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When tracking a high maneuvering target, the sudden changes of target states may cause a serious 
decline or even divergence in the performance of the conventional modified input estimation (MIE) 
technique. Taking this into account, in this paper, strong tracking filter multiple fading factors are 
introduced in order to enhance the tracking performance of MIE for high maneuvering targets. As the 
prediction covariance can be adjusted in real time by the multiple time-varying fading factors and the 
different data channels are faded at different rates, this algorithm keeps a good tracking performance in 
low, medium and high maneuvering target cases. Simulations show the effectiveness of the proposed 
method. Compared with the Fuzzy adaptive MIE algorithm, this algorithm has a higher tracking 
accuracy and a better real-time performance. 
 
Key words: High maneuvering target, modified input estimation (MIE), strong tracking filter (STF), multiple 
fading factors. 

 
 
INTRODUCTION  
 
With the rapid development of modern aviation techno-
logy, the maneuverability of fighter planes and other 
aircrafts is growing stronger and stronger. The uncer-
tainty of changes in the maneuvering target acceleration 
makes the maneuvering target tracking increasingly 
difficult, which arouses wide attention. Singer (1970) 
suggested a zero-mean and time-correlated maneuvering 
acceleration model, which has been one of the founda-
tions in the problem of state estimation for maneuvering 
targets, and varieties of adaptive algorithms have been 
developed in recent years (Helferty, 1996; Zhou and 
Kumar, 1984). The “current” statistical model (Zhou and 
Kumar, 1984) is more realistic than Singer’s model on the 
target mobile pre-assumptions, which is recognized as an 
effective method for tracking maneuvering targets. How-
ever, the target tracking accuracy of these models often 
depends on the priori parameters of maneuvering targets, 
such as the maneuvering frequency and maximum ace-
leration, etc.  

The tracking performance will be seriously affected by 
the inappropriate value of the a priori parameters (Chen  and  
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Chang, 2009). Interacting multiple mode (IMM) algorithm, 
proposed by Blom (1988), is considered as a good 
compromise between the tracking performance and the 
computational complexity (Boers and Driessen, 2003), 
but the tracking accuracy still depends on the match 
degree of pre-designed models with the actual situation 
of a maneuvering target (Li and Bar-Shalom, 1996). In 
addition, with the increase in the number of models, the 
calculational cost will also increase significantly, which 
seriously affects the real-time performance for tracking a 
maneuvering target.  

Khaloozadeh and Karsaz (2009) introduced a new 
algorithm of state estimation called modified input 
estimation (MIE). The MIE method has provided a special 
augmentation in the state model by considering the 
unknown acceleration vector as a new augmented 
component of the target state, which succeeds in 
estimating the target trajectory, velocity and acceleration 
in low and mild maneuvering situations.  

However, after some iterations, its steps become small, 
leading to a serious degradation of the tracking accuracy 
in the presence of high maneuvers (Bahari and Pariz, 
2009). To overcome the aforementioned problem, a new 
MIE algorithm was proposed with the introduction of a 
Fuzzy forgetting factor or a Fuzzy fading memory  (Bahari  
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and  Pariz,  2009;  Bahari et al., 2009;  Beheshtipour  and 
Khaloozadeh, 2009), making an effective improvement of 
the tracking accuracy for high maneuvering targets. How-
ever, the Fuzzy reasoning rules depend on some priori 
knowledge of the maneuvering targets and need a high 
computational cost. So, the method of Bahari (2009) has 
a poor real-time performance and the tracking accuracy 
depends on the Fuzzy reasoning rules that are designed. 

To solve the problems mentioned above, this paper 
presents a new strong tracking MIE algorithm (STMIE), 
using the idea of strong tracking filter (Zhou and Frank, 
1996), and the formula of multiple fading factor matrices 
is derived based on the residuals. Different data channels 
are faded at different rates by the multiple time-varying 
fading factors. Thus, the gain of the filter will be adjusted 
in real time to enhance the tracking capacity of the pro-
posed algorithm for maneuvering targets. This algorithm 
also keeps a high tracking accuracy for uniform and/or 
low maneuvering targets and has a good real-time 
performance. 

The remainder of this paper is organized as follows: 
The MIE algorithm is reviewed; the STMIE algorithm is 
introduced; two examples of a target moving with high 
maneuver in order to show the effectiveness of the 
proposed method and some conclusions are drawn.  
 
 
THE MIE ALGORITHM 
 
The state equation and the measurement equation of a 
maneuvering target in two-dimensional cases are 
described as follows, respectively: 
 

( 1) ( ) ( ) ( )k k k k+ = + +X FX CU GW                         (1) 

 

( ) ( ) ( )k k k= +Z HX V                                                 (2) 

 
where 

( )kX : The state vector at time k . 

( )kZ : The measurement vector at time k . 

( )kU : The unknown acceleration vector.  

( )kW : The state noise. 

(k)V : The measurement noise. 

( )kQ : The process covariance matrix. 

( )kR : The measurement covariance matrix. 
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The uncertainty of the acceleration vector in Equation (1) 
makes the maneuvering target tracking difficult. In many 
researches, it has been attempted to detect the target’s 
maneuver as quickly as possible. To solve this problem, 
a new MIE approach was proposed, which does not need 
any maneuver detection procedure and can operate in 
both the non-maneuvering and maneuvering modes 
(Khaloozadeh et al., 2009). In the MIE method, the 
unknown acceleration vector is considered as a new 
augmented component of the target states and the 
maneuvering target state model is converted into a non-
maneuvering target state model. The augmented state 
equation is given as: 
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Then, the measurement information at time 1k +  is: 
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According to Equations (3) and (4), a standard non-
maneuvering augmented state model can be derived as: 
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At this point, although the augmented measurement 
noise and the state noise are time-related, they are still 
Gaussian white noises. Therefore, the optimal estimation 
of the target states can be obtained by the standard 
Kalman filter in the augmented system. The augmented 
measurement noise and the state noise covariance are: 
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The standard Kalman filter in the augmented system is 
derived under the following procedure: 
 
Step 1: Predicting 
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Step 2: Updating 
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where the gain of this filter is: 
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In Equation (7), although ( )k
aug

F  does not cause any 

transition in the acceleration vector, that is, 

( 1| ) ( | )k k k k+ =U U , the estimations of the 

acceleration states are modified through the new filter 

gain ( 1)k +
aug

K . In addition, as can be seen from 

Equation (11), ( 1)k +
aug

K  is determined by the 

prediction covariance ( 1| )k k+
aug

P  and the cross-

covariance ( )k
aug

T . Usually, when the system reaches a 

stable state, the prediction covariance will tend to be 
minimum. Thus, when a low and/or medium maneuver 

occurs, ( )k
aug

T  will play a decisive role in the filter gain 

adjustment, which guarantees the filter’s convergence; 
but when a high maneuver occurs suddenly, the residuals 
increase rapidly, while the prediction covariance cannot 
be promptly adjusted, thus causing the filter gain to fail 
reasonable adjustment, eventually leading to the loss in 
the capability of the MIE algorithm to track a high 
maneuvering target.  
 
 
STRONG TRACKING MIE (STMIE) 
 
Since the  prediction  covariance  and  the  gains  of  KF  and  EKF  
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cannot be changed with the variation of the residuals, a strong 
tracking filter was proposed by Zhou (1996), which can deal very 
well with this problem. The filter makes the output residuals 
approximate to Gaussian white noise by selecting appropriate time-
varying gains online. Compared with some conventional filters, this 
filter has a stronger robustness for mismatching model para-meters, 
a stronger capability for estimating target states with sudden 
changes and a moderate computational complexity and so on 
(Zhou et al., 1996, 1999). In this paper, multiple time-varying fading 
factors are introduced based on the idea of the strong tracking filter 
in order to adjust the tracking performance towards the 
maneuvering target in real time.  

In the light of the design of the strong tracking filter (Zhou et al., 
1996, 1999), in order to ensure that the MIE filter has a strong 
tracking filter performance, the filter gains must satisfy the 
orthogonal principle: 
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d  denotes the residual, 
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As can be seen from Equation (11), to obtain the appropriate time-

varying gain, ( 1| )k k+
aug

P  needs to be adjusted in real time in 

the filtering process. In order to obtain the optimal ( 1)k +
aug

K , 

Equation (8) can be written as: 
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where, ( 1)k +Λ  stands for a multiple fading factor matrix, which 

can adjust the prediction covariance in real time by the changes of 
the residuals and thereby adjusting the corresponding filter gain 

( 1)k +
aug

K . 

Through some derivations, ( 1)k +Λ  can be obtained: 
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where ( 1)k +N  and ( 1)k +M  are derived to ensure that the 

residuals at different points in time can remain approximate to 
orthogonality, without specific meaning. 
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In Equations (17) - (21), 0 1ρ< ≤  is a forgetting factor, generally 

taking 0.95. 1β ≥  is a softening factor, which can make the state 

estimated value more smooth; 0 ( )kS  is a residual second-order 

moment and 1, 1,2, ,
i

a i n≥ = L  are pre-determined 

coefficients. If a component of the state changes rapidly, a larger 

i
a  will be selected to further improve the tracking performance of 

the filter. If 1, 1, 2, ,
i

a i n= = L , then, the multiple fading factors 

will degenerate into a single fading factor. The selection of some 
parameter values can refer to the literatures of Zhou (1996, 1999). 

When the system is in a stable state, ( 1)k +Λ  will approximate to 

the unit matrix, then, the STMIE filtering algorithm will degenerate 
into the MIE algorithm, and at this time, it is still able to maintain the 
tracking capability for a general uniform or low maneuvering target. 

Suppose ˆ ( | )k k
aug

X  is an optimal estimation at time k  in the 

fusion center, ( | )k k
aug

P  is the corresponding state covariance 

matrix. Then, the recursive steps of the STMIE algorithm for the 

optimal state estimation at time 1k +  are as follows: 

  
Step 1: According to Equation (7), one step prediction value 

ˆ ( 1| )k k+
aug

X  can be worked out;  

Step 2: According to Equation (14), the residual ( 1)k +
aug

d  can 

be worked out;  
Step 3: According to Equation (16), a multiple fading factor matrix 

( 1)k +Λ  can be worked out;  

Step 4: According to Equation (15), the prediction covariance 

( 1| )k k+
aug

P  can be worked out;  

Step 5: According to Equation (9), ˆ ( 1| 1)k k+ +
aug

X  can be 

worked out;  

Step 6: According to Equation (10), ( 1| 1)k k+ +
aug

P  can be 

worked out. 
 
 

SIMULATION RESULTS AND ANALYSIS 
 
The effectiveness and real-time performance of the 
STMIE algorithm will be illustrated through two examples 
of a maneuvering target tracking. Taking the root mean 
square error (RMSE) and computational time as the 
performance indicators, the study compared the STMIE 
algorithm with the MIE algorithm and the algorithm 
proposed by Bahari (2009). A two-dimensional plane is 
taken into consideration in this section and the 
covariance matrices of system  noise  and  measurement  

 
 
 
 
noise in all simulations are selected as 

( ) diag[0.5, 0.5]k =Q  and 2 2 2 2( ) diag[(50) m , (50) m ]k =R , 

respectively. Furthermore, the initial position and speed 
of the target are unknown for the trackers. 
 
 
Example 1  
 
Assuming the initial location of a target is 

( , ) (100m, 400m)x y = , and the initial velocity is 

( , ) ( 80m/s,100m/s)
x y

v v = − , the target makes a uniform 

motion during the first 100 seconds and then starts to 
take a high maneuver from the 101

st
 second, with an 

acceleration 2 2( , ) (20m/s ,30m/s )
x y

a a = , lasting 200 seconds. 

In this simulation, the sampling time is 1T s= , and 

sampling 300 times in all, 21 Fuzzy  reasoning rules are 
selected in the algorithm of Bahari and Pariz (2009). The 
Monte Carlo simulations are carried out for 100 times. 

The RMSE of the target position at time k  and the 

average error of estimated position at all sampling times 
are defined as in Equations (22) and (23), respectively: 
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where 100M =  is the number of times of Monte Carlo 

simulation, 300N =  is the total number of samples, 

ˆ ˆ( ( ), ( ))i ix k y k  and ( ( ), ( ))i ix k y k  are the estimated and 

actual value of the target position at time k , respectively. 

The RMSE and the average estimation error of the speed 
and acceleration can be defined in the same way as 
Equations (22) and (23). 

Figures 1 - 6 illustrate the actual values and the 
estimations of position, velocity and acceleration of the 
STMIE algorithm, the MIE algorithm and the algorithm of 
Bahari and Pariz (2009) in x and y-axis directions. 
Figures 7 - 9 show the comparison of the estimated 
RMSE among the three algorithms in terms of the 
position, velocity and acceleration. 

From Figures 1 - 9, it is clear that, when the target is 
making a uniform motion within the first 100 s, the three 
algorithms have a similar performance. At the 100

th
 

second, a high maneuver happens to the target, thereby 
making the STMIE algorithm to have the fastest speed of 
convergence. As the multiple fading factors take full 
advantages of the useful information about the residuals, 
they have the ability to adjust the prediction covariance 
and the corresponding filter gain in real time, which 
makes the filter converge rapidly in a short period of time. 
The algorithm of Bahari is  the  second  in  convergence  
speed.  Of  course,  the tracking performance of  Bahari’s 
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Figure 1. Estimated position in x-axis direction. 
 
 
 

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
x 10

5

Time(s)

P
o

s
it

io
n
 i
n

 Y
-a

x
is

(m
)

Real

MIE

Method of Bahari

Proposed Method

 
 

Figure 2.  Estimated position in y-axis direction. 
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Figure 3. Estimated velocity in x-axis direction. 
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Figure 4. Estimated velocity in y-axis direction. 
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Figure 5.  Estimated acceleration in x-axis direction. 
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Figure 6. Estimated acceleration in y-axis direction.  
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Figure 7. RMSE of the estimated acceleration. 
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Figure 8. RMSE of the estimated velocity.  

 
 
 
tracking performance of Bahari’s algorithm can be further 
improved by increasing the Fuzzy  reasoning rules, how-
ever, along with an increase of the computational burden. 
The MIE algorithm has the worst speed of convergence, 
which is due to the fact that the prediction covariance 
cannot be adjusted timely in case of high maneuvering 
target tracking, resulting in the decline or even 
divergence of the tracking performance. 
Table 1 shows the comparison of the tracking accuracy 
and computational time of the three algorithms. As can 
be seen from Table 1, the STMIE algorithm has the 
highest tracking accuracy for the estimation of position, 
velocity and acceleration. As the different data channels 
are faded at different rates by the multiple time-varying 
fading factors, the tracking system can achieve a stable 
state quickly in a short time. At this time, the multiple 
fading factor matrix turns into an approximate unit matrix, 
and then the STMIE method will degenerate into the MIE 
method, which can better  maintain  the  system   stability  
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Figure 9. RMSE of the estimated position. 

 
 
 
and achieve the optimal estimation of the target state, 
while the other two algorithms cannot. 

The study can also conclude that the STMIE algorithm 
has a better real-time performance, with the computing 
time being 0.1410s, next to the MIE algorithm in 
computing speed and being only 1.59% of the 
computational time used by Bahari’s algorithm. 
 
 
Example 2 
 
In this example, the study’s intention is to evaluate the 
proposed method in tracking a target with low and 
medium maneuvers, and two simulations are performed 
as follows: The initial position, velocity and acceleration 
of the target are the same as those in Example 1 and 
lasting 100 s, whereas, the accelerations are different in 
the later 200 s. Case 1: Simulation of a low maneuvering 

target,
2 2( (101), (101)) (1m/s ,1m/s )x ya a = . Case 2: 

Simulation of a medium maneuvering target, 
2 2( (101), (101)) (5m/s ,5m/s )

x y
a a = . Each of the 

simulations was repeated 100 times and the RMSE of 
estimation was computed based on the Monte Carlo 
method.  

Table 2 lists the estimation error of three methods in 
estimating different target parameters. As can be seen 
from Table 2, the STMIE method also has a good 
tracking performance for a low or medium maneuvering 
target. Its tracking accuracy is next to the Bahari’s 
algorithm in Case 1, but higher in Case 2. Moreover, the 
computing time of the STMIE method is far less than the 
Bahari’s method known from Table 1. 
 
 

Conclusions  
 

In this paper, a new filtering algorithm STMIE is proposed 
on the basis of strong tracking filter idea. The multiple 
fading factors are introduced in order to adjust the 
prediction covariance and the corresponding filter gain  in  
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Table 1.  The comparison of the three algorithms in the tracking accuracy and computing time. 
  

Algorithm 
Error 

Computational time (s) 
Position (m) Velocity (m/s) Acceleration(m/s

2
) 

MIE 814.45 178.71 15.76 0.0620 

Method of Bahari 132.10 55.78 6.25 8.8590 

STMIE 37.30 29.36 4.48 0.1410 
 
 
 

Table 2.  Estimation error in simulations of low and medium maneuvering target cases. 
 

Simulation Algorithm 
Error 

Position (m) Velocity ((((m/s）））） Acceleration (m/s
2
) 

Case 1 

MIE 68.42 21.71 2.49 

Method of Bahari 38.15 15.43 1.61 

STMIE 45.03 18.74 1.95 

Case 2 

 

MIE 

 

178.97 

 

46.30 

 

4.54 

Method of Bahari 47.99 21.27 2.56 

STMIE 42.63 23.01 2.51 
 
 
 

real time, thereby making the filter converge rapidly in a 
relatively short time. Particularly, this method has a high 
tracking accuracy and real-time performance for tracking 
high maneuvering targets. Simulation results are 
compared with that of Bahari, showing the effectiveness 
of this method in tracking high maneuvering targets. 
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