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The aim of this article is to introduce, implement and control the voltage of one of the most important 
types of fuel cell, namely proton exchange membrane fuel cell (PEMFC) during system load variations. 
Fuel cell output voltage should be kept in a constant value against the load variations, and a controller 
should be designed for this purpose. Here, the Lead-Lag Controller is used in which its coefficients are 
optimized based on genetic algorithm. In order to use this algorithm, at first, problem is written as an 
optimization problem which includes the objective function and constraints, and then to achieve the 
most desirable controller, Genetic Algorithm (GA) method is applied to solve the problem. Simulation 
results are done for various loads in time domain, and the results show the efficiency of the proposed 
controller in contrast to the previous controllers. Simulations show improved accuracy of the proposed 
controller performance to achieve this goal. 
 
Key words: Proton exchange membrane fuel cell (PEMFC), genetic algorithm, lead lag controller-optimization 
problem. 

 
 
INTRODUCTION 
 
Proton exchange membrane fuel cells (PEMFCs), include 
a cathode and an anode, and a proton leading between 
the anode and cathode is as an electrolyte. Hydrogen 
gas (H2), which is obtained from the methanol (CH3OH), 
is inserted to the end of the anode blade (negative 
electrode), and also oxygen or air to the end of the 
positive electrode of cell (cathode) (Zhigun et al., 2005). 

To produce electrical energy from fuel cell, it is 
essential that the output voltage of cell kept constant for 
different loads to supply high quality power to the loads. 
But fuel cell output voltage changes for different loads. In 
order to keep cell voltage constant, using a controller is 
vital. The most simple type of controller that can be used 
is a PID. 

According to Zhigun et al. (2005), a type of fuzzy 
controller to control the fuel cell output voltage is 
proposed. In order to control the voltage and current of 
the fuel cell, Anucha et al. (2007) used BP and RBF 
networks. The speed and accuracy of the proposed 
algorithms, (Anucha et al., 2007) for this system are 
satisfactory. According to Yanjun et al. (2006), artificial 
neural networks are used to control the temperature of 
the   fuel   cell.   To  achieve  good  and  efficient  control, 

Almeida and Simoes (2003) utilized an optimized neural 
controller with Cerebellar Model Articulation Controller 
(CMAC). According to Hossein et al. (2009), a 
reinforcement learning adaptive controller for this system 
is presented, which adjusts controller coefficients online 
during load variations. 

Studied fuel cell, is of the multiple fuel cells, but it is 
assumed that anode and cathode mass has been 
compressed in anode and cathod as a fuel cell (Liyan et 
al., 2006). 

Each proposed method are used to control only one 
parameter of the fuel cell, which in the methods fuzzy or 
neural network are used. Some of these systems initially 
detect and then control the system, that in turn this will 
make slow the control work and in some cases causing 
long transient response. According to Hossein et al. 
(2009), controller which also has an adaptive PID 
controller, output results depend heavily on initial 
conditions. 

In this paper, a simple Lead-Lag Controller for fuel cell 
voltage control has been used. Except, the controller 
design has not been achieved through trial and error. But 
the   problem   has   been   proposed  as  an  optimization
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Figure 1. Simplified Fuel Cell reactant supply system. 
 
 
 

problem and then solved by using genetic algorithm. The 
advantages of the proposed control, includes the 
followings: controllers are simple, being robustness 
against load changes, having the desired control 
features, fast transient response and zero steady error. 
 
 
Dynamic model of fuel cell 
 
To study the dynamic model of the fuel cell, firstly, the 
general schematic, structure and function of the fuel cell 
should be studied. The schematic system of the fuel cell 
that will be studied in this paper is shown in Figure 1. The 
mass of the anode and cathode in the figure are 
considered as a sole compression of anode and cathode 
(Liyan et al., 2006). 

In this paper, the dynamic model of the fuel cell is 
considered according to the reference (Zhigun et al., 
2005). The output voltage of the fuel cell is obtained by 
subtracting the voltage drops from the regressive voltage. 
Equation 1 shows how to calculate the fuel cell output 
voltage (Liyan et al., 2006; Larminie and Dicks, 2001; 
Zhan et al., 2007). 
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Where, sV
 is the accumulated fuel cell output voltage in 

volts, n is the existing cells in the accumulated fuel cell, 

actV
 is the voltage drop resulting from anode and cathode 

activity in volts, ohmicV
is the ohmic voltage drop in volts, 

which is a certain amount of resistance in the  transfer  of 

electrons and protons in the electrolyte between the 

anode and cathode. conV
is resulting from the mass 

transfer of oxygen and hydrogen. reversableE
 in Equation 1 

is calculated through the following Equations 1 and 9: 
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Where, T is the cells temperature in Kelvins, 

22 , POPH
are effective partial pressure (atm) of hydrogen 

and oxygen gases respectively that can be calculated by 
the following equation. 
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Where, aP  and cP  are the anode and cathode inlet 

pressure in atmospheres, A is the effective electrode 
area in Cm

2
, i is the current of each cell in amperes, 

sat

oHP
2

is the amount of saturated steam pressure that its 

value depends on the fuel cell. channel
NP

2
is the partial 

pressure of 2N in the cathode gas flow channels in 

atmospheres which can be calculated by the following 
equation. 
 

2
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All amounts used in this article, are the same data 
available in the reference (Zhigun et al., 2005). 
 
 
Genetic algorithm introduction 
 
Genetic algorithms (GAs) are stochastic optimization 
techniques founded on the concepts of natural selection 
and genetics. The algorithm starts with a set of solutions 
called population. Solutions from a population of 
chromosomes are used to form a new population. Once 
the initial population is formed, the GA creates the next 
generation using three main operators: (1) reproduction, 
(2) crossover and (3) mutation. Reproduction is the 
process in which the most fits chromosomes in the 
population receives correspondingly large number of 
copies in the next generation. This operation increases 
quality of the chromosomes in the next generation and 
therefore leads to better solutions of the optimization 
problem. The crossover operator takes two of the 
selected parent chromosomes and swaps parts of them 
at a randomly selected location. This provides a 
mechanism for the chromosomes to mix and match their 
desirable qualities in forming offspring. Mutation plays a 
secondary role in the GA to alter the value of a gene at a 
random position on the chromosome string, discovering 
new genetic material or restoring last material. New 
solutions are selected according to their fitness: the more 
suitable they are, the more chances they have to 
reproduce. This produce repeated until some condition is 
satisfied. With crossover and mutation taking place, there 
is a high risk that the optimum solution could be lost as 
there is no guarantee that these operators will preserve 
the fittest string. To counteract this, elitism mechanism is 
often used. In this mechanism, the best individual from a 
population is saved before any of these operations take 
place. After the new population is formed and evaluated, 
it is examined to see if this best structure has been 
preserved. If not, the saved copy is reinserted back into 
the population. Using selection, crossover, and mutation 
on their own will generate a large amount of different 
probable solutions. However, some main problems can 
arise. Depending on the  initial  population  chosen,  there 
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may not be enough diversity in the initial solutions to 
ensure the GA searches the entire problem space. 
Furthermore, the GA may converge on sub-optimum 
solutions due to a bad choice of initial population. 
Moreover, inappropriate operator rates can destroy good 
solutions and degenerate the GA into a random search. 
These problems may be overcome by the introduction of 
an improvement mechanism into the GA (Pham and 
Karaboga, 2000). In solving an optimization problem, its 
optimization parameters are considered. At first, some 
general points within the range which are called 
population are selected randomly, and then these points 
are coded. Usually the code boxes are formed by from 0 
and 1. Figure 2 displays optimal solution by genetic 
algorithm for a hypothetical problem in which the 
population consists of four code box. These boxes are 
called chromosomes. Each chromosome is a volunteer to 
solve the optimum value. Chromosome growth should be 
in the direction that results in an optimal solution for the 
problem. For the next chromosomes producing, each 
chromosome is evaluated in the function value. Each of 
these chromosomes which have higher function values is 
more valuable. The probability of each chromosome 
selected for reproduction depends on the function value. 
For example, in Figure 2, function value of each 
chromosome is equal to the number of 1s in the box. For 
each pair of parents from selective chromosomes, two 
infants are created by basic operator namely crossover 
(Haupt and Haupt, 2004). Crossovers from single-point 
are different from the other crossovers. In a single- point 
crossovers, a crossover point is selected randomly, then 
from the starting point, binary codes to the crossover 
point are carried from parent to parent and vice versa 
(Figure 2). And in the next step (that is, Mutation) a bit of 
chromosome is reversed. Then these processes continue 
and optimization is done. 

 
 
Using genetic algorithms (GA) to tuning controller 
parameters  

 
With so much development in controlling systems and 
making applicable of these controllers, in power system, 
simple controllers are still considered desirable 
controllers (Pham and Karaboga, 2000). In most cases in 
the power systems, compensators are Lead-Lag 
controllers. And these controllers can be implemented 
easily in analog and digital systems. In this paper, Lead-
Lag controller is used to control voltage of proton 
exchange membrane fuel cell. The overall controller 
schematic is shown in Figure 3. 

Controller general form is expressed in Equation 6. The 
controller parameters must be optimized include: kp, T1, 
T2. It is clear that the transient mode of the system in the 
load variations depends on the controller coefficients. 
Controller design methods are not viable to be 
implemented   because   this   system   is    an    absolute
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Fig. 2  schematic representation of genetic algorithm for an assumptive optimization. 

 
 

Figure 2. Schematic representation of genetic algorithm for an assumptive optimization. 
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Figure 3. The proposed controller structure. 

 
 

Figure 3. The proposed controller structure. 
 
 
 

nonlinear system. So these methods would have not 
efficient performance in the system. 
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In order to design controller using genetic algorithm for 
the fuel cell from the load current curve, we consider the 
worst condition for load design controllers for these 
conditions. Figure 4 displays the worst condition for load 
current in the system for voltage equal to 20 v. 

Now, problem should be written as an optimization 
problem and then be solved. Selecting objective function 
is the most important part of this optimization problem. 
Because, choosing different objective functions may 
completely change the particles variation state. In 
optimization problem here, we use error signal: 
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Where, Tsim is the simulation time in which objective 
function is calculated. We are reminded that whatever the 
objective function is a small amount in this case the 
answer will be more optimized. Each  optimizing  problem 

is optimized under a number of constraints. At this 
problem constraints should be expressed as: 
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Where, 21,TT  are in the interval [0.01 50] and pk in the 

interval [100,800]. 
 
In this problem, the number of particles, dimension of the 
particles, and the number of repetitions are selected, that 
is, 40, 3 and 50, respectively. After optimization, results 
are determined as: 
 

35014.0,13366.0,  25.541 21  TTkp             (9) 

 
 
SIMULATION RESULTS  
 

To show good performance of the proposed algorithm, 
we consider variable load for fuel cell. Desired load 
current is shown in Figure 5. In Figure 6, the amount of 
fuel cell power demand or load power variation is 
displayed. Desired load is considered under the constant 
output voltage, while the current is changing between the 
range of 10 to 15 A, and the number of its changes is 
considered more to show the performance of the 
proposed controller. 

Simulation output results obtained from the proposed 
algorithm which is expressed in Equation 9 are shown in 
Figures 7, 8 and 9. Figure 7 depicted the gas pressure in 
anode and cathode, load current, output voltage and 
reference voltage. From this figure, it can be seen that by 
changing load current; gas pressure in the anode and 
cathode change quickly to keep stable the output voltage 
of the fuel cell at the desired voltage and this  show  good



Ghadimi         3699 
 
 
 

0 10 20 30 40 50 60 70 80
9

10

11

12

13

14

15

16

Time (sec)

L
o

a
d

 C
u

rr
e
n

t 
(A

)

 
 

Figure 4. Load current changing in order to solve optimization problem. 
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Figure 5. Load current, considering constant voltage for the fuel cell. 

 
 
 

performance of the proposed controller albeit simplicity. 
In Figure 8, output voltage of load and reference voltage 
are shown, according to the figure, it is obvious that 
controller response is appropriate and it could follow the 
reference voltage properly. In Figure 9, the error of the 
output voltage to the reference voltage is plotted, which 
the high efficiency of the proposed algorithm shown 
clearly. 
 
 
Conclusion  
 
In   this   paper,  a   new   controller   based   on    genetic 

algorithms and Lead-Lag controller to control the fuel cell 
output voltage was proposed. This controller is chosen 
because of its simplicity and because it could obviate the 
problem of the previous controller and its efficiency is 
higher than previous controllers. GA algorithm was 
utilized to design the Lead-Lag controller to have the 
most optimized state. In solving this problem, at first 
problem was written in the form of the optimization 
problem which its objective function was defined and 
written in time domain and then the problem has been 
solved using genetic algorithm. And the most optimal 
mode for gain coefficient and controller zero and pole 
were determined using the algorithm. 
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Figure 6. Power demand from the fuel cell. 
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Figure 7. Anode and cathode gas pressure, the system load, 
output voltage and reference voltage related to the proposed 
controller. 
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Figure 8. Fuel cell output voltage related to the proposed 
controller. 
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Figure 9. Difference between the output voltage and the reference 
voltage related to the proposed controller. 
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