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Turbocharger is a high speed rotor system supported by a pair of floating ring bearings which comprise 
of double oil films. The stability of its rotor system is governed by not only the structure of the rotor but 
also by the nonlinear hydrodynamic force of two oil films. In this paper, a lumped dynamics model is 
developed for a turbocharger rotor system. In order to investigate the nonlinear behavior of the rotor 
system, the analytical expression of nonlinear hydrodynamic force of outer and inner oil films is 
derived on the basis of Capone oil film force model. Shooting method and continuation algorithm are 
used to obtain the periodic solution of the dynamics equation. Based on the numerical simulation 
results, the effects of rotor imbalance and lubricant feed pressure on the stability discipline and 
bifurcation behaviors are studied. 
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INTRODUCTION 
 
Turbocharger has been widely used in vehicles to recycle 
the exhaust energy and boost engine power. The working 
speed of the turbocharger can reach 140,000 r/min and 
over. At such a high speed, even a weak vibration can 
lead to the failure of its rotor system. In order to ensure 
the turbocharger operating safely under the extreme 
working condition, it is meaningful to carry out the 
research on the vibration and the stability of the 
turbocharger rotor system. 

The stability of a rotor bearing system is generally 
governed by hydrodynamic forces. Hagg (1956), 
Sternlicht (1959), Lund (1964, 1968) and Glienicke 
(1966) proposed a theory to describe dynamic 
characteristics of the journal bearing by using linearized 
coefficients such as stiffness and damping coefficients. In 
this theory, the hydrodynamic force is expressed by a 
function   of   displacement   and   velocity   in   the  static 

equilibrium position. Reynolds Equation is solved to 
obtain the oil film pressure, which is then used to 
calculate the hydrodynamic force. However, the condition 
of the weak perturbation is sometimes not satisfied, thus 
the linearized result might be insufficient to describe the 
nonlinear behaviors of the rotor system. In order to reveal 
the mechanism of oil film instability, recently researchers 
have studied in depth the principle of the shaft motion 
based on the research of the nonlinear rotor system 
differential motion equation (Yang et al., 2004). Goldman 
and Muszynska (1994) studied the chaotic behavior of 
rotor/stator systems with rub-impacts. The analytical and 
numerical simulations show that the regular periodic 
vibration of the order of the synchronous, the 
subsynchronous and the chaos vibration are all 
accompanied by higher harmonics. Chu and Zhang 
(1998) investigated the nonlinear vibration characteristics  
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of a rub-impact Jeffcott rotor. They found that when the 
rotational speed is increased, the grazing bifurcation, the 
quasi-periodic motion and chaotic motion occur after the 
rub-impact. Chang-Jian and Chen (2006a, 2006b, 2007a, 
2007b) presented a series of papers on the nonlinear 
dynamics of rotor-bearing systems under nonlinear 
suspension and combined these with rub-impact effect, 
turbulent effect and micropolar lubricant. They found that 
many non-periodic responses occurred in the rotor-
bearing systems. Fu et al. (2003) investigated the chaotic 
motions of a rotor system with a transverse crack by 
theoretical and numerical approaches. 

The turbocharger is a flexible rotor system supported 
by a pair of floating ring bearings. The inner and outer oil 
films affect the rotor motion simultaneously that makes 
the stability discipline more complicated to be studied. 
Tatara (1970) stated that as soon as whirl appears in the 
inner film, the ring begins to spin and the bearing could 
stabilize the rotor system. Tanaka and Hori (1972) 
developed a dynamics model for a flexible rotor 
supported by floating ring bearings based on the infinitely 
short bearing theory and then the stable speed is 
estimated under different bearing parameters. By the 
comparison of predicted and experimental results 
acquired by Hill (1950) and Dworski (1964), it was 
demonstrated that the frequency of the oil film whirl was 
approximately one half of the sum of the shaft speed and 
the ring speed under medium pressure. Rohde and Ezzat 
(1980) reported that floating ring bearings have the 
potential to reduce the power loss of the automotive 
engine. Tatara (1970) carried out a linear stability analysis 
of the floating ring rotor bearing system. It was found that 
the unstable speed is sensitive to the outer bearing 
clearance and the thinner of the outer bearings clearance 
is, the wider speed range covered. Trippett and Dennis 
(1983) concluded that oil film whirl and whip is caused by 
shear effects between the inner and outer fluid films and 
will eventually reach a stable limit cycle. Howard (1999) 
discussed the possibility of replacing oil film bearings by 
air bearings in a diesel truck turbocharger. Aretakis et al. 
(2004) discussed the possibility of detecting the instability 
in the turbocharger rotor system by vibration and noise 
signals of the compressor impeller. By the signal features 
extraction, a bi-parametric criterion was established for 
determination of whether the compressor of the 
turbocharger operates in the stable stage. Chen et al. 
(1996) developed a model for a turbocharger turbine 
under pulsating inlet conditions. The one-dimensional 
unsteady flow method was applied to study the behavior 
of the turbine under steady and unsteady flow conditions. 
This model showed an improved prediction in the off-
design condition. Kreuz-Ihli et al. (2000) utilized a 
commercial Navier-stokes solver to study the vibration of 
radial inflow turbines under the unsteady flow and then 
validated the model by experimental data collected from 
a Laser-Doppler velocimeter. Peat et al. (2006) presented 
a model for the  passive  acoustic  behavior  of  a  turbine 

 
 
 
 
impeller of an automotive turbocharger. Based on the 
knowledge of the rotor vibration, the effects of the primary 
noises, such as the gas pulsation and the exhaust 
tailpipe orifice, on the behavior of the turbine were 
studied. Payri et al., (1996, 2000) published a series of 
papers focusing on the investigation of the transient 
performance of turbocharged diesel engines and 
developed an action model for calculating the transient 
operation. 

So far, most of the stability research is carried out 
based on the simplified model, such as Jeffcott rotor. 
However, the stability of the turbocharger rotor system, 
which is a high speed flexible rotor system supported by 
floating ring bearings, is still not clear. Therefore, in this 
paper, a lumped model is developed for the turbocharger 
rotor system. The analytical expression of the nonlinear 
hydrodynamic force is derived based on the Capone oil 
film force model. Following model development, the 
bending vibration of a turbocharger rotor system is 
calculated in MATLAB. Based on the simulation results, 
the effects of rotor imbalance and lubricant feed pressure 
on the stability of the turbocharger rotor system are 
investigated using the floquet theory and bifurcation 
analysis. 
 
 
THEORY BACKGROUND 
 
Dynamics equation of a rotor-bearing system 
 
The dynamics equation of a rotor-bearing system with 
multi-degree of freedom is expressed by Equation (1), 
which can be transformed into a first order differential 
Equation (2) by the state-space method. 
 

          FUKUCUM                       (1) 

 

 ΩU,t,F
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U





           (2) 

 
If the force vector on the right hand side of the Equation 
(2) does not depend on the time t, that is, 

   ΩU,FΩU,t,F  , the system is called an 

autonomous system in mathematics; if the force vector is 
a function of a period T, that is, 

   ΩU,T,tFΩU,t,F  , the system is called a non-

autonomous system. Due to the existence of the residual 
rotor imbalance, most of rotor-bearing systems belong to 
the non-autonomous system. 
 
 

The periodic solution of the nonlinear dynamics 
equation 
 

Numerical   approach   is   a   common   approach  in  the 



 
 
 
 
solution of the periodic solution of the nonlinear dynamics 
equation as the analytical solution is generally difficult to 
be obtained. Numerical integration method and shooting 
method, as two classical methods of the numerical 
approach, are widely used in solving the periodic 
solution. Numerical integration method is simple to apply 
but the obvious disadvantage of this method is that only 
the stable periodic solution can be solved. Compared to 
the numerical integration method, the shooting method, 
which transforms an initial value problem of a differential 
equation into a boundary value problem, shows more 
efficiently in the solution of the periodic solution. By 
combining the shooting method with the continuation 
method, both the stable and unstable periodic solution 
can be obtained simultaneously (Granas et al., 2012). 
The solution approach is detailed as follows: 

 
According to the definition, the periodic solution of the 
nonlinear dynamics Equation (2) should meet the 
condition (3). 

 

   TtUtU             (3) 

 
By Poincaré map, the solution of the continuous 
dynamics system can be transformed into the solution of 
the fixed point. A Poincaré map with n+1 dimension is 
defined by Equation (4). 

 

      0Tt,mod|tU,           (4) 

 

The fixed point 
*u  in the map should meet the periodic 

boundary condition (5). 

 

   uPuuG            (5) 

 
Equation (5) can be solved by Newton-Raphson iteration 
method, which is shown in Equation (6). 
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Differentiate Equation (6) with respect to u, we can obtain 
(7) 

 
'

u

'

u PIG             (7) 

 
Substitute (7) into (6), we can obtain (8) 
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The Jacobi matrix of Poincaré mapping,  k

'

u uP  in 

Equation (8), is the solution of Equation (9) at t = T. 
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The continuation algorithm is used to estimate initial 
values of the numerical integration. Initial values of the 
numerical integration under current parameters can be 
estimated by the periodic solution under previous 
parameters. The approach to estimate initial values under 
different rotational speeds of a rotor-bearing system is 
detailed as follows. 

Differentiate Equation (2) with respect to ΩU, , we can 

obtain Equation (10). 
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According to the principle of the homotopy continuation 
method, the relationship between the periodic solution 
under the current speed and initial iteration values under 
the next speed is expressed by Equation (11). 
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The stability of a rotor-bearing system 
 
Due to the existence of the residual rotor imbalance, the 
rotor generally performs a synchronous motion at 
relatively low speeds, which maps into a fixed point in 
Poincaré map. As the rotational speed is increased to a 
certain value, the rotor system motion will no longer 
perform the synchronous motion as a result  of  nonlinear 

  iU0U 
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Figure 1. Turbocharger rotor system. 

 
 
 

 
 

Figure 2. (a) Physical model of a turbocharger rotor system (b) 
Lumped model of a turbocharger rotor system. 

 
 
 
hydrodynamic forces. A bifurcation occurs at that speed. 
According to the floquet theory, the bifurcation style can 
be deduced by from where and at which speed that the 
maximum floquet multiplier crosses the unit circle (Frulla, 
2000). If the maximum floquet multiplier crosses the unit 
circle through (1.0), the periodic solution encounters a 
saddle-node bifurcation; if the maximum floquet multiplier 
crosses the unit circle through (-1.0), the periodic solution 
encounters a period-doubling bifurcation. After the 
bifurcation, the system performs a period k motion, which 
maps into k independent fixed points in Poincaré map; if 
the maximum floquet  multiplier  crosses  the  unit  as  the 

 
 
 
 
conjugate complex, the periodic solution encounters a 
hopf bifurcation. After the bifurcation, the system 
performs a quasi-period motion, which maps into a 
closed curve in Poincaré map. If a group of points are 
irregularly mapped in Poincaré map, it can be deduced 
that the system enters into the chaos. 
 
 
MODELING FOR A TURBOCHARGER ROTOR SYSTEM 

 
The lumped model for a turbocharger rotor system 

 
As shown in Figure 1, a turbocharger rotor system consists of 
turbine and compressor impellers on a shared shaft supported by a 
pair of floating ring bearings. The physical and lumped model are 
shown in Figure 2(a) and (b). The turbocharger rotor is modeled as 
six mass nodes linked by elastic shaft segments. 

As the mass and moment of inertia of the rotor are assumed to 
be distributed on the node, the system mass matrix will become 
diagonalised, which is shown in Equation (13). 

 

  )M，diag(MM 11  

   6622111 Jd,m,,Jd,m,Jd,mdiagM      (13) 

 
The system rotation matrix is expressed by Equation (14). 
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   6211 Jp0,,,Jp0,,Jp0,diagJ           (14) 

 
The gyroscopic matrix is then derived in Equation (15). 

 

   JΩG              (15) 

 
The material of the turbocharger shaft is assumed to be uniformed 
and then stiffness matrix of the rotor system can be expressed as 
follows: 
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As far as the turbocharger rotor system is concerned, the primary 
exciting forces for the bending vibration include the static and 
dynamic loads. Static loads denote the lubricant feed pressure 
exerted on the ring, the dead weight, etc. Dynamic loads denote the 
forces   with   varied   values,   such   as   the  rotor  imbalance,  the 
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Figure 3. Coordinate system of the floating ring bearing. 

 
 
 
hydrodynamic fluid force, etc.  

The motion equation for the turbocharger rotor system is 
expressed as: 
 

              inneru FhFWUKUGCUM  
  

(17) 

 
where

   x66x22x11y66y22y11 θ,y...,,θ,y,θ,y,θ,x...,,θ,x,θ,xU 

 represent   displacement   vectors   in   the  horizontal  and  vertical  
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directions, that is, the X and Y directions. On the right hand side of 
the equation, the primary exciting forces include the imbalance 

centrifugal force uF , the hydrodynamic force of the inner oil film 

 innerFh  and the dead weight W . 

The motion of the ring is determined by hydrodynamic forces in 
outer and inner oil films, the dead weight of the ring and the 
lubricant feed pressure. Therefore, the motion equation for the ring 
is given by: 

 

          PWFhFhUM RinnerouterRR     (18) 

 

where  RU represents the displacement vector of the ring, and 

 RM  is the mass matrix of the ring. The exciting force vectors 

include hydrodynamic forces of the two oil films, the lubricant feed 
pressure and the dead weight. 

The motion equation for the turbocharger rotor system is then 
expressed in Equation (19). 

 

   
   

   
   

   
   

 F
U

U

00

0K

U

U

00

0GC

U

U

M0

0M

RRRR

































 

























 

 






































innerouter

inner

R

u

FhFh

Fh

P

0

W

W

0

F
F        (19)  

 
In order to improve the accuracy of the numerical integration, the 
motion equation of the turbocharger rotor system is normalized, 
which is expressed by Equation (20). 
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The dimensionless parameters are listed as follows: 
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Nonlinear hydrodynamic forces 

 
Figure 3 shows the coordinate system of the floating ring bearing, 
hydrodynamic forces can be derived from the oil film pressure 
distribution. In this paper, Capone oil film force model has been 
extended to the floating ring bearing. The analytical expressions of 
hydrodynamic forces in the outer and inner oil films are expressed 
as follows (Capone et al., 1991): 
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Table 1. Simulation parameters. 
 

Simulation parameter Value 

Mass of the turbine node (kg) 1.4 

Diameter moment of inertia of the turbine node (kgm
-2

) 6.3×10
-4 

Polar moment of inertia of the turbine node (kgm
-2

) 1.26×10
-5 

Mass of the compressor node (kg) 1.0 

Diameter moment of inertia of the compressor node (kgm
-2

) 4.5×10
-4 

Polar moment of inertia of the compressor node (kgm
-2

) 9×10
-4 

Mass of the ring (kg) 0.02 

Outer radius of the ring (m) 9×10
-3 

Inner radius of the ring (m) 6×10
-3 

Outer bearing clearance (m) 8×10
-5 

Inner bearing clearance (m) 2×10
-5 

Lubricant viscosity in the inner film (Pas) 0.006 

Lubricant viscosity in the outer film (Pas) 0.012 

Length of the bearing (m) 0.01 

Young’s modulus (GPa) 205 

Length of the turbocharger rotor (m) 0.15 
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SIMULATION RESULTS AND ANALYSIS 

 
Based on the developed model, bending vibration of the 
turbocharger rotor system has been simulated in 
MATLAB. According to simulation results, the effects of 
the rotor imbalance and lubricant feed pressure on the 
stability of the rotor system are studied. It should be 
noted that due to the material and mass distribution, the 
bending vibration on the compressor side is generally 
more dramatically compared to that on the turbine side. 
Therefore, researches focus on the motion of the shaft on 
the compressor side. The dimensionless speed range 
considered in this paper is from 1 to 10. Table 1 lists the 
simulation parameters in the study of the stability of the 
turbocharger rotor system. 
 
 
Rotational speed of the ring 
 
When the shaft of the turbocharger spins, the ring will 
rotate in the same direction as the shaft due to the shear- 
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Figure 4. The speed ratio between ring and journal. 

 
 
 
driven torques of inner and outer oil films. In the 
conventional lubrication theory, the speed ratio between 
ring and journal is viewed as a constant, which depends 
on geometrical parameters and the lubricant viscosity. 
However, experimental results and the recent theoretical 
research reveal that thermal effects on the performance 
of floating ring bearings cannot be ignored. The speed 
ratio between ring and journal is related to the shaft 
speed rather than a constant. 

In order to obtain accurate results, the model 
developed by San (2004) is adopted in this paper. The 
relationship between ring speed and shaft speed is 
calculated, which is shown in Figure 4. The calculation 
result is then substituted into the dynamics model. 
 
 
Influence of the rotor imbalance 
 
Although the turbocharger has generally been balanced 
before being used, it is impossible to completely eliminate 
the rotor imbalance. The centrifugal force caused by the 
residual rotor imbalance can affect the rotor system 
motion and the stability. Here, it is initially assumed that 
the same eccentricities exerted on both turbine and 
compressor impellers, whilst the phase difference 
between them is zero. It should be noted that the 
centrifugal force generated on the turbine is larger than 
that on the compressor under the same values of the 
eccentricity because of a greater mass on the turbine 
impeller. 

Under 0.1 eccentricities on both turbine and compressor 

nodes, as shown in Figures 5(a) and 5(b), the inner oil 
film instability occurs within the speed range of 4 to 5, 
when the rotor performs a period 2 motion. At the speed 
of 9, the outer oil film instability is excited. The rotor 
system motion undergoes the period 4 and the quasi-
period motion. Under 0.2 eccentricities on both turbine 
and compressor nodes, as shown in Figures 5(c) and 
5(d), a period-doubling bifurcation is encountered at the 
speed of 3 and the rotor performs a period 2 motion until 
the speed of 6, when the rotor system resumes stable. 
The outer oil film instability occurs at the speed of 6.3, 
during which the rotor performs a quasi-period motion. 
Under 0.3 eccentricities on both turbine and compressor 
nodes, as shown in Figures 5(e) and 5(f), the rotor 
system motion is dominated by the synchronous motion 
until the speed of 4, when the instability is excited in the 
inner oil film. As the speed is further increased, the 
period-doubling bifurcation occurs repeatedly and the 
system enters into chaos at the speed of around 5 and 
then the inner oil film instability disappears and the 
synchronous component dominates the system motion 
again. At the speed of 8.4 and over, the outer oil film 
instability occurs. 

Figure 6 show the orbit, Poincaré map and the 
spectrum of the bending vibration of the journal at the 
speed of 5 under 0.1, 0.2 and 0.3 eccentricities 
respectively on both turbine and compressor nodes. At 
the speed of 5, the subsynchronous component of 0.5 of 
the shaft speed appears under 0.1, 0.2 and 0.3 
eccentricities representing the inner oil film instability is 
excited.  Under  0.1  and   0.2   eccentricities,   the    rotor
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Figure 5. Waterfall and bifurcation diagrams of bending vibration of the journal on the compressor side under 0.1, 0.2 and 0.3 
eccentricities on turbine and compressor nodes. 

 
 
 
performs the period 2 motion, whilst under 0.3 
eccentricity the rotor system motion enters into chaos via 
successive period-doubling bifurcations. The amplitude of 
the bending vibration becomes larger as the eccentricity 
is increased. 

Figure 7 show the orbit, Poincaré map and the 
spectrum of bending vibration of the journal at the speed 
of 9 under 0.1, 0.2 and 0.3 eccentricities respectively on 
both   turbine    and    compressor    nodes.    Under    0.1 

eccentricity, the synchronous component dominates the 
rotor system motion at the speed of 9. The 
subsynchronous component of around 0.3 of the shaft 
speed is excited under 0.2 and 0.3 eccentricities 
indicating the appearance of the outer oil film instability. 
The rotor performs a quasi-period motion during the outer 
oil film instability. 

Figure 8 shows the starting and ending speeds of the 
instabilities in the inner and outer oil films  under  different  

 

 

 

 
(a)                                                         (b) 

 
(c)                                                         (d) 

 
(e)             (f) 
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Figure 6. Bending vibration of the journal on the compressor side at 5Ω  : (a) under 0.1 

eccentricity (b) under 0.2 eccentricity (c) under 0.3 eccentricity. 

 
 
 
eccentricity on both turbine and compressor nodes. As 
the eccentricities are increased on both turbine and 
compressor nodes, the starting speed of the inner oil film 
instability initially drops and then raises. The inner oil film 
instability occurs at the lowest speed under 0.22 
eccentricity on turbine and compressor nodes. The 
ending speed of the inner oil film instability gradually 
increases. On the other hand, the outer oil film instability 
occurs at a high speed under a small eccentricity. As the 
eccentricity is increased to 0.14, the threshold speed of 
the outer oil film instability dramatically drops and then 
gradually rises as the rotor imbalance is further 
increased. 

To study the influences of rotor imbalance on the 
turbine impeller,  bending  vibration  of  the  turbocharger 

rotor system under different eccentricities on the turbine 
node have been calculated, while the eccentricity on the 
compressor node is assumed to 0.3. The waterfall and 
bifurcation diagrams of the rotor system motion are 
displayed in Figure 9. 

Under 0.1 eccentricity on the turbine node, as shown in 
Figures 9(a) and 9(b), the rotor runs stable below the 
speed of 3.1. Within the speed range of 3.1 to 5.6, the 
instability occurs in the inner oil film and the rotor 
performs a period 2 motion, that is, a synchronous 
component and a subsynchronous component of 0.5 of 
the shaft speed. At the speed of 8.9, a hopf bifurcation is 
encountered indicating the outer oil film instability. Under 
0.2 eccentricity on the turbine node, as shown in Figures 
9(c) and 9(d), the inner oil film instability occurs  between
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(b) 

 

(c) 
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Figure 7. Bending vibration of the journal on the compressor side at 9Ω  : (a) under 

0.1 eccentricity (b) under 0.2 eccentricity (c) under 0.3 eccentricity. 
 
 
 

 
 

Figure 8. The starting and ending speeds of the instabilities in the inner and outer oil films 
under different eccentricity on both turbine and compressor nodes. 

 

 

(a) 

 

(b) 

 

(c) 



 
 
 
 
the speed of 3 and 6, during which the period-doubling 
bifurcation occurs twice. The rotor system motion 
undergoes the period 2, period 4 and period 2 motion 
successively. When the speed is increased to 8.3, the 
instability is excited in the outer oil film and the rotor 
performs a quasi-period motion. Under 0.3 eccentricity on 
the turbine node, as shown in Figures 9(e) and 9(f), the 
period-doubling bifurcation occurs continuously during 
the inner oil film instability and the rotor system motion 
enters into chaos at the speed of around 5. 

Figure 10 shows the starting and ending speeds of the 
instabilities in the inner and outer oil films under different 
eccentricity on the turbine node. As the rotor imbalance is 
increased on the turbine node, both the starting and 
ending speeds are enhanced. When the eccentricity is 
greater than 0.28, the starting speed of the inner oil film 
instability raises sharply, which lead to a decrease of the 
duration of the inner oil film instability. The starting 
speeds of the outer oil film instability locate around the 
speed of 8.3, but increased obviously when the 
eccentricity is greater than 0.32. 

In order to investigate the influence of rotor imbalance 
on the compressor impeller, bending vibration of the 
turbocharger rotor system under different eccentricities 
on the compressor node have been calculated. The 
waterfall and bifurcation diagrams of the rotor system 
motion are displayed in Figure 11. 

Under 0.1 eccentricity on the compressor node, as 
shown in Figures 11(a) and 11(b), the inner oil film 
instability occurs within the speed range of 3 to 6.4. The 
rotor runs the period 2 and period 4 motion. At the speed 
of 8.3, the outer oil film instability is excited. A period-
doubling bifurcation and a hopf bifurcation occur 
successively as the rotational speed is increased. The 
similar situations can be seen between the vibration 
under 0.2 and 0.3 eccentricities on the compressor node, 
which are shown in Figures 11(c), 11(d) and 11(e), 11(f) 
respectively. During the inner oil film instability, the rotor 
system motion enters into chaos status via multiple 
period-doubling bifurcations. When the instability is 
excited in the outer oil film, the rotor performs the quasi-
period motion. 

Figure 12 shows the starting and ending speeds of the 
instabilities in the inner and outer oil films under different 
eccentricity on the compressor node. The larger the 
eccentricity on the compressor node, at a higher speed 
the instability occurs in the inner oil film. The change of 
the ending speed of the inner oil film instability is not 
obvious. Therefore, the speed range of the inner oil film 
instability decreases under a larger eccentricity on the 
compressor node. As the eccentricity is increased on the 
compressor node, the threshold speed of the outer oil film 
instability becomes lower initially and then rises when the 
eccentricity exceeds 0.25. 

The above analysis is on the basis of the rotor 
imbalance placing in the same direction. However, the 
phase difference  cannot  be  ignored  between  the  rotor 
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imbalance on both turbine and compressor impellers. In 
this section, the effect of phase difference on the stability 
of the turbocharger rotor system is discussed. The value 
of eccentricity is assumed to 0.2 on two impellers. 

Figure 13 show the waterfall and bifurcation diagrams 
of the journal vibration under 0°, 40°, 90°, 130°, 180° 
phase difference between the rotor imbalance which are 
0.2 eccentricities on both impellers. When the rotor 
imbalance is in the same direction, as shown in Figure 
13(a) and 13(b), the rotor performs a period 2 motion 
during the inner oil film instability between the speed 
range of 3 and 6. The outer oil film instability occurs at 
the speed of 6.3, when a hopf bifurcation is encounted. 
When the phase difference is 40°, as shown in Figure 
13(c) and 13(d), the rotor performs a period 3 motion 
since the speed of 8 and then shows a quasi-period 
motion as the speed is further increased. When the 
phase difference is greater than 90°, both the inner and 
outer oil film instabilities become weaker, especially for 
the rotor imbalance placing in an opposite direction, when 
the instability is not excited in the inner oil film. 
 
 
Influence of lubricant feed pressure 
 
In the turbocharger, the lubricant is supplied into the outer 
clearance of the floating ring bearing through the oil path. 
The effect of the lubricant feed pressure on the dynamics 
performance of the turbocharger rotor system is studied 
by adjusting the static load on the ring. The value of the 
static load is the product of the lubricant feed pressure 
and the area of the supply hole, which is 0.5 cm

2
 in this 

paper. Figure 14 show the waterfall and bifurcation 
diagrams of bending vibration of the journal on the 
compressor side under 0.3 eccentricities on both 
impellers under 10

5
Pa (14(a), 14(b)), 1.5×10

5
Pa (14(c), 

14(d)) and 2×10
5
Pa (14(e), 14(f)). 

It can be seen that the higher the lubricant feed 
pressure provided, the more times period-doubling 
bifurcation encountered during the inner oil film instability. 
The amplitude of the rotor system also becomes larger 
within the speed range of the inner oil film instability. 

Figure 15 illustrates the starting and ending speeds of 
the instabilities in the inner and outer oil films under 
different lubricant feed pressure. For the inner oil film, the 
ending speed of the instability raises as a higher lubricant 
feed pressure is supplied, whilst the change of the 
starting speed is not obvious. Therefore, the speed range 
of the inner oil film instability has been extended as 
increasing the lubricant feed pressure. For the outer oil 
film, the threshold speed of the instability is gradually 
increased as raising the supply pressure. 
 
 
Conclusion 
 
In   this   paper,   a   lumped  model   is   developed  for  a
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Figure 9. Waterfall and bifurcation diagrams of bending vibration of the journal on the compressor side 
under 0.1, 0.2 and 0.3 eccentricities on the turbine node and 0.3 eccentricity on the compressor node. 

 
 
 

 
 

Figure 10. The starting and ending speeds of the instabilities in the inner and outer oil 
films under different eccentricity on the turbine node. 

 

 
(a)          (b) 

 
(c)          (d) 

 
(e)          (f) 
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Figure 11. Waterfall and bifurcation diagrams of bending vibration of the journal on the 
compressor side under 0.1, 0.2 and 0.3 eccentricities on the compressor node and 0.3 
eccentricity on the turbine node. 

 
 
 

 
 

Figure 12. The starting and ending speeds of the instabilities in the inner and outer oil 
films under different eccentricity on the compressor node. 
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(c)           (d) 
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Figure 13. Waterfall and bifurcation diagrams of bending vibration of the journal on the compressor side under 0°, 
40°, 90°, 130°, 180° phase difference respectively between the rotor imbalance of two impellers. 
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Figure 14. Waterfall and bifurcation diagrams of bending vibration of the journal on the compressor side under 
105Pa, 1.5×105Pa and 2×105Pa lubricant feed pressure. 

 
 
 
turbocharger rotor system supported by a pair of floating 
ring bearings considering the gyroscopic effect. The 
exciting forces include rotor imbalance, hydrodynamic 
force, lubricant feed pressure and the dead weight. The 
analytical expression of nonlinear hydrodynamic force in 
the inner and outer oil films is derived based on the 
Capone oil film force model. Following model 
development, bending vibration of the rotor system is 
simulated by MATLAB. 

The shooting method and continuation algorithm are 
used to calculate the periodic solution of the turbocharger 
rotor system within the dimensionless speed range of 1 to 
10. The stability of the rotor system motion and 
bifurcation style are analyzed by  the  floquet  theory  and 

Poincaré map. 
Based on the calculation results, the effects of the rotor 

imbalance and lubricant feed pressure on the stability of 
the turbocharger rotor system are studied. The rotor of 
turbocharger generally performs a period k motion during 
the inner oil film instability and a quasi-period motion 
during the outer oil film instability. Under a small rotor 
imbalance, the starting speeds of both inner and outer oil 
film instabilities become lower as increasing the rotor 
imbalance, whilst under a large rotor imbalance, the 
imbalance centrifugal force can inhibit the appearance of 
the oil film instability. Moreover, a larger rotor imbalance 
can increase the number of times of the period-doubling 
bifurcation during the inner oil film instability. 

 

 

 

 
(a)        (b) 

 
(c)        (d) 
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Figure 15. The starting and ending speeds of the instabilities in the inner and outer oil films. 

 
 
 

The phase difference between the rotor imbalance on 
two impellers affect significantly the stability of the rotor 
system motion. When the phase difference is larger than 

o90 , instabilities are obviously inhibited in both inner and 

outer oil films. 
Increasing the lubricant feed pressure can extend the 

speed range of the inner oil film instability, during which 
the system enters into chaos via multiple period-doubling 
bifurcation. 
 
 
Nomenclature:  M , Mass matrix;  RM , Mass matrix of 

the ring;  C , Damping matrix;  K , Stiffness matrix;  J , 

Rotation matrix;  G , Gyroscopic matrix;  U , 

Displacement vector;  RU , Displacement of the ring;  F

, Force vector;  uF , Imbalance centrifugal force;  innerFh , 

Hydrodynamic force of inner oil film;  outerFh , 

Hydrodynamic force of outer oil film;  P , Lubricant feed 

pressure;  W , Dead weight;  RW , Dead weight of the 

ring; 1....6m , Mass of nodes (kg); 1...6Jd , Diameter 

moment of inertia of nodes (
2kgm ); 1...6Jp , Polar moment 

of inertia of nodes ( 2kgm ); 1...5l , Length of shaft 

segments (m);  , Rotational speed (rad/s); JΩ , Journal 

speed (rad/s); 
RΩ , Ring speed (rad/s); I, Unit matrix; P(u), 

Poincaré map; G(u), Residual function; oμ , Lubricant 

viscosity of outer oil film (PaS); iμ , Lubricant viscosity of 

inner oil film (PaS); 
oC , Outer bearing clearance (m); 

iC , 

Inner bearing clearance (m); oR , Outer radius of the ring 

(m); iR , Inner radius of the ring (m); JR , Radius of the 

journal (m); L, Length of the bearing (m); oD , Outer 

diameter of the ring (m); iD , Inner diameter of the ring 

(m); Rx , Displacement of the ring in x direction (m), Ry , 

Displacement of the ring in y direction (m), Rx , Velocity 

of the ring in x direction (m/s); Ry , Velocity of the ring in 

y direction (m/s); ix , Relative displacement of the journal 

in x direction (m); iy , Relative displacement of the 

journal in y direction (m); ix , Relative velocity of the 

journal in x direction (m/s); iy , Relative velocity of the 

journal in y direction (m/s); EI, Bending stiffness (
2Nm ). 
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