there exists a

neighborhood U_λ of λ with u(z) analytic on U_λ having values in H, such that (zI-T)u(z)=x on U_λ . This set is open and contains the resolvent set $\rho(T)$ of T. By definition, the local spectrum of T at x, denoted by $\sigma_T(x)$ is the complement of $\rho_T(x)$, so it is a closed subset of $\sigma(T)$. If $T \in B(H)$ is a contraction and $x \in H$, then the set $\sigma_T(x) \cap \Gamma$ will be called the *local unitary spectrum* of T at x. Consider the case where U is a unitary operator on H. Let $E(\cdot)$ be the spectral measure of U. For given $x \in H$, let μ_x be the vector-measure defined on the Borel subsets of Γ by $\mu_x(\Delta) = E(\Delta)x$. One can easily see that $\sigma_T(x) = \sup (\mu_x)$.

Generally, the local spectrum of an operator $T\in B(H)$ may be very "small" with respect to its usual spectrum. Indeed, let σ be a "small" part of $\sigma(T)$ such that both σ and $\sigma(T)\setminus \sigma$ are closed sets. Let P_σ be the spectral projection associated with σ and let $H_\sigma=P_\sigma H$. We know that H_σ is a (closed) T-invariant subspace and $\sigma(T|_{H_\sigma})=\sigma$. Now, we can

readily verify that $\sigma_T(x) \subset \sigma$ for every $x \in H_{\sigma}$.

Let $T\in B(H)$ be a contraction and let $x\in H$. We can see that $\xi\in \rho_T(x)\cap \Gamma$ if and only if R(z,T)x $\{|z|>1\}$ admits an analytic extension to some neighborhood of ξ . It follows that if $\xi\in \rho_T(x)\cap \Gamma$ for every $x\in H$, then $\xi\in \rho(T)$. Hence, we have

$$\sigma_u(T) = \bigcup_{x \in H} (\sigma_T(x) \cap \Gamma).$$

Note that there exist a contraction $T \in B(H)$ and $x \in H$ such that $\sigma_T(x) \cap \Gamma = \emptyset$, but $\sigma_u(T) = \Gamma$. Indeed, let $H^2(K)$ be the Hardy space of K-valued analytic functions on D and let S be the unilateral shift operator on $H^2(K)$; $(S_K f)(\lambda) = \lambda f(\lambda)$. Its adjoint, the backward shift, is given by:

$$(S^*f)(\lambda) = \frac{f(\lambda) - f(0)}{\lambda}, f \in H^2(K).$$

It is easy to verify that for every $f \in H^2(K)$ and $z \in C$ with |z| > 1,

$$(zI - S^*)^{-1} f(\lambda) = \frac{z^{-1} f(z^{-1}) - \lambda f(\lambda)}{1 - \lambda z}.$$

Hence $\sigma_{s_k^*}(f) \cap \Gamma$ consists of all $\xi \in \Gamma$ such that f has no analytic extension to a neighborhood of ξ . It follows that if f admits an analytic extension across the unit circle, then $\sigma_{s_k^*}(f) \cap \Gamma = \emptyset$. However, $\sigma_u(s_k^*) = \Gamma$. Note also that for every nonzero $f \in H^2(K)$, $\sigma_{s_k}(f) = \overline{D}$.

Recall that a contraction $T\in B(H)$ is said to be completely non-unitary if it has no proper reducing subspace on which it acts as a unitary operator. As is well known (Nikolski, 1986), if $T\in B(H)$ is a contraction, then there exists a canonical decomposition (with respect to T) of the space H into two T-invariant subspaces: $H=K\oplus L$ such that: i) K and L reduce T; ii) $S\coloneqq T\big|_K$ is a completely non-unitary contraction; iii) T and T is a unitary operator, where the subspace T is defined by:

$$L = \left\{ x \in H : \left\| T^n x \right\| = \left\| T^{*n} x \right\| = \left\| x \right\| \right\} \qquad n \in \Re$$

The operator S (respectively U) will be called completely non-unitary (unitary) part of T. According to this decomposition, every $x \in H$ can be written as $x = x_T^c + x_T^u$. The vector x_T^c (respectively x_T^u) will be called *completely non-unitary (unitary) part of* x.

It can be seen that if $T \in B(H)$, $\lim_{n \to \infty} \left\| T^n \right\| = 0$ if and only if $\sigma_u(T) = \emptyset$. Generally, the asymptotic behavior of the sequence $\left\{ T^n \right\}_{n \in \mathbb{R}}$ is frequently related to unitary spectrum of the underlying operator. This is well illustrated by the following classical result of Nagy-Foias (Nagy and Foias, 1966). If the unitary spectrum of a completely non-unitary contraction $T \in B(H)$ has Lebesgue measure zero, then $\lim_{n \to \infty} \left\| T^n x \right\| = 0$ for all $x \in H$ (the proof based on unitary dilation arguments). In this paper, we address the problem whether local and quantitative versions of the Nagy-Foias Theorem hold. For related results see (Allan and Ransford, 1989; Batty et al., 1998; Mustafayev, 2010).

RESULTS

The following theorem is the main result of this paper.

Theorem 1

Let $T \in B(H)$ be a contraction and let $x \in H$ be such that $\sigma_T(x) \cap \Gamma$ is of Lebesgue measure zero. Then, we have:

$$\lim_{n\to\infty} \left\| T^n x \right\| = \left\| x_T^u \right\|,$$

where x_T^u is the unitary part of x in the canonical decomposition of the space H with respect to T .

For the proof, we need the following lemmas.

Lemma 1

Let $T \in B(H)$ be a contraction, let E be a T-invariant subspace, and let $\pi: H \to H/E$ be the canonical mapping. Then, the following assertions hold:

a)
$$\sigma_{T|_{T}}(x) \cap \Gamma = \sigma_{T}(x) \cap \Gamma$$
 for every $x \in E$;

b) $\sigma_T(x_T^c) \cap \Gamma \subset \sigma_T(x) \cap \Gamma$, where x_T^c is the completely non-unitary part of $x \in H$ in the canonical decomposition of H.

c) $\sigma_{\hat{T}}(\pi x) \subset \sigma_{T}(x)$ for every $x \in H$, where \hat{T} is the induced mapping; $\hat{T} \circ \pi = \pi \circ T$.

Proof

a) Let $x \in E$. It is easy to see that $\sigma_T(x) \subset \sigma_{T|_E}(x)$, and so

$$\sigma_T(x) \cap \Gamma \subset \sigma_{T|_E}(x) \cap \Gamma$$
.

For the reverse inclusion, let an arbitrary $\xi \in \rho_T(x) \cap \Gamma$ be given. Then, there exists a neighborhood U_ξ of ξ with u(z) analytic on U_ξ having values in H, such that (zI-T)u(z)=x on U_ξ . Since

$$u(z) = R(z,T)x = \sum_{n=0}^{\infty} z^{-n-1}T^n x \in E$$
,

for all $z \in U_{\xi}$ with |z| > 1, we have $\pi u(z) = 0$ for all $z \in U_{\xi}$ with |z| > 1. By uniqueness theorem, $\pi u(z) = 0$ for all $z \in U_{\xi}$, so that $u(z) \in E$. Thus, we have $(zI - T|_E)u(z) = x$ on U_{ξ} . This shows that $\xi \in \rho_{T|_{\xi}}(x) \cap \Gamma$.

b) Let $H=K\oplus L$ be the canonical decomposition of H and let $S=T\big|_K$. It follows from a) that

$$\sigma_T(x_T^c) \cap \Gamma = \sigma_S(x_T^c) \cap \Gamma$$
.

It remains to show that $\sigma_S\left(x_T^c\right)\subset\sigma_T(x)$. If $\lambda\in\rho_T(x)$, then there exists a neighborhood U_λ of λ with u(z) analytic on U_λ , having values in H, such that (zI-T)u(z)=x on U_λ . Let P be the orthogonal projection from H onto K. Then, we have $(zP-PT)u(z)=x_T^c$. Since PT=TP=SP, we obtain $(zI-S)Pu(z)=x_T^c$. This shows that $\lambda\in\rho_S\left(x_T^c\right)$. c) If $\lambda\in\rho_T(x)$, then there exists a neighborhood U_λ of

 λ with u(z) analytic on U_{λ} having values in H, such that (zI-T)u(z)=x on U_{λ} . It follows that $(z\pi-\pi\circ T)u(z)=\pi x$ on U_{λ} . Consequently, we have $(zI-\hat{T})\pi u(z)=\pi x$ on U_{λ} . This shows that $\lambda\in\rho_{\hat{T}}(\pi x)$. Recall that $V\in B(H)$ is called an isometry if $\|Vx\|=\|x\|$ for all $x\in H$. It is well known that if V is a non-unitary isometry, then $\sigma(V)=\overline{D}$. Recall also that $x\in H$ is a cyclic vector of $T\in B(H)$, if the set $\{T^nx: n=0,1,2,\ldots\}$ spans the whole space H.

Lemma 2

If $V \in B(H)$ is an isometry and $x \in H$ is a cyclic vector of V, then

$$\sigma_{u}(V) = \sigma_{V}(x) \cap \Gamma$$

Proof

Assume that VH = H, that is, V is a unitary operator. We must show that $\sigma(V) = \sigma_V(x)$. By Spectral Theorem, there exists a positive measure μ on Γ such that the operator M on $L^2(\Gamma,\mu)$ defined by $Mf = e^{it} f$ is unitary equivalent to V. Let \mathcal{X}_Δ denotes the characteristic function of any Borel subset Δ of Γ and let 1 be the constant one function on Γ . Then, we have $\sigma(V) = \sup(\mu)$ and $\sigma_V(x) = \sup(v)$, where v is a vector measure on Γ that is defined by $v(\Delta) = \mathcal{X}_\Delta 1$. Since $\|v(\Delta)\| = \mu(\Delta)$, we have $\sup(\mu) = \sup(v)$ and so, $\sigma(V) = \sigma_V(x)$.

Assume that $VH \neq H$. In this case $\sigma(V) = \overline{D}$, so that $\sigma_u(V) = \Gamma$. It is enough to show that $\sigma_V(x) = \overline{D}$. Let $K = H \ominus VH$. By Wold's Decomposition Theorem (Nagy and Foias, 1966), there exists a decomposition $H = H_0 \oplus H_1$ such that H_0 and H_1 reduce V, $V_0 = V \Big|_{H_0}$ is unitary and $V_1 = V \Big|_{H_1}$ is unitary equivalent to the unilateral shift operator S_K on $H^2(K)$. Let $X = X_0 + X_1$, where $X_0 \in H_0$ and $X_1 \in H_1$. Since X_1 is a cyclic vector of X_1 , $X_1 \neq 0$, so that $\sigma_{V_1}(X_1) = \overline{D}$. It remains to show that $\sigma_{V_1}(X_1) \subset \sigma_{V_1}(X_1)$. If $\xi \in \rho_{V_1}(X_1)$

then there exists a neighborhood U_{ξ} of ξ with u(z) analytic on U_{ξ} having values in H, such that (zI-V)u(z)=x

on U_{ξ} . Let P_1 be the orthogonal projection from H onto H_1 . Then, we have $(zP_1-P_1V)u(z)=x_1$. Since $P_1V=VP_1=V_1P_1$, we obtain $(zI-V_1)P_1u(z)=x_1$. This shows that $\xi\in \rho_{V_1}(x_1)$.

Lemma 3

Let $T \in B(H)$ be a C_1 -contraction and let $x \in H$, if $f \in A(D)$ vanishes on $\sigma_T(x) \cap \Gamma$, then f(T)x = 0.

Proof

By Nagy-Foias Theorem (Nagy and Foias, 1966), there exist an isometry V and a quasi-affinity X on H intertwining T and V; XT = VX. First, we claim that

$$\sigma_V(Xx) \subset \sigma_T(x)$$
. (1)

If $\lambda \in \rho_T(x)$, then there exists a neighborhood U_λ of λ with u(z) analytic on U_λ having values in H, such that (zI-T)u(z)=x on U_λ . It follows that

$$(zX - XT)u(z) = Xx \quad (z \in U_{\lambda})$$

Consequently, we have (zI-V)Xu(z)=Xx on U_{λ} . This shows that $\lambda \in \rho_{V}(Xx)$

Set

$$K = \overline{span} \{ V^n Xx : n = 0,1,2,\dots \},$$

and

$$L = \overline{span} \{ T^n x : n = 0,1,2,... \}.$$

Since $V^n X x = X T^n x$ $(n \in \mathbb{R})$, the operator $X|_L$ is a quasi-affinity from L to K and

$$(V|_K)X|_L = (X|_L)T|_L.$$
 (2)

Also, since Xx is a cyclic vector of $V\big|_{K}$, by Lemma 2

$$\sigma_{u}(V|_{K}) = \sigma_{V|_{V}}(Xx) \cap \Gamma.$$

On the other hand, taking into account Lemma 1 a) and (1), we can write

$$\sigma_{V|_{x}}(Xx) \cap \Gamma = \sigma_{V}(Xx) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma.$$

Hence, we have

$$\sigma_{_{\mathcal{U}}}(V|_{_{\mathcal{K}}}) \subset \sigma_{_{\mathcal{T}}}(x) \cap \Gamma. \tag{3}$$

We see that under the hypotheses of the Lemma, the Lebesgue measure of $\sigma_T(x) \cap \Gamma$ is necessarily zero. It follows from (3) that $\sigma_u(V|_K)$ has Lebesgue measure zero and therefore, $V|_K$ is a unitary operator. Since $f \in A(D)$ vanishes on $\sigma_T(x) \cap \Gamma$, it follows that f vanishes on $\sigma(V|_K)$, and so $f(V)K = \{0\}$. Using now the identity (2), we can write $Xf(T)L = \{0\}$. In particular, we have Xf(T)x = 0. Since X has zero kernel, we obtain that f(T)x = 0.

Lemma 4

Let $T \in B(H)$ be a C_1 -contraction and let $x \in H$. If $\sigma_T(x) \cap \Gamma$ is of Lebesgue measure zero, then $\|T^n x\| = \|T^{*n} x\| = \|x\|$ for all $n \in \mathbf{X}$.

Proof

Set $M = \sigma_T(x) \cap \Gamma$. Let us define a mapping $h: C(M) \to H$ as a following way: Take a function $f \in C(M)$. By Rudin-Carleson Theorem (Beauzamy, 1988), there exists a function $\overline{f} \in A(D)$ such that $\overline{f}(\xi) = f(\xi)$ for all $\xi \in M$, and

$$\left\| \overline{f} \right\|_{A(D)} = \sup_{\xi \in M} |f(\xi)|. \tag{4}$$

Set $h(f) = \overline{f}(T)x$. By Lemma 3, h is a well-defined linear mapping. On the other hand, it follows from von Neumann inequality and the identity (4), the mapping h is bounded. Note also that if $f, g \in C(M)$, then $h(fg) = \overline{f}(T)\overline{g}(T)x$. Assume that the functions f_{-1} , f_0

and f_1 on M is defined by $f_{-1}(\xi) = \xi^{-1}$, $f_0(\xi) = 1$ and $f_1(\xi) = \xi$. Then, we have

$$x = h(f_0) = h(f_{-1}f_1) = \overline{f}_{-1}(T)\overline{f}_1(T)x$$
.

Set $S = \overline{f}_{-1}(T)$. Then, S is a contraction on H which commutes with T. Since $\overline{f}_{1}(T) = T$, we have STx = x so that $ST^{n}x = T^{n-1}x$ for all $n \in \mathbb{X}$. It follows that

$$||T^{n-1}x|| = ||ST^nx|| \le ||T^nx|| \le ||T^{n-1}x||.$$

Thus, $\|T^nx\| = \|x\|$ for all $n \in \mathbb{X}$. We know (Nagy and Foias, 1966) that if T is an arbitrary contraction and z is an eigenvector of T for the eigenvalue $\lambda = 1$, then z is also an eigenvector of T^* for the eigenvalue $\lambda = 1$. Since ST is a contraction and STx = x, we have $S^*T^*x = x$. It follows that $\|T^{*n}x\| = \|x\|$ for all $n \in \mathbb{X}$.

We are now able to prove the Theorem 1

Proof of Theorem 1

Let $H=K\oplus L$ be the canonical decomposition of H and let $S=T\big|_K$ be the completely non-unitary part of T. Let $x=x_T^c+x_T^u$, where x_T^c is the completely non-unitary and x_T^u is the unitary part of x. Let us show that $\lim_{n\to\infty} \left\|T^n x_T^c\right\|=0$. For this reason, set

$$K_0 = \{ x \in K : \lim_{n \to \infty} ||S^n x|| = 0 \}.$$

Let $\pi:K\to K/K_0$ be the canonical mapping and let $\hat{S}:K/K_0\to K/K_0$ the induced mapping; $\hat{S}\circ\pi=\pi\circ S$. First, we claim that \hat{S} is a C_1 -contraction. For this, it is enough to show that for every $x\in K$.

$$\lim_{n \to \infty} \left\| \hat{S}^n \pi x \right\| = \lim_{n \to \infty} \left\| S^n x \right\|.$$

Indeed, let

$$\alpha = \lim_{n \to \infty} \left\| \hat{S}^n \pi x \right\| = \lim_{n \to \infty} \left\| S^n x + K_0 \right\|.$$

Then, we have $\alpha \leq \lim_{n \to \infty} \left\| S^n x \right\|$. On the other hand, for an arbitrary $\varepsilon > 0$ there exist $k \in \mathbb{R}$ and $y \in K_0$, such that $\left\| S^k x - y \right\| \leq \alpha + \varepsilon$, which implies $\left\| S^{n+k} x - S^n y \right\| \leq \alpha + \varepsilon$, for all $n \in \mathbb{R}$. It follows that

$$\left\|S^{n+k}x\right\| \le \left\|S^{n+k}x - S^ny\right\| + \left\|S^ny\right\| \le \alpha + \varepsilon + \left\|S^ny\right\|.$$

As $n \to \infty$, we obtain $\lim_{n \to \infty} \left\| S^n x \right\| \le \alpha + \varepsilon$, so that $\lim_{n \to \infty} \left\| S^n x \right\| \le \alpha$. Further, it follows from the identity $\hat{S}^* = S^* \Big|_{K_0^1}$ that \hat{S} is a completely non-unitary contraction. Using Lemma 1 c), a), and b), respectively; we have

$$\sigma_{\hat{S}}(\pi x_T^c) \cap \Gamma \subset \sigma_{S}(x_T^c) \cap \Gamma = \sigma_{T}(x_T^c) \cap \Gamma \subset \sigma_{T}(x) \cap \Gamma.$$

It follows that $\sigma_{\hat{S}}(\pi x_T^c) \cap \Gamma$ has Lebesgue measure zero. Since \hat{S} is a completely non-unitary C_1 -contraction, by Lemma 4, $\pi x_T^c = 0$, and so

$$\lim_{n \to \infty} ||T^n x_T^c|| = \lim_{n \to \infty} ||S^n x_T^c|| = 0.$$

Also, since $||T^n x_T^u|| = ||x_T^u||$ for all $n \in \mathbb{X}$, we have that

$$\lim_{n \to \infty} ||T^n x|| = \lim_{n \to \infty} ||T^n x_T^c + T^n x_T^u|| = \lim_{n \to \infty} ||T^n x_T^u|| = ||x_T^u||.$$

CONCLUSION

It is easy to verify that if $T \in B(H)$, then $\lim_{n \to \infty} \left\| T^n \right\| = 0$ if and only if $\sigma_u(T) = \emptyset$. In general, the asymptotic behavior of the sequence $\left\{ T^n \right\}_{n \in \mathbb{R}}$ is frequently related to unitary spectrum of the underlying operator. This is well illustrated by the classical result of Nagy-Foias (Nagy and Foias, 1966). If the unitary spectrum of a completely non-unitary contraction $T \in B(H)$ has Lebesgue measure zero, then $\lim_{n \to \infty} \left\| T^n x \right\| = 0$ for all $x \in H$. In this note we show that if $\sigma_T(x) \cap \Gamma$ is of Lebesgue measure zero, then $\lim_{n \to \infty} \left\| T^n x \right\| = \left\| x_T^u \right\|$. Consequently, local and quantitative version of the well known Nagy-Foias Theorem is proved.

REFERENCES

- Allan GR, Ransford TJ (1989). Power-dominated elements in a Banach algebra. Studia Math. 94:63-79.
- Batty CJK, van Neerven J, Räbiger F (1998). Local spectra and individual stability of uniformly bounded $\,C_0$ -semigroups. Trans. Amer. Math. Soc. 350:2071-2085.
- Beauzamy B (1988). Introduction to operator theory and invariant subspaces. North-Holland, Amsterdam. p. 358.
- Mustafayev HS (2010). Asymptotic behavior of polynomially bounded operators. C. R. Acad. Sci. Paris. Ser. I(348):517-520.
- Nagy Sz, Foias C (1966). Harmonic analysis of operators on Hilbert space. Akademiai Kiaido, Budapest, p. 474.
- Nikolski NK (1986). Treatise on the shift operator. Springer Heidelberg, p. 491.