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In this paper a new combined Gaussian UWB pulse waveform, optimized using particle swarm 
optimization (PSO) algorithm is presented. In fact since a Gaussian-derived pulse itself can not satisfy 
FCC spectral constraints for the entire spectrum of a UWB signal, we are persuaded into properly 
weighted combinations of Gaussian derivatives creating a spectrum maximally close to FCC standards 
for a UWB system. In this report we have investigated three methods: Random combination, 
combination based upon least square error using PSO algorithm, and combination based on minimizing 
the area between FCC standard emission mask and PSD of the designed signal using PSO algorithm. 
Finally a pulse generated by first, forth, and fifth-order derivatives of Gaussian function is presented 
which is better compared with its previously designed counterparts when it comes to spectral 
performance even for frequencies less than 1 GHz. 
 
Key words: Gaussian derivative, PSO algorithm, pulse design, UWB pulse, spectral shaping. 

 
 
INTRODUCTION 
 
In recent years, the ultra-wideband (UWB) radio has 
attracted increasing interests for its potential applications 
in short-range high-data-rate wireless communications 
(Win and Scholtz, 1998; Win and Scholtz, 2000). With its 
enormous bandwidth, UWB signaling provides fine 
temporal resolution and offers the potential for ample 
multi-path diversity. It is well known that the UWB system 
has two essential requirements (Shan et al., 2005). The 
first is to alleviate the possible interference with other 
existing systems (Hämäläinen et al., 2006; Lei et al., 
2006). Because UWB radio systems operate with 
extremely large bandwidths and have to coexist with 
many existing systems, the equivalent isotropically 
radiated power (EIRP) must comply with the regulation by 
some organizations, for example, the Federal Commu-
nications Commission (FCC) in the United States, the 
FCC has regulated the main frequency band of the UWB 
systems to be between 3.1 and 10.6 GHz (Federal 
Communication Commission, 2002). The second require-
ment is the optimal receiving characteristics. The transmi-
ssion reliability of a  UWB  system  is  determined  by  the 
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received signal-to-noise ratio (SNR). Given the stringent 
limitations of transmission power, maximizing of the 
received SNR requires efficient utilization of the 
bandwidth and power allowed by the FCC mask. It is 
well-known that the spectrum of the transmitted signal is 
effectively determined by that of the underlying UWB 
pulse and the need to fully utilize the allocated 
bandwidth. On the other hand, the orthogonality of 
received pulses has notable impact on the performance 
of the correlation receiver (Parr et al., 2003; Michael et 
al., 2002). Therefore, the design of the pulse shape is 
important in UWB systems. 

The Gaussian monocycle pulse is commonly used in 
UWB impulse radio, however, it exhibits a poor fit to the 
FCC spectral mask and thus is not desirable for practical 
usage. There have been challenges of designing new 
pulses, such as the modified Hermite pulses (MHP) and a 
pulse design algorithm utilizing ideas of prolate 
spheroidal wave function (Michael et al., 2002). However, 
frequency shifting and bandpass filters are required for 
the MHP of order 0 or 1 for higher order MHP, respect-
tively, to satisfy the FCC spectral mask. Paper (Parr et 
al., 2003) designed the pulses based on the dominant 
eigenvectors of a channel matrix constructed by sampling 
the  spectral   mask.   Pulses   generated   from   different  
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eigenvectors are mutually orthogonal, and conform to the 
FCC spectral mask. However, they cannot achieve the 
optimal spectral utilization, and require a high sampling 
rate (64 GHz) that is difficult to implement in practice. 

Digital FIR filter solutions based on the Parks–
McClellan (PM) algorithm (Mc Clellan and Parks, 1973) 
have also been exploited for shaping UWB pulses under 
mask-fitting requirements (Luo et al., 2003). The PM 
design facilitates good approximations of the FCC 
spectral mask in a minimax sense but does not directly 
optimize the spectral utilization of the pulse. Moreover, 
trial-and-error is required to find suitable values for the 
parameters implicit in a PM design, such as the edges 
tolerances of the pass and stop bands, and the frequency 
weighting of the approximation error. 

The raise Cosine impulse has better spectrum 
characteristic and satisfy the bandwidth constraints of 
FCC, but it cannot be realized using a simple circuit. 
Another fundamental method is to modulate the sinusoid 
wave form using the window function such as Gaussian 
window and squared raised Cosine window. Recently 
several methods that satisfy the FCC mask have been 
proposed (Parr et al., 2003; Corral et al., 2002), which 
are more practical for implementation (Matsuo et al., 
2005). Besides this, other UWB waveform design 
methods were proposed in some literatures. For 
example, paper (Ramfrez- Mireles, 2002) formulated the 
signal design for binary UWB communications taking into 
consideration the particular characteristics of UWB 
propagation in a dense multi-path channel. Papers (Han 
and Nguyen, 2002; Chen et al., 2004) investigated the 
design for the source pulses and antennas, and the 
optimization of the UWB signals with some conside-
rations about antenna systems. In paper (Liang et al., 
2003), the authors focused on the UWB radar waveform 
design without constraints. Paper (Shan et al., 2005) 
presented and studied three frequency-domain models 
based on the differential evolution for optimizing source 
pulses and detection templates in UWB radio systems. 
This paper (Nakache and Molisch, 2006) studies the design 
of signaling waveforms for time-hopping impulse UWB 
radio (TH-IR) with limits on the power spectral density.  

The results in paper (Jayaweera, 2005) showed that in 
additive white Gaussian noise (AWGN) with coherent 
reception, the optimal (in the sense of minimum pro-
bability of error) performance of waveform design is 
achieved by choosing the modulation time shift 
parameter. Design of the family of orthogonal and 
spectrally efficient UWB waveforms was proposed (Igor 
and Ryuji, 2007; Michael et al., 2001).  

Here, we research pulse design method based on 
Gaussian derivatives that were produced easily and used 
broadly, proposed a simple pulse design method making 
use of a linear multi-pulse combination of a Gaussian 
derivation and through analyzing the effect of the shape 
factor i�  and the weight factor iw of linear combination on 
spectrum distribution we proposed to optimize its weight  

 
 
 
 
vector and shaping factor by PSO algorithm and we will 
do experiments to prove this method efficient. The rest of 
this paper is organized as follows; description of  
Gaussian derivatives; presentation of PSO algorithm; the 
design of Gaussian mixed UWB pulse waveforms via 
PSO algorithm is addressed and some design examples 
are presented, and lastly concluding remarks are 
provided. 
 
 
GAUSSIAN DERIVATIVES 
 
The basic Gaussian pulse in time domain is shown as: 
 

                      
2

2

2 -2�t
f(t)=- exp

� �

� �
� �
� �

                                 (1) 

 

where, 2 2
� =4��  is pulse shaping factor and 2σ  is 

variance.  
 
The thk derivative of f(t),  is expressed as (k)f (t)  and its 
frequency domain expression through the Fourier 
transform is: 
 

( ) ( )k 2 2

k
F (f)= � 2�f exp -�f � /2                                       (2) 
 
The power spectral density (PSD) of 

k
F (f)  is expressed 

as: 
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Pulse shaping factor  
 

As pulse shaping factor �  changes, Gaussian pulse 
duration will also change. Generated waveforms of Gaus-
sian pulse with �  changing in the time domain and 
frequency domain were illustrated in Figure 1 and 2. 
From Figure 1 and 2, it is clear that the pulse width 
decreases as �  increases. 
 
 
Derivative order 
 

If �  is constant and k  increases, then the spectrum 
energy will distribute in the high frequency band. To ex-
plain the influence, the frequency domain waveform of 
Gaussian derivatives was illustrated in Figure 3. Where, 
�  equaled to 0.625 ns. It is clear that the PSD moves to 
higher frequency with the order augmentation of Gaus-
sian derivative. 
 
 
PARTICLE SWARM OPTIMIZATION ALGORITHM 
 
The particle swarm paradigm, that was only a few years 
ago a curiosity, has now attracted the interest of 
researchers around the globe. This gives an  overview  of 



 
 
 
 

 
 
Figure 1. The Gaussian pulse changes 
with � (Time domain). 

 
 
 

 
 
Figure 2. The Gaussian pulse changes with 
�  (Frequency domain). 

 
 
 

 
 
Figure 3. The Gaussian pulse changing with the order 
augmentation of Gaussian derivative (frequency domain). 

 
 
 
important work that gave direction and impetus to 
research in particle swarms as well as some interesting 
new directions and applications (James and Russel,1995; 
James and Russel, 2001). Things change fast in this field 
as investigators discover new ways to do things, and new 
things to do with particle swarms. It is impossible to cover 
all aspects of this area within the strict page limits of this 
paper. 

The initial ideas on particle swarms of Kennedy and 
Eberhart were essentially aimed at  producing  computat- 
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ional intelligence by exploiting simple analogues of social 
interaction, rather than purely individual cognitive 
abilities. The first simulations (Kennedy and Eberhart, 
1995) were influenced by Heppner and Gren-ander’s 
work (Heppner and Grenander, 1990) and involved 
analogues of bird flocks searching for corn. These 
developed (Kennedy and Eberhart, 1995) into a powerful 
optimization method—Particle Swarm Optimization 
(PSO). 

In PSO, a number of simple entities—the particles—are 
placed in the search space of some problem or function, 
and each evaluates the objective function at its current 
location. Each particle then determines its movement 
through the search space by combining some aspect of 
the history of its own current and best (best-fitness) 
locations with those of one or more members of the 
swarm, with some random perturbations. The next itera-
tion takes place after all particles have been moved. 
Eventually the swarm as a whole, like a flock of birds 
collectively foraging for food, is likely to move close to an 
optimum of the fitness function. 

Each individual in the particle swarm is composed of 
three D-dimensional vectors, where D is the dimen-
sionality of the search space. These are the current 

position ix ,
→

 the previous best position ip ,
→

 and the 

velocity iv .
→

 

The current position ix
→

can be considered as a set of 
coordinates describing a point in space. On each iteration 
of the algorithm, the current position is evaluated as a 
problem solution. If that position is better than any that 
has been found so far, then the coordinates are stored in 

the second vector, ip .
→

 The value of the best function 
result so far is stored in a variable that can be called 

ipbest  (for “previous best”), for comparison on later 
iterations. The objective, of course, is to keep finding 

better positions and updating ip
→

 and ipbest . New points 

are chosen by adding  iv
→

 coordinates to ix ,
→

and the 

algorithm operates by adjusting  iv ,
→

 which can effectively 
be seen as a step size. 

The particle swarm is more than just a collection of 
particles. A particle by itself has almost no power to solve 
any problem; progress occurs only when the particles 
interact. Problem solving is a population-wide 
phenomenon, emerging from the individual behaviors of 
the particles through their interactions. In any case, 
populations are organized according to some sort of 
communication structure or topology, often thought of as 
a social network. The topology typically consists of 
bidirectional edges connecting pairs of particles, so that if 
j is in i’s neighborhood, i is also in j’s. Each particle 
communicates with some other particles and is affected 
by the best point found by  any member of its  topological  
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Table 1. Key PSO vocabulary. 
 

Some Key terms used to describe PSO 

Particle/ Agent One single individual in the 
swarm. 

Location/Position 
An agent’s N dimensional 
coordinates which represents 
a solution to the problem. 

Swarm The entire collection of agents. 
Fitness/Cost/ 
Evaluation 
Function 

A single number representing 
the goodness of a given 
solution. 

Personal best 
(pbest) 

The location in parameter 
space of the best fitness 
retuned for a specific agent. 

Global best 
(gbest) 

The location in parameter 
space of the best fitness 
retuned for entire swarm. 

maxV  
The maximum allowed velocity 
in a given direction. 

 
 
 

neighborhood. This is just the vector ip
→

 for that best 

neighbor, which will be denoted with gp .
→

  
In the particle swarm optimization process, the velocity of 
each particle is iteratively adjusted so that the particle 

stochastically oscillates around ip
→

 and gp
→

 locations. In 
fact PSO is an evolutionary algorithm based on the intel-
ligence and cooperation of group of birds or fish 
schooling. It maintains a swarm of particles where each 
particle represents a potential solution. The PSO algorit-
hm particles are flown through a multidimensional search 
space, where the position of each particle is adjusted 
according to its own experience and that of its neighbors. 
Table 1 shows some key terms used to describe PSO 
(Robinson and Sammi, 2004). The (original) process for 
implementing PSO is shown in Algorithm 1.  
 
 
Algorithm 1: Original PSO 
 
1. Initialize a population array of particles with random 
positions and velocities on D dimensions in the search 
space. 
2. Loop 
3. For each particle, evaluate the desired optimization 
fitness function in D variables. 
4. Compare particle’s fitness evaluation with its ipbest . If 
current value is better than ipbest , then set ipbest  equal to 

the current value and ip
→

 equal to the current location ix
→

 
in D-dimensional space. 
5. Identify the particle in the neighborhood with the best 
success  so far, and   assign its  index to  the  variable g. 
6. Change the velocity and position of the particle accord- 

 
 
 
 
ing to the following equation: 
 

  i i 1 i i 2 g i

i i i

v v U(0, ) (p x ) U(0, ) (p x )

x x v

φ φ
→ → → → → → → →

→ → →

← + ⊗ − + ⊗ −

← +
                 (4)  

 
7. If a criterion is met (usually a sufficiently good fitness 
or a maximum number of iterations), exit loop. 
8. End loop 

Note that, U(0, )iφ
→

 represents a vector of random 
numbers uniformly distributed in [0, iφ ] which is randomly 

generated at each iteration for each particle. � is 
component-wise multiplication. In the original version of 

PSO, each component of iv
→

 is kept within the range 

[ ]max max-V ,+V .  
 
 
Parameters 
 
The basic PSO described above has a small number of 
parameters that need to be fixed. One parameter is the 
size of the population. This is often set empirically on the 
basis of the dimensionality and perceived difficulty of a 
problem. Values in the range 10 - 50 are quite common. 
The parameters 1φ  and 2φ  in (4) determine the magnitude 

of the random forces in the direction of personal best ip
→

 

and neighborhood best p .g

→

 These are often called 
acceleration coefficients. The behavior of a PSO changes 
radically with the value of 1φ  and 2 .φ  Interestingly, we can 

interpret the components 1 i iU(0, ) (p x )φ
→ → →

⊗ −  and 

2 g iU(0, ) (p x )φ
→ → →

⊗ −  in (4) as attractive forces produced by 
springs of random stiffness, and we can approximately 
interpret the motion of a particle as the integration of 
Newton’s second law. In this interpretation, 1φ /2 and 2φ /2 
represent the mean stiffness of the springs pulling a 
particle. It is not surprising then that by changing 1φ  and 

2φ  one can make the PSO more or less “responsive” and 
possibly even unstable, with particle speeds increasing 
without control. The value 1φ  = 2φ  = 2.0, almost 
ubiquitously adopted in early PSO research, did just that. 
However, this is often harmful to the search and needs to 
be controlled. The technique originally proposed to do 
this was to bound velocities so that each component of 

iv
→

 is kept within the range [ ]max max-V ,+V .  The choice of the 

parameter maxV  required some care since it appeared to 
influence the balance between exploration and 
exploitation. The use of hard bounds on velocity, however 
present  some  problems.  The  optimal  value  of  maxV   is 



 
 
 
 
problem-specific, but no reasonable rule of thumb is 
known. Further, when maxV  was implemented, the par-
ticle’s trajectory failed to converge. Where one would 
hope to shift from the large-scale steps that typify exp-
loratory search to the finer, focused search of exp-
loitation, maxV  simply chopped off the particle’s osci-
llations, so that some hopefully satisfactory compromise 
will be seen throughout the run. 
 
 
Inertia weight 
 
Motivated by the desire to better control the scope of the 
search, reduce the importance of maxV , and perhaps 
eliminate it altogether, the following modification of the 
PSO’s update equations was proposed (Shi and 
Eberhart, 1998b): 
    

i i 1 i i 2 g i

i i i

v �v U(0, ) (p x ) U(0, ) (p x )

x x v

φ φ
→ → → → → → → →

→ → →

← + ⊗ − + ⊗ −

← +
                    (5) 

 
where �was termed the “inertia weight.” Note that if we 

interpret 1 i i 2 g iU(0, ) (p x ) U(0, ) (p x )φ φ
→ → → → → →

⊗ − + ⊗ −  as the 

external force, if
→

, acting on a particle, then the change in 
a particle’s velocity (that is, the particle’s acceleration) 

can be written as i iv f (1 �) v .i

→ → →

∆ = − −  That is, the constant 
1 �−  acts effectively as a friction coefficient, and so �  
can be interpreted as the fluidity of the medium in which a 
particle moves. This perhaps explains why researchers 
have found that the best performance could be obtained 
by initially setting �  to some relatively high value (e.g., 
0.9), which corresponds to a system where particles 
move in a low viscosity medium and perform extensive 
exploration, and gradually reducing �  to a much lower 
value (e.g., 0.4), where the system would be more 
dissipative and exploitative and would be better at 
homing into local optima. It is even possible to start from 
values of � 1> , which would make the swarm unstable, 
provided that the value is reduced sufficiently to bring the 
swarm in a stable region (the precise value of �  that 
guarantees stability depends on the values of the 
acceleration coefficients). 

Naturally, other strategies can be adopted to adjust the 
inertia weight. For example, in (Eberhart and Shi, 2000) 
the adaptation of � using a fuzzy system was reported to 
significantly improve PSO performance. Another effective 
strategy is to use an inertia weight with a random 
component, rather than time-decreasing. For example, 
(Eberhart and Shi, 2001) successfully used � = U(0.5, 1). 
There are also studies (Zheng et al ., 2003),   in which an 
increasing inertia weight was used to obtain good results. 
With (2) and an appropriate choice of �  and of the ace-
leration coefficients,  1φ  and 2φ ,  the  PSO  can  be  made 
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much more stable, so much that one can either do 
without maxV  or can set maxV  to a much higher value, such 
as the value of the dynamic range of each variable (on 
each dimension). In this case, maxV  may improve 
performance, though with use of inertia or constriction 
techniques, it is no longer necessary for damping the 
swarm’s dynamics. 
 
 
Constriction coefficients 
 
Though the earliest researchers recognized that some 
form of damping of the dynamics of a particle was 
necessary, the reason for this was not understood. But 
when the particle swarm algorithm is run without 
restraining velocities in some way, these rapidly increase 
to unacceptable levels within a few iterations. Kennedy 
(1998) noted that the trajectories of nonstochastic one-
dimensional particles contained interesting regularities 
when 1 2φ φ+  was between 0.0 and 4.0. Clerc’s analysis of 
the iterative system led him to propose a strategy for the 
placement of “constriction coefficients” on the terms of 
the formulas; these coefficients controlled the conve-
rgence of the particle and allowed an elegant and well-
explained method for preventing explosion, ensuring 
convergence, and eliminating the arbitrary maxV  para-
meter. The analysis also takes the guesswork out of 
setting the values of 1φ  and 2φ . 

Clerc and Kennedy (2002) noted that there can be 
many ways to implement the constriction coefficient. One 
of the simplest methods of incorporating it is the 
following: 
           

 i i 1 i i 2 g i

i i i

v �(v U(0, ) (p x ) U(0, ) (p x ))

x x v ,

φ φ
→ → → → → → → →

→ → →

← + ⊗ − + ⊗ −

← +
               (6) 

  
where 1 2 4φ φ φ= + >  and 
 

   
2

2
�

2 4φ φ φ
=

− + −
                                                      (7) 

 
When Clerc’s constriction method is used, φ is commonly 
set to 4.1, 1 2φ φ= , and the constant multiplier �  is 
approximately 0.7298. This results in the previous 
velocity being multiplied by 0.7298 and each of the two 

(p x)
→ →

−  terms being multiplied by a random number limited 
by 0.7298 × 2.05 � 1.49618. 
 
 
GAUSSIAN MIXED UWB PULSE DESIGN 
 
In this paper, the possibility of tuning the PSD of a gene-
rated pulse by combining a few single  reference  Gaussian 



3054            Sci. Res. Essays 
 
 
 

 
 
Figure 4. Random combination (case 1). 

 
 
 

 
 
Figure 5. Random combination (case 2). 

 
 
 
pulse waveform and its derivatives to adjust the PSD to 
the mask was analyze. A possible approach is to use 
linear combinations of N Gaussian derivatives, each 
being characterized by a given � value and combined 
them linearly with different weight factors into a pulse. 
Note that the combination of N derivatives and the 
possibility of choosing different � values for different 
derivatives provide a high degree of flexibility in the 
generation of pulse waveforms. The combinational pulse 
is: 
 

 
N

(i)
i i

i=1

p(t)= a f (t,� )�                                                           (8)   

 
where ia  is weight factor and i�  is pulse shaping factor. 
We  want to design and compare combinational UWB 
pulses from two aspects: Random combination, and error 
minimization such as the Least Square Error (LSE) or the 
area between standard UWB emission mask and the 
PSD of the linear combination signal via  PSO  algorithm.  

 
 
 
 
Random combination 
 
Now, we will analyze the problem of UWB emission mask 
approximation with combination of Gaussian derivatives 
and perform the approximation through two cases: In the 
first case, all derivatives have the same shape factor � , 
while in the second case, different derivatives take 
different �  values.  

We generate a set of coefficient for the first 15 
derivatives in a random way and check if the PSD of the 
linear com-bination of the functions obtained with these 
coefficients satisfies the emission limits. In order to gain 
better weight coefficients, we repeated choosing another 
sets of coefficients until the distance between the mask 
and PSD of the generated waveform falls below a fixed 
threshold.  

Figures 4 and 5 showed the PSD of the waveforms 
obtained by random combination of the first 15 deriva-
tives plotted against the FCC emission mask. The weight 
coefficients and shape factors of the combined UWB 
pulses for case 1 and 2 are shown in Table 2 

Figure 4 shows that the combination of several 
Gaussian deri-vatives leads to a good approximation of 
the emission mask, particular in the band 0.96 GHz- 3.6 
GHz. Outside this band, power is less efficiently used. 
But the spectral performance of case 2 is better than 
case 1 and single Gaussian derivation pulse. 
 
 
UWB pulse design using PSO algorithm 
 
In this section, we describe the PSO algorithm for UWB 
pulse design. First of all, we define the number of 
individuals as N and the dimension of the search space 
of an optimization as d. The position of an individual 
at thk generation (iteration) is denoted by d

kX [i] R∈ , that is, 
its velocity and evaluation value are denoted 
by d

kV [i] R∈ and kJ [i] R∈ , respectively. The index i= 1, 2, 
... , N is the number of  the individual. An individual's best 
position and its evaluation value in past are denoted by 

d
kp [i] R∈  and pkJ [i] R∈ . The best position and evaluation 

value of whole swarm including past generation are 
denoted by d

kg R∈   and gkJ R∈ . You can see the behavior 
of an individual in 2-dimensional search space in Figure 
6. 
This algorithm is described as follows: 
 
 [PSO algorithm steps] 
 [step 1] 
Generate  the individuals

0
X [i], [1, 2,..., ]i N∀ ∈  of initial gen- 

eration (k = 0) randomly.  [step 2] 
 Compute the evaluation value and update [ ]kp i for all 
individuals. 
 

k kp [i]=X [i],  if k pkJ [i]>J [i], i∀ .                                             (9) 



 
 
 
 
Table 2. The weight coefficients and shape factors of the combined 
UWB pulses for case 1 and case 2. 
 
Case 2 Case 1  

iw  iα  iw  iα  i  
-0.082 1.525 ns -0.038 0.625 ns 1 
0.355 0.325 ns 0.003 0.625 ns 2 
0.076 0.325 ns -0.013 0.625 ns 3 
0.831 0.325 ns 0.045 0.625 ns 4 
-0.860 0.325 ns -0.044 0.625 ns 5 
-0.973 0.325 ns 0.091 0.625 ns 6 
0.903 0.325 ns -0.029 0.625 ns 7 
0.030 0.325 ns 0.236 0.625 ns 8 
0.500 0.325 ns 0.505 0.625 ns 9 
0.217 0.325 ns 0.062 0.625 ns 10 
0.697 0.325 ns 0.615 0.625 ns 11 
0.494 0.325 ns -0.778 0.625 ns 12 
-0.144 0.325 ns 0.078 0.625 ns 13 
0.181 0.325 ns -0.550 0.625 ns 14 
0.790 0.325 ns 0.817 0.625 ns 15 

 
 
 
[step 3] 
Update kg by the following equation. 
 

k kg [i]=X [i],  if k gkJ [i]>J [i], i∀ .                                           (10) 
[step 4] 
  
 
Generation changes with the following equation. 
 

k+1 k kX [i]=X [i]+V [i],  i∀                                     

{ }k k-1 1 k k 2 k kV [i]=�× V [i]+c ×�(g -X [i])+c ×�(p [i]-X [i]) , i∀ ,              (11) 
 
where, 1 2c ,c ,� R∈  and d×d

�,� R∈  are denoted by          

1, 2 d

1, 2 d

�=diag[	 	 ,...,	 ]

�=diag[
 
 ,...,
 ]
                                                          (12)                                                               

where, i	 [0,1],∈ i
 [0,1]∈ ( i=1,2,...,d ) are uniform 
pseudorandom numbers. 
[step 5] 
k=k+1,  then repeat [step 2] through [step 5]. 
 
Random selection is not the only possible strategy for 
determining the set of coefficients in the linear com-
bination. In fact if the weight vector of linear combination 
was selected randomly, the attained combination pulse 
may not be the optimum, so we propose to optimize the 
weight vector using PSO. In PSO algorithm, the 
evaluation function definition is very important. The goal 
is to optimize weight vector so as to make combination 
pulse close to FCC emission mask to the greatest extent, 
that is, to minimize error between them. So we defined 
two evaluation functions below: 
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1. Least square error (LSE) evaluation function:  
 
A more systematic way of selecting such coefficients is 
our procedure for error minimization, in which the 
following error function must be minimized: 
  

2N
2

s1 1 k k
k=1- -

e (t) e (t) dt f(t)- a f (t) dt
+∞ +∞

∞ ∞

= = �� �                           (13) 

 
In equation (13), f(t) is the target function or FCC 
emission mask. Note that since requirements are 
specified in terms of meeting a PSD, the error equation 
(13) could be rewritten as follows: 
 

2
1 Me P (f)-F(f) df

+ ¥

- ¥

= ò                                                     (14)                                                    

 
where MP (f) is FCC emission mask and F(f)  is PSD of 
linear combination pulse. 
 
2. The error function 2e  which is the area between 
standard UWB emission mask and the PSD of the linear 
combination pulse error function. 
We define this error function as: 
 

 ( )
10.6

2 M

0

e = P (f)-F(f) dfò                                                     (15)                                                    

 

2e  is the area between FCC emission mask and the PSD 
of combined Gaussian derivatives pulse. 1e  and 2e  are 
error functions and we want to find the weight vector that 
minimizes the error functions 1e  and 2e . 
 
 
Coding rules 
 
In PSO, individuals of the thk generation have information 
of position kX [i], velocity kV [i] and its evaluation 
value kJ [i]. In addition, these individuals remember a past 
best position kp [i] of itself. PSO is an optimization 
technique by the generational change, in which each 
particle searches for the position with the highest 
evaluation value. The generational change is implement-
ted based on kX [i], kV [i], kp [i],  and past best position of 
the swarm kg .  Here, we would use PSO to optimize the 

vector j j� w	 
� �  of linear combination of Gaussian 

derivatives. We denote this vector by md

kX [i],  where i 
(i=1,2,...,N) is the thi  particle at thk  generation, m is the 
length of each particle or the dimension of the search 
space of PSO algorithm. Combination pulses are com-
posed of the 15 single Gaussian derivatives pulses, so the 
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Figure 7. The PSD of PSO linear combined UWB pulse 
using 1e  .   

 
 
 

 
 
Figure 8. The PSD of PSO linear combined UWB pulse 
using 2e  

 
 
 
the length of vector is 30. When optimizing problems, 
PSO involves parameters such as population size N, that 
is, the number of individuals in population, dimension of 
the search space of optimization as d, and the maximum 
iteration S. Here N is supposed to be 10, the maximum 
iteration is chosen to be 20 and d equals to 30.  

At the first step we generate the initial population 
randomly, and then in the following, step 2 through step 5 
are applied to all individuals. For example for i=1, we 
have:  
 

30m 1 dd d
0 0 0X [1] X [1] X [1]	 
=� ��    th1 particle at th1 generation 

� � � �    (16) 
30m 1 dd d

0 0 0X [10]= X [10] X [10]	 
� ��  th10 particle at th1 generation  

 
Compute the evaluation value according to  the  equation 

 
 
 
 
(14) or (15) for minimizing error function and then 
update kp [i] for all individuals based on (9). Then update 

kg by equation (10). After that we update generation of 
the swarm from k to k+1 by equation (11) and then repeat 
the algorithm. Now we perform re-initialization of the 
swarm by the following formulation returns to Gaussian 
derivatives. 
 

( ) ( )k k max minX [i]=g -� R -R × 2	-1                                                 (17)  
 
Individuals which go out of the search area are returned 
to following position: 
 

( )k max max minX [i]=R 2� 	 R -R− ⋅         if      k maxX [i]>R  
 

( )k min max minX [i]=R +2� 	 R -R⋅          if      k minX [i]<R                   (18)                                  
 
where minR and maxR are minimum and maximum value of 
the search area respectively, � is the range of a 
controllable power factor, and 	 [0,1]∈  denotes a uniform 
pseudorandom number. 
 
 
SIMULATION RESULTS 
 
In Figure 7 and 8 PSO optimized the vector j j� w	 
� � of 
linear combined of Gaussian derivatives. As we applied 
PSO algorithm using equations (14) and (15) for j=1, 4, 5 
based on linear combination of Gaussian derivatives, we 
obtained the optimum value of 
 vecto-r [ ]1 4 5 1 4 5� � � w w w  equaled to 

[ ]1.96 ns 0.0758 ns 0.231 ns 0.0079 -0.0323 0.0391− and 

[ ]2.044 ns 0.100 ns 0.211 ns -0.0180 -0.0313 0.2872  ,res-
pectively. From Figure 7 and 8, it could be understood 
that the optimized pulse by PSO algorithm met the FCC 
emission mask in whole frequency band; it was better 
than single Gaussian derivative and had much larger 
PSD than random combination pulse under satisfying 
condition. 

Because duration of UWB pulse is very short, so it 
often differentiates different users by TH-code. This share 
of the common spectrum is THMA in IR-UWB system. As 
to PSO combined pulses in Figure 7 and 8, we use the 
standard Gaussian approximation (SGA) algorithm to 
evaluate the BER performance (Zhang and Aaron, 2005; 
Scholtz, 1993). It is supposed that the modulation method 
is 2PPM and the controllable power of transmission of  
Prb  is shown as: 

 

( ) ( )
11

1(1) 2
0 0

1
Pr 2 ( 1) 2

2

M

M

T

b b R b u
T

erfc E N R N R dγ τ τ

−−
−

−

� �� �� �� �� �= + −� �� �� �� �� �� �� �� �

�
               (19) 

 

where 
b 0E /N is the signal-to-noise ratio, bR  is data 



 
 
 
 

 
 
Figure 9. The Prb  of PSO linear combined UWB pulse using 1e . 

 
 
 
transmission speed, 

uN  is the user number and 
uN 1−  

is the MUI number, 
0R ( )t  is a proportional coefficient 

and 1.Rγ ≤  The simulation parameters are set as 

following: bR 35=  Mbps, 1,Rγ =  
uN =  10, 25 and 

50,  TM =  0.5e-9 and 
b 0E /N  is changeable in range 

[0,30] dB. The simulation results compared the PSO 
combined UWB pulse (cases 1 and 2) and Gaussian 
doublet pulses are shown in Figure 9. 
 
 
CONCLUSIONS 
 
IR-UWB signals are characterized by an interesting 
feature; their spectral properties may be appropriately 
tuned by playing with a variety of parameters. In this pa-
per, we analyzed the issue of tuning spectral properties 
of to-be-radiated IR-UWB signals to reference spectral 
patterns by pulse shaping. We showed that the impulsive 
nature of the carrier of IR allows translating the problem 
of matching a spectrum, into the problem of finding a best 
waveform match. We proposed a method for obtaining  
the approximating function based on constructing diff-
erential Gaussian pulse that made use of a linear 
combination of only three pulses of Gaussian derivatives. 
To find the best weight coefficient, we proposed to 
optimize its weight vector and shaping factor by particle 
swarm optimization technique. Results obtained by app-
lication of the proposed algorithm were presented for 
three case studies: Random combination, error minimize-
tion such as the Least Square Error (LSE) and the area 
between standard UWB emission mask and the PSD of 
the linear combination signal via particle swarm 
optimization algorithm. In each three cases, the set of 
base functions was formed by the first 15 derivatives of 
the Gaussian pulse.  

The first case study refers to approximating FCC indoor 
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UWB emission mask by using a pure trial-and-error 
method. In order to gain better weight coefficients, we 
optimized the weight vector and shaping factor by particle 
swarm optimization algorithm and a similar analysis was 
carried out in second and third case studies. A good 
spectrum matching was obtained, especially in the cases 
two and three. 

This paper combined Gaussian derivatives linearly to 
implement UWB pulse designed at the same time 
proposed to optimize pulse shape factor and weight 
vector using PSO. We adopted first, fourth and fifth order 
Gaussian derivatives as basic functions, and constructed 
the PSO model pulse for optimizing pulse shaping and 
weight vector. The simulation results showed that, these 
two combination pulses meet FCC emission mask better 
in comparison with the random combination pulse or 
single derivative pulse which proved the UWB pulse 
design method based on PSO to be the best method. 

Frequency shifting is required for pulses generated 
using Hermit polynomials for the designed pulses to meet 
the FCC spectral mask, and also, the spectrum of the 
pulses generated using Hermit polynomials of order 2 or 
higher contain multiple lobes of approximately equal 
amplitude requires the use of a bandpass filter. This 
filtering will result in a loss of usable signal energy which 
is another disadvantage of the Hermit polynomial method 
as compared to our pulse design algorithm and leads to a 
direct transmitter implementation since no multiplier is 
needed to frequently shift the frequency in order to move 
the pulse spectrum into the desired frequency mask.  
Experimental results show that obtained waveform can 
satisfies the constraints well, and it also shows the 
superiority of this method to other approaches. Therefore 
it can be considered as a potential scheme for the 
practical UWB systems. 
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