
Scientific Research and Essays Vol. 6(18), pp. 3914-3926, 1 September, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.444
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

Load balancing parallelizing XML query processing
based on shared cache chip multi-processor (CMP)

Wanli Zuo1*, Yongheng Chen1,2, Fengling He1,2 and Kerui Chen1,2

1
College of Computer Science and Technology, Jilin University, Changchun, 130012, China.

2
Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education,

Jilin University, China.

Accepted 27 June, 2011

Chip multi-processor (CMP) could support more than two threads to execute simultaneously, and some
executing units are owned by each core. Based on CMP, this paper proposes a novel and complete
optimization framework on parallelism for XML database multithreaded query processing that strives
for maximum resource utilization. Firstly, a set of algorithms for constructing the parallel sub-query
plans and partitioning XML document by parallel sub-query plans are proposed. Furthermore, in order
to reduce cache access conflict and address the imbalance of threads’ workload, we refine the
granularity of partitioned XML document and balance the workload assignment by executive pairs for
the unit. Finally, by building the execution plan tree of sub-query plans constructed, the partial solution
produced by parallel sub-query plans are merged into final solution. Our theoretical analysis and
empirical evaluation show that the proposed algorithm could impressively improve in the performance
of XML query processing.

Key words: Chip multi-processor, parallel query processing, XML query optimization.

INTRODUCTION

Extensible markup language (XML) has been emerging
as a de facto standard for data representation and
exchange among various applications on the internet. An
XML document employs a tree-structured model whose
nodes are labeled with tags for representing data. Finding
all occurrences of a query pattern in XML documents is
one of the core operations in XML query processing, both
in relational implementations of XML databases, and in
native XML databases. Unlike (flat) text documents, XML
documents have nested structure (Gou and Chirkova,
2007). Thus the content and the structure of XML data
are concerned by XML queries.

Many algorithms have been studied for XPath query
processing. AI-Khalifa et al. (2002) proposed a structural

*Corresponding author. E-mail: wanli@jlu.edu.cn.

Abbreviations: CMP, Chip multi-processor; XML, extensible
markup language; CPUs, central processing units; PL,
predicate node to the linear node; LL, linear node to the linear
node.

joint algorithm, which takes two ordered lists as input,
one for ancestors and the other for descendants. To
address this problem and process the twigs in XPath
without creating large intermediate results, Bruno et al.
(2002) proposed a holistic twig join approach for
matching XML query twig patterns without creating large
intermediate results. Furthermore, many improved holistic
twig join algorithms based on Bruno et al. (2002) are
proposed, such as TSGeneric (Jiang et al., 2003), TJFast
(Lu et al., 2005), iTwigJoin (Chen et al., 2005) and so on.

Meanwhile, on the hardware front, the development
trend of processor (Hennessy and Patterson, 2007) is
transforming from high-speed single-core to chip multi-
processor (CMP), and from instructions parallel to thread
level parallel. Tomorrow’s computer will have more cores
rather than exponentially faster clock speeds, and
software designs must be restructured to exploit the new
architectures fully.

However, all the above algorithms have a common
characteristic: they are proposed for single-core central
processing units (CPUs). They cannot take full advantage
of multi-core CPUs. To take advantage of multi-cores,

efficient parallel algorithms are desirable for evaluating
queries. It therefore presents both opportunities and
challenges in the design of XML query processing
algorithms. The question for XML database researchers
is this: how best can we use this multithreading capability
to improve XML database performance in a manner that
scales well with machine size?

To tackle this problem and take advantage of multi-
cores, there are various methods using XML data
partitioning to process parallel XML query processing that
have been extensively studied on multi-core systems.
Kurita et al. (2007) achieve parallelism by splitting the
input query into serial and parallel sub-queries.
Bordawekar et al. (2009, 2010) propose three schemes
for parallelizing XML queries: Data partitioning, query
partitioning, and hybrid (query and data) partitioning.
Machdi et al. (2010) present task parallelism for
TwigStack algorithm using a pipelining technique by
decomposing the TwigStack algorithm into two major
tasks. Feng et al. (2010) propose an efficient parallel
PathStack algorithm for processing XML twig queries.

These papers as a whole realize parallelism either by
rewriting query plan or by decomposing the XML
document according to the simply root-to-leaf sub-
queries. To the best of our knowledge, none of the above
literatures discusses how to integrate the optimal parallel
query plan rewriting and the XML document
decomposing in accordance with the specific parameters,
for example, the capacity of L2_cache and the number of
threads, of the CMP system. Motivated by the e-market
application case and the aforementioned works above, in
this paper we consider and explore efficient
multithreaded XML query optimization model based on
CMP characteristic.

In this paper, we firstly travel the XPath query plan tree
node and calculate the incremental cost of each node by
the defined cost model. Using this method we can
determine partitioning scheme of every node in the XPath
query plan tree. Then the parallel sub-query plans can be
constructed in accordance with these partitioning nodes.
As a thread must be retained to merge the partial
solutions into final solution, the max number of the sub-
queries is set to be the number of threads minus one.
Secondly, we use the sub-queries to guide the XML
document decomposing. When the total size of the
partitioned XML documents is more than the capacity of
L2_cache, more fine-grained decomposition is
considered on these partitioned XML document fragment.
When data are seriously uneven among the decomposed
XML document according to the parallel query plan, the
workload of parallel query plans would be skewwed.
Parallel performance will be reduced, because serious
discrepancy of the workload allocated to the parallel
query plan would lead to load imbalance among threads
in CMP. Therefore we further consider developing the
thread workload scheduler module by the adjustment of
executive pairs. We achieve this by exploiting

Zuo et al. 3915

accommodative load balancing algorithm. Finally, threads
are to merge the partial solutions produced by parallel
from the parallel sub-query plans for final solutions
parallel to the execution strategy tree of sub-query plans
constructed.

The main contributions are outlined as follows:

To the best of our knowledge, this is the first study to
integrate the optimal parallelizing query plan rewriting
and the XML document decomposing in accordance with
the specific parameters of the CMP system.

We construct and index the execution strategy tree of
sub-query plans to guide the final solution generating.

More importantly, we propose a novel method to
optimize the workload-balancing assignment algorithm
among threads to fully utilize CMP.

We implement our parallelization algorithm and provide
experimental results that validate the effectiveness of our
proposed parallelization algorithm.

Related work

In this section, we briefly review some related work of
XML query processing that have been extensively
studied under the following four categories: XPath query
processing, the partitioning approach of large XML
document, the parallelizing approach of the XML query
plan, and the related parallelizing technology.

Many algorithms have been studied for XPath query
processing. Prior works (Al-Khalifa et al., 2002; McHugh
and Widom, 1999; Zhang et al., 2001) have typically
decomposed the pattern into a set of binary structural
relationships between pairs of nodes. The query twig
pattern can then be matched by matching each of the
binary structural relationships against the XML database,
and finally stitch together the results from those basic
matches. The main disadvantage of such a
decomposition based approach is that intermediate result
sizes can become very large, even when the input and
the final result sizes are much more manageable. To
solve this problem, Bruno et al. (2002) proposed a holistic
twig join approach (referred as TwigStack) for matching
XML query twig patterns. With a chain of linked stacks to
compactly represent partial results of individual query
root-to-leaf paths, their approach merges the sorted lists
of participating element sets altogether, without creating
large intermediate results. They answer the twig query
holistically and avoid huge intermediate results.
Furthermore, many holistic twig join algorithms based on
TwigStack are proposed, such as TSGeneric (Jiang et
al., 2003), TJFast (Lu et al., 2005), iTwigJoin (Chen et al.,
2005).

There are some suggestions on how to split and
distribute large XML documents. Bordawekar et al.
(2009) propose three schemes which achieve parallelism
via partitioning traversals over the XML documents for
parallelizing XML queries. The data partitioning approach

3916 Sci. Res. Essays

executes the same (sub) query on different sections of
the same XML document whereas the query partitioning
approach executes different (sub) queries on the same
XML dataset. Lu and Gannon (2007) present five
different algorithms to split a large XML document into a
fixed number of XML fragments in order to cope with
different characteristics of XML tree structures for parallel
XPath query processing.

Bordawekar et al. (2010) research the optimal way of
parallelizing an XML query plan by a novel, end-to-end
parallelization framework based on a statistics approach
that relies both on the query specifics and the data
statistics over shared-address space multi-core
processors. For a given XPath query, every node in
query plan is estimated the relative efficiencies of their
different. According to these candidate partitioning points,
an optimal parallel XPath processing plan is constructed.

In addition, Lu and Gannon (2007) proposed a parallel
processing model for the XML document on a multi-core
computer. The dynamic load-balancing mechanism
based on stealing is the core of the model, in the light of
which the disjoined parts of the XML document can been
processed by multiple threads in parallel with balanced
load distribution. Li et al. (2006) proposed an even
partition based method, which accelerates structure joint
dramatically, but requires neither the order of input
element sets nor any indices. Moreover, when the
distribution of elements of a particular tag/label is
skewwed, general partition-based techniques are not
cost-efficient, however, this method partitions the two
input sets into different buckets evenly and only the
structure joint of suit buckets is helpful to the result,
therefore it avoids scanning the two input sets many
times and is efficient.

It can be noticed clearly that none of the works aims at
parallel query processing based on integrating the
optimal parallel query plan rewriting and the XML
document decomposing is in accordance with the specific
parameters of the CMP.

Determine parallelizing strategies of query plan

In this section, a set of algorithms about how to construct
parallel sub-query plans and the execution plan tree are
introduced.

Cost model

Preliminaries

In order to estimate the cost for the XPath expression, it
is sufficient to count the number of single node and node-
node pair with predicates in the XML document. The
summarized path trees and Markov can been used to
count these. We briefly introduce this method (for
example, the Markov model) proposed in Aboulnaga et

al. (2001).

A path tree summarizes an XML data tree by
aggregating every sibling having the same tag into a
single node annotated by a count of the number of
occurrences in the original XML data tree. Every node in
the path tree represents a path starting from the root of
the XML document. The root node of the path tree
represents the root element of the document. Every path
tree node is labeled with the tag name of the elements
reachable by the path it represents and with the number
of such elements, which we call the frequency of the
node.

To estimate the selectivity of a query path expression
using a summarized path tree, we try to match the tags in
the path expression with tags in the path tree to find all
path tree nodes to which the path expression leads. The
estimated selectivity is the total frequency of all these
nodes. A Markov of order (m-1) is a table storing a set of
distinct paths in the XML data up to length (m) along with
their corresponding selectivity where m is a parameter ≥
2. The table provides selectivity estimates for all path
expressions of length up to m.

Cardinality

To construct an efficient query plan for executing a query
in a database, it is necessary to know the cardinality of
the intermediate results. Intermediate result size is an
important factor in estimating the cost of a query plan.
The cardinality of a step in an XPath expression is the
number of nodes in the XML data tree that satisfy the
conditions of that step. The information given by Markov
table can been used to estimate the cardinality of each
step in XPath.

Considering an XPath expression Q = /v0[p0]/v1[p1]/...
/vi[pi] /... /vn[pn] with predicates or empty predicates. Let q
= /v0/v1/../vi/… /vn, where, each vi is either a tag or the
wildcard *. Let qi denote the sub-expression of q up to
step v i and Qi denote the sub-expression of Q up to step
vi[pi]. Let pi denote the predicate of vi. Then, the
cardinality of Qi is estimated by the multiple of cardinality
qi and the cumulative product of selectivity up to pi.
Equation 1 gives the formula calculating the cardinality of
Qi.

=

≠
=

∏
=

=

01

0

i

i)sel(p)*Card(q
)Card(Q

ik

0k

ki

i

∏
=

=

−=
ij

j

jji ttf)Card(q
1

1)|(

∏
=

−+++=
m

1j

1jijii0ii),1)|vmin(f(v),1)|vmin(f(v)sel(p

 (1)

Zuo et al. 3917

Figure 1.The left part uses a tree to express the XPath query. The right
part is used to illustrate the process calculating the sequential cost of vi.

Cost model

Considering an XPath expression Q = /v0[p0]/v1[p1]/...
/vi[pi] /... /vn[pn] with predicates or empty predicates, we
use a tree in the left part of Figure 1 to express Q. This
tree includes two types’ node, linear node vi and
predicate node pi. There are two type paths, the predicate
node to the linear node and the linear node to the linear
node (referred to as PL and LL), correspondingly.

SCost (vi) is defined as the sequential cost of traversing
the remaining path starting at vi. The right part in Figure 1
depicts the calculation of SCost (vi). The dotted line is
used to calculate the cardinality of Qi-1. The solid lines are
used to calculate the average cost of each node in the
cardinality of Qi-1. Each solid line includes two type paths.
The LL path is used to calculate the cardinality from the
starting linear node to the ending linear node, and the PL
path is used to calculate the cost processing the current
predicate. In addition, for each LL path, we need scan all
the children of the ending linear node. The cost of
scanning with processing a child is denoted by Cscan. So
we can calculate the SCost (vi) by the following Equation
2.

Cscan]))f(*|v|vf(v

)SCost(P)|vf(v)|vf(v)[card(Q

n

im

m

ij

mjj

m

n

im

m

ij

jj

n

ij

jji

∑∏

∑∏∏

= =

−

= =

−

=

−−

+

+

1

111

 (2)

When i = n and pi = empty, SCost(vi+1) = 0 cost(pi) = 0
f(*|vi)Cstep = 1;

When i = n and pi is not empty, SCost (vi+1) = 0.

Determine parallelizing query plan strategy

Incremental Cost

In order to determine the partitioning type of query plan
nodes, incremental cost is introduced here. Incremental
cost is the max income level selected for partitioning
method, data partitioning and query partitioning, relative
to sequential processing for one node in query plan.
Incremental cost of query partitioning relative to
sequential processing is referred to as ICost_QS, and
data partitioning relative to sequential processing as
ICost_DS correspondingly. ICost_QS and ICost_DS are
defined as Equation 3.

)|v) f (vcard (Q

t]DP)t(vS/Dn[)t(v SICost_DS

t]QP) t(pMax[) - t (pS ICost_QS

iii

i

Dn

i

i

Qn

i

11

coscos*1stOptimalDCocos

coscosstOptimalQCocos

−−=∂

+−=

+∂∂=

 (3)

 In this equation QPcost includes the overhead
associated with partitioning cost among Qn threads and
processing the operators cost in predicate. OptimalQCost
is used to calculate the partitioning number. If the
numberof operators in predicate is more than the number
of cores minus 1, Qn is set up for the number of cores

3918 Sci. Res. Essays

minus 1, otherwise, the number of operators in predicate.
DPcost includes the overhead associated with
partitioning the cardinality of Qi among Dn threads. As
the number of Dn increases, 1/Dn*Scost(vi) decreases,
but, the cost of DPcost increases. OptimalDCost is used
to calculate the optimal partitioning number.

Based on the incremental cost equation, we can
estimate the partitioning type for every node in query plan
using InCost_Calculating algorithm. The partitioning plan
of every node is encoded by region encoding in the
following format (incremental cost, partitioning type,
number of partitioning, partitioning node). The variables
S, D and Q of partitioning type represent the sequential
processing, data partitioning and query partitioning
method, correspondingly.

InCost_calculating

Input: XPath query plan.

Output: An incremental cost weighted XPath tree.

Travel this tree from top to down;

For every linear node i=0 to n

If the predicate of this linear is empty

ICost_QS=0;

Else

Calculate ICost_QS according to Eqn.3;

Calculate ICost_DS according to Eqn.3;

If ICost_QS ≤ 0 & ICost_DS ≤ 0

Add weight (0, S, 0, i) to this linear node;

If ICost_QS ≤ 0 & ICost_DS ≥ 0

ICost = ICost_DS;

Add weight (ICost, D, Dn, i) to this linear node;

If ICost_QS ≥ 0 & ICost_DS ≤ 0

ICost = ICost_QS;

Add weight (ICost, Q, Qn, i) to this linear node;

If ICost_QS ≥ 0 & ICost_DS ≥ 0

ICost = ICost_DS;

Add weight (ICost, D, Dn, i) to this linear node;

ICost = ICost_QS;

Add weight (ICost, Q, Qn, i) to this linear node;

Determine parallelizing query plan strategy

Given an incremental cost weighted XPath tree called
SETree_MW, in this sub-section, parallelizing sub-query
plans and the execution strategy tree will been
constructed.

PEP_Constructing

Input: SETree_MW, the number of parallel sub-query plan ns, the number of cores minus 1 m and

XML document.//Initial value of ns is 1.

Output: Sub-query plans and execution strategy tree.

/*Two-dimensional array IC_ranked is used to store the linear node desceding ICost.*/

ICost_NoteList=InCost_Calculating;

For all linear node in ICost_NoteList their ICost more than zero

IC_ranked=Ranking_Descending (these linear nodes);

For i=0 to n do

ns=ns*IC_ranked(i,3);

If IC_ranked(i,1)>0 and ns<m

Put IC_ranked(i) into NoteList;

If NoteList is not empty

Construct the parallel sub-query plans and execution strategy tree according to NodeList;

End.

Firstly, the multi-weighted linear node in SETree_MW will
be ranked according to the ICost. Then a node with the
max incremental cost in ranked list will be selected. If the
partitioning number is less than the number of cores
minus 1 and the max incremental cost is more than zero,
the linear node will be stored into a set. Repeating the
first step until these conditions is not satisfied. Finally, the
selected linear node will be used to construct parallel
sub-query plans and the execution plan tree of sub-query
plans. PEP_Constructing algorithm is introduced to
achieve this processing.

The execution plan of sub-query plans is a tree using
(LevelNum, startPos:endPos, LNode) to label nodes. This
tree has two types node. The leaf nodes present the sub-
query plans. Other nodes express the buffer node storing
the intermediate result. LevelNum is the level of a certain
element in this tree. startPos and endPos are calculated
by performing a perorder traversal of this tree; startPos is
the number in sequence assigned to a node when it is
first encountered and endPos is equal to one plus the
endPos of the last element visited. Leaf nodes have
startPos equal to endPos. Node A is a descendant of
node B if and only if startPos(A) > startPos(B) and
endPos(A) < endPos(B). LNode is the element of
NodeList. The children nodes are incorporated to current
node in accordance with LNode. The sibling nodes in this
tree merge in accordance with the LNode of parent node.
The LNode for leaf nodes is empty.

The example of the implementation of constructing
parallel sub-query plans is shown in Figure 2. Figure 2(a)
is the multi-weighted tree of XPath A/B[G operator H]/C[L
operator K]/D. Firstly, we will rank the linear node
according to the ICost, construct IC_ranked
{(8,Q,2,1)(3,D,2,3)}. C is not selected because the
product of partitioning number of B and C is more than 5.
Figures 2(b) and (c) are the results of partitioned Figure
2(a) according to B (8, Q, 2, 1). Figures 2(d) and (e) are
the results of partitioned Figure 2(b), Figures 2(f) and (g)
are the results of partitioned Figure 2(c) according to D
(3, D, 2, 3). Figure 3 shows the execution strategy tree of
parallel sub-query plans constructed by Figure 2.

The implementation of parallel query plans

In this section, the parallel sub-query plans and the

Zuo et al. 3919

L KML KML KML KM

L KM

p0

p2

p1

p3

G

A(0,S,0,0)

C(5,D,3,2)

D(3,D,2,3)

B(8,Q,2,1)(2,D,2,1)
p0

p2

p1

p3

G H

L K

p0

p2

p1

p3

H

p0

p2

p1

p3

G

(a) (b) (c)

(d)

[...]

p0

p2

p1

G

(e)

[...]

p0

p2

p1

H
[...]

p0

p2

p1

H
[...]

(g)(f)p3 p3 p3

M L KM

A(0,S,0,0)

C(5,D,3,2)

D(3,D,2,3)

B(0,Q,2,1)(2,D,2,1)

A(0,S,0,0)

C(5,D,3,2)

D(3,D,2,3)

B(0,Q,2,1)(2,D,2,1)

A(0,S,0,0)

C(5,D,3,2)

D(0,D,2,3)

B(0,Q,2,1)(2,D,2,1)

A(0,S,0,0)

C(5,D,3,2)

D(0,D,2,3)

B(0,Q,2,1)(2,D,2,1)

A(0,S,0,0)

C(5,D,3,2)

D(0,D,2,3)

B(0,Q,2,1)(2,D,2,1)

A(0,S,0,0)

C(5,D,3,2)

D(0,D,2,3)

B(0,Q,2,1)(2,D,2,1)

Figure 2. The process of constructing the parallel query plan with six cores.

Figure 3. The execution strategy tree of sub-query plans in Figure 2.

partitioning nodes will be employed to split the XML
document according to the capacity of L2_cache.

The construction of executive groups

The XML document is encoded by employing region
encoding. We assume there is a data stream associated
with each XML node. Every element in the data stream is
already encoded by region encoding in the following
format (level, start: end).

XML document partitioning

Every sub query plan is allocated an executive thread

and buffer used to store the partitioned XML data. Every
executive thread according the partitioning node in the
sub query plan gets a cluster of sub-streams related with
this sub query plan. XML data is initially stored to the
buffer of every sub query plan.

All executive threads of sub-query plans achieve the
following processing parallel. For data partitioning node,
the executive thread initially subdivides the stream of this
data partitioning node and gets the sub-stream according
to a specified range. Furthermore, the executive thread
gets other sub-streams of this sub-query plan accordingly
through transmission to satisfy the range containment
feature between two sub-streams. The allocated buffer
stores these sub-streams. For query partitioning node,
the executive thread will make the buffer of sub query
plan only retain the partitioned predicate node. By this

3920 Sci. Res. Essays

Figure 4.The XML document.

processing the executive groups are constructed in
following format.

Group1 (p1，B1)

Group2 (p2，B2)

……

Groupi (pi，Bi)

ExecutionGroup_Constructing

Input: The selected partitioning nodes, constructed sub-query plans, XML document and Xpath.

Output: Executive groups

/* m threads parallel implement sub-query plans, m is the number of sub-query plans.*/

For i=1 to m

If not existing data partition node in NoteList

 Buffer[i] = XML data;

Else

dn=Get_num(NoteList,D);

For every data partition node j=0 to dn

Range=Get_range(partition node, sub-query[i]);

 If j=0 then

Buffer[i] = Split (XML document, range);

Else

Buffer[i] = Split (Buffer[i], range);

If existing query partition node in NoteList

 qn=Get_num(NoteList,Q);

For every query partition node j=0 to qn

 Rnodes = Get_node(xpath, sub-query[i]);

 Buffer[i] =Rmove_Nodes(Buffer[i], Rnodes);

Groupi=Input (Buffer[i], sub-query[i]);

End.

ExecutionGroup_Constructing algorithm is introduced to
achieve this processing. In this algorithm, Get_num
function obtains the number of partition node of the
specified partitioning type in NoteList. Get_range gets the
specified range of data partition node in sub-query plan.
Get_node gets the nodes related sub-queryi in xpath
query predicatei apart from the partitioned nodes by

query partitioning. Rmove_Nodes removes data streams
of Rnodes in buffer.

Figure 4 is an XML document. Figure 5 is the
partitioned XML document applying the constructed sub-
query plans in Figure 2 on this document. The two graphs
above Figure 5 are the buffers of sub-query plan (d) and
(e) in Figure 2, and the two graphs under Figure 5 are (f)
and (g) correspondingly.

The executive thread of the sub-query plan (d) firstly
checks if or not exiting data partitioning node by the
function. After it found the data partitioning node D, this
thread by function Get_range determines the specified
range; that is D.start is more than 9 and less than 76.
Then this thread gets other sub-streams of this sub-query
plan according through transmission to satisfy the range
containment feature between two sub-streams. Secondly,
this thread finds the query partitioning node B. The
predicate of B in Xpath is [G operator H]; the related
nodes with this predicate are G and H. And the
partitioned node by query partition B in sub query (d) is
G. So this thread can remove the data stream of H by
Rmove_Nodes in buffer.

Load balancing optimization

Granularity optimization of executive group

The capacity of the L2_cache is C. The number of
executive groups is Group.length. Then average idea
size of every partitioned XML document is
C/Group.length for shared L2_cache. When the total size
of the partitioned XML documents is more than C, the

Zuo et al. 3921

Figure 5.The partitioned XML document according to the sub-
query plans constructed in Figure 2.

partitioned XML document need to be further refined to fit
in the L2_cache according to idea size in order to ensure
minimal number of shared L2_cache misses and efficient
overall turn-around time. Granularity_Optimizing
algorithm is introduced to achieve this processing.

Granularity _Optimizing

Input: the capacity of the L2_cache C, the size of an XML node Ns, executive groups Group

Ouput: the refined executive groups

Tsize=Tsize_calculating(C, Group);

If Tsize > C

 For i=0 to Group.lentgh GL

 If the size of Group[i].Buffer>C/ GL

 Put Group[i] in Queue;

 For every dequeue(Queue) Group in parallel

 Select the largest stream in Group.Buffer to subdivide this Buffer;

 If existing Group.Buffer> C/ GL

End

After the refined granularity optimization of executive
group is completed by this algorithm, each executive
group may conclude multiple sub-buffers. So every
executive group is reconstructed as the following format.

Groupi ((pi，Bi1), (pi，Bi2)… (pi，Bij)

Workload optimization of executive groups

When data are seriously uneven among the partitioned
XML document according to the sub-query plan, the

workload of parallel executive threads would be skewed.
Parallel performance will be reduced, because serious
discrepancy of the workload allocated to the executive
groups would lead to load imbalance among cores in
CMP.
In this subsection, the allocation scheduler module is
optimized by the adjustment of executive pairs among the
constructed executive groups. We achieve this by
exploiting an accommodative load balancing algorithm.
The merit of accommodative load balancing algorithm is
that all executive pairs must not be adjusted regarding
the degree of data skewed. When the degree of data
skewed among executive groups is not high, the
necessary boil of the communication and computation will
be avoided.
Each step is defined as follows:
Determining laden executive pairs: Each constructed
executive group retains only the executive pairs meeting
the following condition:

≥

≤

∑∑

∑∑

=

+

=

==

/Num|Bi|| Pair|Executive

/Num|Bi|| Pair|Executive

m

i

n

j

j

m

i

n

j

j

1

1

1

11

3922 Sci. Res. Essays

Figure 6. The implementation of executive groups.

∑

=

/Num|Bi|
m

i 1

is the ideal value of each executive

group. Other executive pairs of the group are referred to
as laden executive pairs. In this processing, each group
tries to retain the large executive pair.
Distributing laden executive pairs: Executive thread of
each group reports the size of executive pairs retained
and laden executive pairs to the coordinating thread. In
accordance with the information of each executive
thread’s report, the coordination thread firstly uses the
automatic matching of least value decline to determine
the distribution strategy of laden executive pairs. Then
the coordination thread broadcasts the distribution
strategy. All laden executive pairs are distributed among
threads.
Determining executive set in each group: The executive
thread of each group in parallel incorporates the smaller
executive pairs to form the executive set that
approximately equals to C/Num (referred as B). Num is
the number of executive threads. In this phase, the
measure factor of balance is introduced to test the
executive set correctness. The measure factor of balance
is defined as following:

−= ∑∑

==

BEPEPBF
m

i

m

i

/)|(/||
1

i

1

i

 (5)

Where, m is the number of executive pairs in one group.
EPi is executive pair and B is the capacity of basic size

C/Num. ∑
=

m

i

EP
1

i || is the sum of executive pairs in one

group. If the difference between the basic size and the
size of the executive set is no more than the measure
factor of balance, this solution is ideal. Every optimized
executive group is constructed by three judgments of the
measure factor of balance. Firstly, we determine whether
or not the continuous executive pairs existing and the

difference between the sum of continuous executive pairs
and the basic size B is no more than the measure factor
of balance. If it is true, we will construct the optimized
executive group including the continuous join pairs.
Otherwise, this function will find less set of executive
pairs from k + 2 (k is the length of the continuous
executive pairs). The sum of the continuous executive
pairs and less set of executive pairs is calculated,
referred to as S. And the difference between the S and
the basic size B is judged whether it is no more than the
measure factor of balance. If it is true, we will construct
the optimized executive group including the continuous
executive pairs and the less set of executive pairs found
from k + 2. Otherwise, the function deletes the executive
pair k and the less set of executive pairs and repeats the
search process.

The implement of executive groups

The implement of executive groups comprises two
phases. The first phase is parallel performing the
executive groups by executive threads (referred
E_threads). The intermediate result will be classified
according to the sub-query plan and stored into different
buffers. Meanwhile, the other threads, referred to as
M_threads, are to merge the partial solutions produced
from the first phase for final solutions parallel by the
execution strategy tree of sub-query plan. The number of
M_threads is equal to the number of cores minus the
number of executive thread E_threads assigned to
executive group. This processing is showed in Figure 6.
The different phase is absolute parallel executed.
However the phases are parallelized by adopting the
incomplete pipeline parallelism technique. If or not the
pipeline parallelism technique is adopted according to the
partitioning type of leaf nodes’ parent node in the
execution strategy tree.

When LNode is Data Partitioning or Query Partitioning
with the decomposed operator is ‘or’, the M_threads of

Zuo et al. 3923

Table 1. XPath queries tested on dataset.

Dataset XPath NO XPath

XMark

XM1 /site/people/person/name/profile

XM2 /site/people/person[address and age]/name/ profile

XM3
/site/open_auctions/open_auction[annotation/author and annotation/description
and bidder/date]/privacy

the sibling leaf nodes in the execution strategy tree
merge buffers classified according to the names of these
sibling leaf nodes (the name of sub-query plan) as long
as these buffers is not empty. In these situations between
phases is pipeline parallelism. Notice that the second
situation may transfer the same partial solution to parent
node. So the parent nodes need ‘distinct’ operate.

However, when LNode is Query Partitioning and the
decomposed operator is ‘and’, the M_threads of the
sibling leaf nodes merge buffers classified according to
the names of these sibling leaf nodes until all partial
solutions have been constructed. So in this situation, the
operation between two phases is not pipeline parallelism.

Performance analyses

The goals of out experiments are to reveal that out
algorithms significantly improve the performance of XML
query processing. All the experiments were performed on
a Windows Vista PC with two Intel Xeon Quad Core E540
1.6 GHz CPUs (= 8 cores) and 8 GB of physical memory.
Each CPU has two 4 Mbyte L2 caches, each of which is
shared by two cores.

Table 1 gives three XPaths queries tested on XMark
dataset. The XPath XM1 consists two partitioning
nodes/person and/name (referred as dp1 and dp2)
without any predicates. The increment cost of them are
(12, D, 5, person) and (7, D, 5, name), respectively based
on the PEP_Constructing algorithms. (12, D, 5, person) is
the ideal plan for executing the query XM1. XM2 is a
predicated query with a conjunction of two path
predicates. XM2 consists of two partitioning nodes/person
and its predicate [address and age] (referred as dp1 and
dp2). (9, D, 2, person) is firstly selected as data
partitioning node, and then (7, Q, 2, person) is selected
as query partitioning node. So the combined (9, D, 2,
person) and (7, Q, 2, person) are selected as the ideal
plan for executing the query XM2. XM3 consists of two
partitioning node/open_auction and its predicate
[annotation/author and annotation/description and
bidder/date] (referred as dp1 and dp2). The combined
(14, D, 2, open_auction) and (13, Q, 3, open_auction) are
selected as the ideal plan for executing the query XM2.

Figure 7 compares the running time of different parallel
sub-queries plan according to the selected partitioning
node over three XPath queries without considering the
optimization of partitioned XML document. The running

time consists two parts, partial and final solution times,
according to two phases of the implement of executive
groups. Figure 7(a) presents relative performance of two
data partitioning plans over XM1. As illustrated in Figure
7(a), the total running time decreases as the number of
cores is increased. Because the increment cost reach the
max value when the number of cores is more than 5. So
after the number of cores is more than 5, the partial
solution time cannot be optimized. However, the time of
constructing final solution can be reduced with the
increasing of the number of cores.

Figures 7(b) and (c) present the performance of
different query execution plans for the queries XM2 and
XM3. For XM2, InCost_calculating algorithm firstly
calculates the increment cost of all linear nodes.
PEP_Constructing algorithm further selected the
partitioning node to construct sub-queries plans. The
partition node with max increment cost, (9, D, 2, person),
is firstly used to sub-queries plans. Then the (7, Q, 2,
person) is further selected to construct sub-quries plans.
So the original query plan is rewritten into four sub-
queries plan. The four sub-queries are then parallel
executed to generate partial solutions. Finally, these
partial solutions are merged under the guidance of the
execution strategy tree of parallel sub-query plans. As
illustrated in Figure 7(b), the parallel sub-queries plan
constructed by combining (9, D, 2, person) and (7, Q, 2,
person) consistently achieves the best performance.
Similar to the query XM1, after the number of cores is
more than 4, the partial solution time cannot be
optimized. Figure 7(c) shows similar experiment over XM3
with Figure 7(b).

The optimized executive pairs and groups can reduce
the time producing the partial solution. Results of the
speedup time are illustrated in Figures 8(a), (b) and (c). It
is important to note that speed up time decreases with
the number of selected partitioning node increasing. This
is because the optimization performance of executive
pairs and group degrades with the size of partitioned
XML data increasing. However, the granularity of
partitioned XML data with more partitioning node is less
than granularity with less partitioning node. So the speed
up time decreases with more partitioning node.

CONCLUSION

In review, XML query processing is divided into three

3924 Sci. Res. Essays

dp1

dp2

Number of cores

2 4 6 8

R
u
n
n
in
g
 T
im
e
(S
e
c
o
n
d
)

0.0

1.0

2.0

3.0

4.0

dp1

dp2

dp1+dp2

Number of cores

2 4 6 8

R
u
n
n
in
g
 T
im
e
(S
e
c
o
n
d
)

0.0

1.0

2.0

3.0

4.0

dp1

dp2

dp1+dp2

Number of cores

2 4 6 8

R
u
n
n
in
g
 T
im
e
(S
e
c
o
n
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 7. The executive time using different parallel execution plans.

phases in general, building sub-query plans, partitioning
XML document and executing in parallel. In the first
phase, based on the defined incremental cost model, the
sub-query plans and the execution strategy tree are
constructed according to the number of thread. In the
second phase, these sub-query plans are used to guide
the XML document decomposing in parallel. In order to
reduce the shared L2_cache access conflict and achieve
the workload-balancing assignment among threads, the
granularity of executive pair and the workload for all
executive groups are further optimized. Finally, the
incorporate threads are to merge the partial solutions
produced in parallel from the parallel sub-query plans for
final solutions by the guidance of the generated execution
strategy tree. By implementing our framework and
analyzing the experimental results, we have revealed

that out algorithms significantly improve the performance
of XML query processing.
The scale of the experiments performed is far from
complete. Future work is still needed in expanding our
multithreaded XML query processing to examine
performance on other XML dataset.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China under grant no. 60973040,
no.60903098; the science and technology development
program of Jilin Province of China under grant no.
20070533; the specialized research foundation for the
doctoral program of higher education of China under

Zuo et al. 3925

dp1

dp2

Number of cores

2 4 6 8

O
p
ti
m
iz
a
ti
o
n
 T
im
e
(s
e
c
o
n
d
)

0.0

1.0

2.0

dp1

dp2

dp1+dp2

Number of cores

2 4 6 8

O
p
ti
m
iz
a
ti
o
n
 T
im
e
(s
e
c
o
n
d
)

0.0

1.0

2.0

dp1

dp2

dp1+dp2

Number of cores

2 4 6 8

O
p
ti
m
iz
a
ti
o
n
 T
im
e
(s
e
c
o
n
d
)

0.0

Figure 8. Speed up time with optimized executive pairs and groups.

grant no.200801830021 .

REFERENCES

Aboulnaga A, Alameldeen AR, Naughton JF (2001).Estimating the

selectivity of XML path expressions for internet scale applications. In
Proceedings of the 27th VLDB Conference, Roma, Italy, pp. 591–
600.

Al-Khalifa S, Jagadish HV, Koudas N, Patel JM, Srivastava D, Wu Y
(2002). Structural joins: A primitive for efficient XML query pattern
matching. In Proceedings of the IEEE International Conference on
Data Engineering, California, USA, 19(10): 141-152.

Bordawekar R, Lim L, Kementsietsidis A, Kok BWL (2010).Statistics-
based parallelization of XPath queries in shared memory systems. In
EDBT, Lausanne, Switzerland, pp.159-170.

Bordawekar R, Lim L, Shmueli O (2009). Parallelization of XPath
Queries Using Multi-core Processors: Challenges and Experiences.
In EDBT, Saint Petersburg, Russia, pp. 180–191.

Bruno N, Koudas N, Srivastava D (2002). Holistic Twig Joins: Optimal
XML Pattern Matching. In Proceedings of the ACM SIGMOD
international conference on Management of data, Wisconsin, USA,
pp. 310-320.

Chen T, Lu J, Ling TW (2005). On Boosting Holism In XML Twig Pattern

Matching Using Structural Indexing Techniques. In SIGMOD,
Baltimore, Maryland, USA.

Feng JH, Liu L, Li GL, Li JH, Sun YH (2010). An Efficient Parallel
PathStack Algorithm for Processing XML Twig Queries on Multi-core
Systems. In DASFAA proceeding, Tsukuba, Japan, 277-291.

Gou G, Chirkova R (2007). Efficiently Querying Large XML Data
Repositories: A Survey. IEEE Transactions on Knowledge and Data
Engineering, 19(10): 1381-1403.

Hennessy JL, Patterson DA (2007). Computer Architecture, 4th ed.
Jiang HF, Wang W, Lu HJ, Jeffrey XY (2003). Holistic Twig Joins on

Indexed XML Documents. In Proceedings of the international
conference on Very large data bases, Berlin, Germany, p. 29.

Kurita H, Hatano K, Miyazaki J, Uemura S (2007). Efficient Query
Processing for Large XML Data in Distributed Environments. In 21st
International Conference on Advanced Networking and Applications,
Ontario, Canada, pp. 317–322.

Li GL, Feng JH, Zhang Y, Ta N, Zhou LZ (2006). Exploiting Even
Partition to Accelerate Structure Join. In Proceedings of the Seventh
International Conference on Web-Age Information Management
Workshops, Hong Kong, China.

Lu J, Ling TW, Chan CY Chen T (2005). From Region Encoding To
Extended Dewey: On Efficient Processing of XML Twig Pattern
Matching. In VLDB, China, pp. 193-204.

Lu W, Gannon D (2007). Parallel XML Processing by Work Stealing. In
SOCP, Monterey, California, USA.

3926 Sci. Res. Essays

Machdi I, Amagasa T, Kitagawa H (2010).Task Parallelism for Twig

Stack Algorithm on a Multi-Core System. Data Engineering and
Information Management Forum, Awaji,

McHugh J, Widom J (1999).Query optimization for XML. In
Proceedings of VLDB, pp. 315-162.

Zhang C, Naughton J, Dewitt D, Luo Q, Lohman G (2001). On

supporting containment queries in relational databse management
systems. In Proceedings of ACM SIGMOD, California, USA, 30: 2.

