

Vol. 9(13), pp. 619-624, 15 July, 2014
DOI: 10.5897/SRE2013.5740
Article Number: 9EC0F2146025
ISSN 1992-2248 © 2014
Copyright©2014
Author(s) retain the copyright of this article
http://www.academicjournals.org/SRE

 Scientific Research and Essays

Full Length Research Paper

Estimation of domain name system (DNS) server
load distribution

Zheng Wang

Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.

Received 18 November, 2013; Accepted 12 June, 2014

Domain name system (DNS) resolution service is usually provisioned by multiple authoritative servers
for performance and robustness. Estimating the query load distribution among multiple authoritative
servers is one of the key issues arising with DNS server load balancing and optimization. We propose
an analytical model of Round-Trip-Time (RTT)-sensitive server selections consisting of cache servers,
authoritative servers and clients, which makes it possible to infer DNS server load accurately. A DNS
server fingerprint approach is then proposed to identify RTT-sensitive server selections from BIND’s.
Finally, we present a server load estimation method based on server selection classification. Under
BIND server selection algorithm, the solution of the server selection model is obtained using iteration
method, which is validated by the simulation results.

Key words: Round-Trip-Time, domain name system (DNS) server fingerprint, server selection, load distribution
estimation.

INTRODUCTION

The domain name system (DNS) is one of the most
fundamental components of the today’s Internet,
providing a critical link between human users and Internet
locations by mapping host names to IP addresses. To
enhance the resilience, reliability and scalability of DNS
authoritative service, the DNS authoritative data is
usually stored at multiple geographically distant servers.
Each authoritative server maintains the same DNS zone
data. Requests by clients are first served by their cache
servers, which then forward the cache missed requests to
one of these authoritative servers.

For each emitting query, the cache server decides
which authoritative server is the destination per its

server selection algorithm. As the DNS specifications
(Mockapetris, 1987) are vague on server selection
algorithms, current cache server implementations show
different effects in their query distribution among a set of
authority servers. BIND is by far the most popular cache
server implementation in use. It adopts a Round-Trip-
Time (RTT) proportional server selection algorithm
favoring the small-latent servers. But most of the
alternative implementations exhibits sub-optimal server
selection behavior, distributing queries evenly among all
authoritative servers.

Given potential DNS request volume and distribution
from cache servers, the planning and design of the

*Corresponding author. E-mail: wangzheng@conac.cn; zhengwang09@126.com
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution
License 4.0 International License

620 Sci. Res. Essays

number, location, capacity of DNS authoritative servers
largely depends on their projected server load
distribution. Server load distribution estimation may at
least help to achieve a balanced utilization among DNS
authoritative servers, preventing the occurrence of such a
situation where some servers are overloaded or even
overwhelmed while some are underloaded. In case that a
particular server is regarded as overloaded and a new
server is expected to be added to share its excessive
traffic, server load distribution estimation can play a
critical role in optimally locating the new server and
evaluating its effects of load rebalance. We can also
consider the importance of server load distribution
estimation when predicting the impacts of DoS/DDoS
attacks towards DNS servers. Server load distribution
estimation makes it possible to predict precisely how a
particular server is flooded by an attack launched from a
set of particular cache servers.

This paper provides a server load estimation method
based on server selection classification: for RTT-sensitive
server selections, an analytical model is proposed; for
RTT-sensitive server selections, a DNS server fingerprint
approach is proposed to identify them.

RELATED WORK

Many previous efforts on server load estimation were
focused on web servers or web services (Zhichun et al.,
2010; Vercauteren et al., 2007; Jiani and Laxmi, 2006).
While web servers or web services are characterized by
handling users' requests for interdependent and dynamic
content, communication between cache servers and
authoritative servers can be seen as consisting of simple
and short queries, therefore DNS server selection plays a
more important role in server load estimation.

Previous studies on DNS server selection are limited.
Zheng et al. (2010) provided the analytical performance
evaluation of BIND DNS selection algorithm. The results
are the component basis of this paper. Yingdi et al.
(2012) conducted a series of trace-driven measurements
to understand the server selection performance of current
cache server implementations. The results validate that
BIND implements a RTT-proportional server selection
algorithm. Supratim et al. (2008) proposed a server
selection algorithm using auto-regression models for
estimating the server response times. The accuracy of
SRTT estimation can be improved by the techniques.
Ager et al. (2010) provided measurement study on the
responsiveness of DNS in two aspects (1) the latency
between clients and DNS cache servers, (2) the content
of the DNS cache when the query is issued.

The major security concerns about DNS are the ever-
lasting threats imposed by Denial of Service (DoS)
attacks. Marios et al. (2013) examined a DNSSEC-
powered amplification attack feathered by independence
of botnet and undisclosed attackers. However, the

impacts of such amplification attack bear little direct
relation to server load distribution because the amplified
flooding responses from multiple servers are virtually
aggregated by cache servers before being forwarded
towards victim end users. A robust counter measure
against this type of threats is proposed based on Bloom
filters (Sebastiano and Dario, 2011). It is deployed at the
side of victim end users, thus irrelevant to cache server’s
and authoritative server’s behavior.

The DNS system are extensively measured and
examined in recent years. Kyle et al. (2013) presented
methodologies for efficiently discovering the complex
client-side DNS infrastructure. Craig and Andrew (2013)
examined DNS resolver behavior and usage, from query
patterns and reactions to nonstandard responses to
passive association techniques to pair resolvers with their
client hosts. Hongyu et al. (2013) provided some new
findings in DNS traffic patterns and proposed a novel
approach that detects malicious domain groups using
temporal correlation in DNS queries. Thomas et al.
(2013) passively monitored DNS and related traffic within
a residential network in an effort to understand server
behavior--as viewed through DNS responses, and client
behavior--as viewed through both DNS requests and
traffic that follow DNS responses.

Analytical model of RTT-sensitive server selections

We consider a network consisting of M local DNS cache
servers (or server selection nodes) and N distributed
authoritative servers. Each cache server j receives DNS
requests generated by its clients and if not hit in the
cache forwards them to the authoritative servers. Inspired
by Jaeyeon et al. (2003) we assume that the requests
sent by each cache server j follow a Poisson process with
rate λj. It is a simplifying assumption about the inter-
arrival times of requests and facilitates our analysis
without much loss of generality. The Poisson arrival
assumption is also theoretically justified by the fact that it
represents the aggregation of requests made by a large
population of clients (Karlin and Taylor, 1975).
Measurements of request arrivals have been shown to
match well a Poisson process, at least over small to
moderate timescales (Villela et al., 2007). Each cache
server j assigns requests to server i with proportion pji,
independent of other requests, therefore the arrival
process to each authoritative server i, i = 1,2,…,N is an
independent Poisson process with rate pjiλj. Figure 1
shows the scenario.

We assume that the service time distribution at each

server i is arbitrary with mean
_

ix . The mean service rate

of server i is
_

i i1 / x . We assume that each server
implements a Processor Sharing (PS) scheduling policy,
where all the requests share the server’s capacity equally
and continuously (Kleinrock, 1976). Under the above

Figure 1. RTT-sensitive server selection model.

assumptions, each server behaves as an-PS queue. Let

 'i 1i 2i Mip , p ,..., pP
denote the server selection proportion

vector for authoritative server i and '1i 2i Mi, ,..., λ =
 the

requests rate vector of the cache servers. Then for a

given iP in such a network, the average delay of a
request forwarded to server is given by the following
expression (Kleinrock, 1976):

_

i i M

i ji j
j 1

1
T

p

P

'
i i

1

 P λ (1)

Query delay can be approximated as the sum of network
latency (largely dependent of network topology) and
processing delay (related to the ratio of the name
resolution service capability of the authoritative servers to
the query arrival rate). So the overall query delay
between the cache sever server j and the authoritative
server i is:

_

'
ji ji i irtt rtt T i 1,2,...N j 1,2,...M P

 (2)

Where jirtt
is the network latency. Thus

'
jirtt
 is the function

of iP , or

_

' ' '
ji ji i i ji irtt rtt T P rtt P i 1,2,...N j 1,2,...M

 (3)

Wang 621

To minimize the delays experienced by users, RTT-
sensitive server selection algorithm (e.g., BIND) prefers
the least-latent authoritative server (for good response
time) yet still queries the others (to distribute the load and
monitor their performance). Latencies between the cache
server and the set of authoritative servers are the only
metric on which RTT-sensitive algorithm is based.
Therefore, query latency impacts significantly on DNS
server load distribution. So the server selection

proportion is a function of the overall request delay
'
jirtt
,

i 1,2,...N , j 1,2,...M . Consider an element
jip

of iP , i 1,2,...N , j 1,2,...M , it is dependent of the
overall delay from the cache sever server j to each

authoritative server. Therefore each iP , i 1,2,...N is
decided by total space of overall delay, or

 '
i i ijrtt ,i 1,2,...N , j 1,2,...M i 1,2,...N P P

 (4)

 Equations (3) and (4) indicate the interrelation among
the overall delay and the server selection proportion.
Although it is possible to express Equations (3) and (4) in
the definite form, which actually establishes equation set,
we still find it hard to provide a closed-form expression for
the solution. We also note that cache server j,
j 1,2,...M has no information other than its overall

delay
'
jirtt
, i 1,2,...N . So its server selection reaction is

only based on its own overall delay sector but not the
total space of overall delay.

Fingerprint RTT-Insensitive server selections

While BIND is by far the most widely used DNS cache
server implementations accounting for 53.9% of the total
(Infoblox, 2010), there are still other implementations in
use. The most popular implementations other than BIND
include DNS Cache, Unbound, and Windows DNS.
Unlike BIND which shows kind of RTT-proportional server
selection, such implementations are RTT-insensitive. This
means queries are distributed evenly among all the
authority servers. Such sub-optimal server selection
makes the problem of sever load estimation simpler,
because load distribution is predetermined irrespective of
query processing delay affected by load distribution. As
RTT-insensitive implementations behave quite differently
from BIND and so do their server load distributions, the
overall estimation accuracy may be significantly
degraded by neglecting RTT-insensitive sever selection
or regarding all as BIND’s RTT-sensitive. So a key
problem arises on how to fingerprint RTT-insensitive
server selections and effectively identify them from
BIND’s counterparts.

A DNS fingerprinting tool is available on (fpdns.
https://github.com/kirei/fpdns), which is very accurate and

622 Sci. Res. Essays

Transit domain Stub domain

Node of transit domain

Node of stub domain

Link (10Mb)

Link (5Mb)

Link (2Mb)

Figure 2. Illustration of network topology.

covers a wide range of DNS implementation types and
versions. Its methodology used to identify individual name
server implementations is based on "borderline" protocol
behaviour. DNS implementations adhere to the well
documented standard protocol behaviour in the case of
'common' dns messages, but the DNS protocol also
offers a multitude of message bits, response types,
opcodes, classes, query types and label types in a
fashion that may diversify implementations. The tool uses
series of "borderline" query-response messages to
identify implementations.

ESTIMATION METHODS

To estimate load distribution, the first step is to identify
cache resolvers implementing RTT-insensitive server
selection from those implementing BIND’s server
selection. In this step, a DNS fingerprinting tool may be
used to actively probe all cache resolvers that are
expected to query the investigated servers. The
perceived implementations other than BIND is classified
as the RTT-insensitive server selection originators. We
then estimate server loads under BIND and RTT-
insensitive selection respectively.

For the BIND-based server load estimation, we must
integrate BIND server selection algorithm to solve the
simultaneous equations consisting of Equations (1), (2)
and (4). BIND name servers use RTT to choose between
name servers authoritative for the same zone. Each time
a BIND name server sends a query to a remote name
server, it starts an internal stopwatch. When it receives a
response, it stops the stopwatch and makes a note of
how long that remote name server took to respond. When
the name server must choose which of a group of
authoritative name servers to query, it simply chooses the
one with the lowest RTT. Before a BIND name server has
queried a name server, it gives it a random RTT value,
but lower than any real-world RTT. This ensures that the
BIND name server queries all of the name servers
authoritative for a given zone in a random order before

playing favorites. On the whole, this simple but elegant
algorithm allows BIND name servers to "lock on" to the
closest name servers quickly and without the overhead of
an out-of-band mechanism to measure performance. For
server S1, S2, …, Sn with their RTTs as rtt1,rtt2,…,rttn
respectively, under BIND server selection algorithm,
Equation (4) can be instantiated as

1 1

1 i 1 n

rtt rtt
1 : log / log :,...,: log / log

rtt * rtt * 1 rtt * rtt * 1

 (5)

 The estimated server load distribution under BIND server
selection algorithm can be computed by solving
simultaneous equations consisting of Equations (1), (2)
and (5). For the RTT-insensitive server load estimation,
each cache server j assigns requests to server i always
with an equal proportion

jiP 1 / N

(6)

Finally, we can get the overall server load distribution by
adding together the BIND-based server load estimation
and the RTT-insensitive server load estimation.

Simulations

As RTT-insensitive server load estimation is simple and
easy to implement, we only conduct simulations using the
BIND server selection algorithm and PS scheduling policy
to illustrate the model in this area. To solve the seemingly
complicated nonlinear equations, we propose an iteration
method to obtain the solution. At the start of iteration, we
assume that where the processing delay of the
authoritative servers is negligible compared to the
network path delay (or in an idle state). So the initial
query load distribution can be obtained per Equation (5)
given all cache servers’ query rates and distances from
each authoritative server. Then for the next iteration, each
authoritative server’s processing delay is taken as
calculated in the previous iteration. The query load
distribution is updated based on the authoritative server’s
processing delay and the network path delay between
cache servers and authoritative servers. Repeat the
process for more iterations until the query load
distribution’s change is negligible and the server selection
reaches a steady state.

We implement the server algorithm in the NS2
simulator. The network topology is generated by GT-ITM
Topology Generator provide by NS2. The topology
parameters are given as the following (Figure 2): three-
level hierarchy: transit domain, stub domain and nodes; 2
transit domains; each transit domain has (on average)
five nodes; each transit node connects (on average) to
five stub domain; each stub domain has (on average)
twenty nodes; each cache server coverage is 10% of the
nodes except the 10 transit nodes. We generate

Figure 3. Solving BIND server selection model by iteration.

200 nodes, randomly select 6 nodes as the authoritative
servers and the remaining nodes as cache server (Figure
3).

We apply a patch for NS2 (Kostas, 2004) as Poisson
traffic generator for cache servers. All cache servers
follow the same traffic pattern. The mean packet inter-
generation time is set as 1.15 ms, and the size of the
packet generated is 256 bytes. Cache servers distribute
their queries among all authoritative servers per BIND
server selection algorithm. The network latency between
each pair of cache server and authoritative server is
solely dependent of the network distance in the
generated topology. In our simulation, it ranges from 30 to
200 ms. The DNS resolution processing at each
authoritative server implements PS scheduling policy and
the mean service rate is set as 100 kqps. Once the
incoming query rate is aggregated from all cache servers,
the query processing delay at an authoritative server is
computed and set per PS scheduling policy. Then cache
servers may adjust its query load distribution according to
the updated RTTs. In response to the updated query load
distribution from cache servers, authoritative servers then
renew their query processing delays. So the RTTs
change accordingly, and so on. The simulation lasts for
enough time until we see the dynamic converges to a
stable state. The result of iterations is shown in Figure 3.
We can see that the query load distribution for each
authoritative server quickly converges to a steady value.
To see whether the iteration like simulation does find the
correct solution formulated in Equations (1) to (5). We
plug the convergence values in Figure 3 obtained by
simulation into Equations (1) to (5). Their consistency
with Equations (1) to (5) shows their correctness.

Conclusions

Estimating the query load distribution among multiple

Wang 623

DNS authoritative servers is one of the key issues arising
with DNS server load balancing and optimization. The
contribution of this paper can be summarized as: (1) An
analytical model of RTT-sensitive server selections is
proposed; (2) A server load estimation method is
proposed based on server selection classification, which
uses a DNS server fingerprint approach to identify RTT-
sensitive server selections from BIND’s; (3) Under BIND
server selection algorithm, an iteration method is
proposed to solve the server selection model, which is
validated by the simulation results.

Conflict of interests

The author(s) have not declared any conflict of interests.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation of China (No. 61003239), Beijing Institution of
Higher Learning “Young Talents Plan”, Beijing Natural
Science Foundation (No. 4144084), and the National
Science Foundation for Young Scholars of China (No.
61102057).

REFERENCES

Ager B, Muhlbauer W, Smaragdakis G, Uhlig S (2010). Comparing DNS

resolvers in the wild. Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement (IMC'10). pp. 15-21.

Craig AS, Andrew JK (2013). Resolvers revealed: characterizing DNS
resolvers and their clients. ACM Trans. Internet Technol. 12(4):
Article 14.

Hongyu G, Vinod Y, Yan C, Phillip P, Shalini G, Jian J, Haixin D (2013).
An empirical reexamination of global DNS behavior. Proceedings of
the ACM SIGCOMM 2013 conference on SIGCOMM (SIGCOMM'13).
pp. 267-278.

Infoblox (2010). DNS SURVEY: OCTOBER 2010.
Jaeyeon J, Arthur WB, Hari B (2003). Modeling TTL-based Internet

caches. Proc. IEEE INFOCOM 1:417-426.
Jiani G, Laxmi NB (2006). Load balancing in a cluster-based web server

for multimedia applications. IEEE Trans. Parallel Distributed Syst.
17(11):1321-1334. http://dx.doi.org/10.1109/TPDS.2006.159

Karlin S, Taylor H (1975). A first course in stochastic processes.
Academic Press.

Kleinrock L (1976). Queueing systems, Wiley. Bus. Econ. 448 pp.
Kostas P (2004). Poisson traffic generator for ns-2.

http://www.matlab.nitech.ac.jp/~khpoo/research/index-poisson.htm.
Kyle S, Tom C, Michael R, Mark A (2013). On measuring the client-side

DNS infrastructure. Proceedings of the 2013 conference on Internet
measurement conference (IMC'13). 77-90.

Marios A, Georgios K, Panagiotis K, Georgios L, Stefanos G (2013).
DNS amplification attack revisited. Comput. Secur. 39:475-485.
http://dx.doi.org/10.1016/j.cose.2013.10.001

Mockapetris P (1987). Domain Names - Concepts and Facilities. IETF
RFC 1034.

Sebastiano DP, Dario L (2011). Protecting against DNS reflection
attacks with Bloom filters. Proceedings of the 8th international
conference on Detection of intrusions and malware, and vulnerability
assessment (DIMVA'11). pp. 1-16.

Supratim D, Anand S, Pavan KP (2008). An improved DNS server
selection algorithm for faster lookups. Proceedings of the Third

624 Sci. Res. Essays

International Conference on Communication System Software and

Middleware (COMSWARE'08). pp. 288-295.
Thomas C, Mark A, Michael R (2013). On modern DNS behavior and

properties. SIGCOMM Comput. Commun. Rev. 43(3):7-15.
http://dx.doi.org/10.1145/2500098.2500100

Vercauteren T, Aggarwal P, Xiaodong W, Ta-Hsin L (2007). Hierarchical
forecasting of web server workload using sequential monte carlo
training. IEEE Trans. Signal Proc. 55(4):1286-1297.
http://dx.doi.org/10.1109/TSP.2006.889401

Villela D, Pradhan P, Rubenstein D (2007). Provisioning servers in the
application tier for e-commerce systems. ACM Trans. Internet
Technol. 7(1): Article 7.

Yingdi Y, Duane W, Matt L, Lixia Z (2012). Authority server selection in

DNS caching resolvers. ACM SIGCOMM Comput. Commu. Rev.
42(2):80-86. http://dx.doi.org/10.1145/2185376.2185387

Zheng W, Xin W, Xiao-Dong L (2010). Analyzing BIND DNS server
selection algorithm. Int. J. Innov. Comput. Inf. Cont. 6(11):5131-5142.

Zhichun L, Ming Z, Zhaosheng Z, Yan C, Albert G, Yi-Min W (2010).
WebProphet: automating performance prediction for web services.
Proceedings of the 7th USENIX conference on Networked systems
design and implementation (NSDI'10). pp. 10-10.

