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In this study, an approximation method based on Fourier sine series were investigated for the vibration 
analysis of rectangular plates elastically restrained along all the edges. The transverse displacement of 
the elastic supported plate consisted of linear combination of Fourier sine series and an auxiliary 
polynomial function. In order to eliminate possible discontinuities; an auxiliary polynomial was used in 
Fourier solution function. For that, a displacement solution function that could be derived at least three 
times was adopted by letting series function to satisfy the governing differential equation for all the 
boundary conditions at every point. All the unknown Fourier expansion coefficients and natural 
frequencies of the plate were determined by employing the Galerkin discretization procedure. Unlike the 
existing techniques, the proposed method does not require a very tedious solution process, potential 
difficulties or non-linear hyperbolic functions. In the all performed calculations, the Kirchhoff plate 
theory, which is also called the classical plate theory, was employed. Several numerical examples were 
presented to demonstrate the accuracy and convergence of the current solutions. 
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INTRODUCTION 
 
Plates and plate-type structures have gained a special 
importance and notably increased engineering 
applications in recent years. A large number of structural 
components in engineering structures can be classified 
as plates. Typical examples in engineering structures are 
floor and foundation slabs, lock-gates, thin retaining 
walls, bridge decks and slab bridges. Plates are also 
indispensable in ship building and aerospace industries. 
The wings and a large part of the fuselage of an aircraft, 
for example, consist of a slightly curved plate skin with an 
array of stiffened ribs. The hull of a ship, its deck and its 
superstructure are further examples of stiffened plate 
structures. Plates are also frequently parts of machineries 
and other mechanical devices (Szilard, 2004).  

It is worth mentioning that there exist altogether 21 
different combinations of classical boundary conditions 
for a rectangular plate (Chakraverty, 2009). Although, 
elastically supported plates are very important in the 
application, there is limited study in the literature. 

Transverse vibrations of rectangular plates  with  elastic 
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boundary conditions have been studied in the literature, 
as reviewed by Leissa (1969, 1973); Gorman (1980, 
2005) in the last three-forty decades. 

Arbitrary non-uniform elastic edge restraints represent 
the most general class of boundary conditions for plate 
problems, and are encountered in many real-world 
applications. The vibrations of plates with this kind of 
boundary conditions, however, are rarely studied in the 
literature perhaps because there is a lack of suitable 
analytical or numerical techniques (Zhang and Li, 2009). 
Beam functions and combinations have been used in 
plate problem solutions to satisfy certain boundary 
conditions. A set of static beam functions have been 
developed to determine natural frequencies in transverse 
vibration of rectangular plates with elastic translational 
and/or rotational edges was calculated by employing the 
Rayleigh-Ritz method (Zhou, 1995, 1996). The free 
vibrations of thin orthotropic rectangular plates were 
analyzed using a set of static beam functions by the 
Rayleigh-Ritz method by Zhou (1999). Lee and Lee 
(1997) have adopted a new beam function set under 
point load as admissible functions and the Rayleigh-Ritz 
method to study the problem of the flexural vibration of 
thin, isotropic rectangular plates under elastic point 
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Figure 1. A rectangular plate elastically restrained.  

 
 
 
support. A general solution of the vibration of an Euler–
Bernoulli beam with arbitrary type of discontinuity at 
arbitrary number of locations has been presented using 
Heaviside function by Wang and Qiao (2007). Frequency 
equations in matrix form have been derived by Kim and 
Kim (2001) using Fourier sine series for calculating the 
natural frequencies of the beams with generally 
restrained boundary conditions by both translational and 
rotational springs. 

Li and Daniels (2002) proposed Fourier series method 
with simply polynomial for transverse vibration of plates 
that are simply supported along a pair of opposite edges 
and elastically restrained with translational and rotational 
springs along the others in a general manner. Li (2004) 
also applied his own method for plates with general full 
elastically restrained boundary conditions and solved 
using the Rayleigh-Ritz method. Then, Du (2007) and Li 
et al. (2009) applied the same method also for the in-
plane vibration problems of plates with fully restrained 
boundary conditions. W.L. Li is to be congratulated for 
their contribution in recent years to vibration analysis of 
elastically restrained plates. For the investigations on the 
vibrations of elastically restrained plates, W.L. Li’s works 
can be examined. 

Zarubinskaya and Horssen (2004) studied an initial-
boundary value problem for a rectangular plate with 
general elastic supports alone its two opposite edges. 
They established a model which consisted of a 
rectangular plate with two opposite sides simply 
supported and the other sides attached to linear springs 
as a suspension bridge. Deformation, damage, crack etc. 
caused by vibrations can occur at the plates subjected to 
various loads (Yavuz et al., 2006.; Phoenix et al., 2006). 
Plate systems may be a more stable reduction of the 
deformations (Yavuz et al., 2006; Morgül and 
Küçükrendeci, 2008). 

In this study, vibrations of plates with boundary 
conditions of elastic along full edges were studied. 
Deflections function was expressed as the combination of 

a Fourier sine series and an auxiliary polynomial. 
Solution function as employed by Li (2002) has been 
adopted for plates with fully elastic edges. Frequency 
parameters of plate were calculated for different plate 
parameters. Solutions obtained for elastically restrained 
plate were compared with related references. 
 
 
SOLUTION METHOD FOR VIBRATION OF A RECTANGULAR 
PLATE 

 
Consider a rectangular plate linear and rotational springs restrained 

along any edge, , ,  and   illustrated in  

Figure. For clarity, only some the rotational and linear springs were 
shown. The governing differential equation for free vibration of a 

plate was given by: 
  

                                              (1) 
 

Where  is the flexural displacement, ω is the angular 

frequency, D is the flexural rigidity, ρ is the mass density, h is the 

thickness of the plate and ∇ 
4
 is the square of the laplacian 

operator. D and ∇ 
4 

were expressed as: 
 

                                                                           (2) 
 

                                                     (3) 

 
 
In terms of flexural displacements, the bending and twisting 
moments, and transverse shearing forces can be expressed as: 
 

                                      (4) 
 

                                     (5) 



 
 
 
 

                           (6) 
 

                           (7) 
 
The boundary conditions along the elastically restrained edges can 
be expressed as: 
 

                                  (8) 

 

                                  (9) 
 

                                (10) 
 

                                (11) 
 
 

Where  are the linear stiffness’s,  are the rotational 

stiffness’s of the elastic supports along  and  respectively, 

 are the linear stiffness’s,  are the rotational stiffness’s 

of the elastic supports along  and  respectively. Equations 8 

to 11, describes a general boundary condition from which all the 
familiar homogeneous boundary conditions can be directly obtained 
by accordingly choosing the spring stiffness to be an extremely 
large or small number.  

The current plate problem can be defined as boundary-value 
problem together with the differential equation, specific boundary 
conditions and physical properties. Fourier series approach consist 
of trigonometric sine expressions and polynomial was simply used 
for the boundary-value problem to be solved. Detailed information 
was presented about the Fourier series with polynomial by Li et al. 
(2002, 2004, 2009). The Fourier series simply represents a residual 
or conditioned displacement function that is periodic continuous and 
has at least three continuous derivatives everywhere. Based on the 
same consideration, the solution for the current plate problem can 
be written as Equation (12): 
 

                          (12) 

    
 

Where  and  denotes a polynomial which was 

determined below. The polynomials was particularly introduced to 
satisfy: 
 

                                (13) 
 

                               (14) 
 

                                  (15) 
 

                                  (16) 
 
and  
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                                 (17) 
 

                                 (18) 
 

                                 (19) 
 

                                 (20) 
 
The lowest order polynomial that satisfies Equations 13 to 20 was 
shown thus: 
 

 

                            (21) 
 

 

                            (22) 
 
or in vector form: 
 

                                                                          (23) 
 

                                                                          (24) 

 
Where: 
 

                                                        (25) 
 

                                                        (26) 
 

                                        (27) 
 

                                        (28) 
 
From the equations highlighted earlier, the boundary conditions, 

vectors  and  was determined as follows: 

 

                                                             (29) 
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Table 1. Frequency parameters for a C-S-C-S square plate. 
 

Solution       

Current 28.91 54.6476 69.3733 93. 91 102.0457 128.5865 

Li (2002) 28.9514 54.7498 69.3275 94.6142 102.239 129.099 

Leissa (1969) 28.9 54.8 69.2 94.6 102.2 129.1 

Chakraverty (2009) 28.950 54.873 69.327 94.703 103.71  

Low et al.(1998) 28.97 54.77 69.40 94.71   

 
 
 

Table 2. Frequency parameters for a S-S-F-S square plate. 

 

Solution       

Current 11.5885 27.6851 41.1179 59.2032 62.9308 90.4242 

Li (2002) 11.6859 27.7971 41.2308 59.2435 62.3701 90.5177 

Leissa (1969) 11.68 27.76 41.20 59.07 61.86 90.29 

Leissa (1973) 11.6845 27.7563 41.1967 59.0655 61.8606 90.2941 

Chakraverty (2009) 11.684 27.757 41.220 59.360 62.461 - 

 
 
 

𝜶 𝒚 =  𝑯𝒏𝒚
−𝟏𝑸𝒎𝒚

𝒏 𝑩𝒎𝒏

∞

𝒏=𝟎

 
                                                           (30) 

 

Where ,  and  was determined respectively at 

Equations 31 to 34 as highlighted. Substituting equations 23, 24, 29 
and 30 into equation (12), one immediately obtains the deflection 
function as Equation (35): 
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Where is . Substituting equation 35 into equation 1 

and using the Galerkin discretization procedure, one finally obtains: 

 

                                                                      (36) 
 

Equation 36 is an eigenvalue-eigenvector problem. Consequently, 
the frequencies ω of elastically restrained plate and the unknown 
expansion coefficients C of the Fourier series were obtained from 
equation 36. Then, frequency parameters for plate with elastic 
edges were calculated from Equation 37: 

 
 
NUMERICAL RESULTS 

 
First, let us consider a square plate that is clamped along 

 and simply supported  and . The clamped 
boundary condition was easily generated by simply 
setting the stiffness’s of the all springs equal to a very 

large number ( ). The simply supported 

boundary condition was easily generated by simply 
setting the stiffness’s of the linear springs equal to a very 

large number ( ), and the stiffness’s of 

rotational springs equal to a very small number ( ). 

The first nine frequency parameters for C-S-C-S 
(Clamped-Simple-Clamped-Simple) were illustrated in 
Table 1. It was seen that the developed method led to a 
correct solution under M = N = 4 terms conditions. 

The next example also deals with a familiar boundary 

condition: simply supported along , ,  and 

free along . This boundary condition (S-S-F-S, 
Simple-Simple-Free-Simple) is readily represented by 
setting ,  and 

. The six lowest frequency 
parameters obtained in the Fourier expansion were given 
in Table 2 under M = N = 4 terms conditions. It is seen  
that the current solution shows agreement with the 
references. The frequency parameters for C-S-E-S 
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Table 3. Frequency parameters for a C-S-E-S square plate. 
 

Solution       

Current 19.4114 40.7869 44.8337 67.3533 82.2153 92.4832 

Li (2002) 19,4025 40,7803 44,8252 67,1697 81,6234 92,5912 

 
 
 

Table 4. Frequency parameters for a S-S-S-S square plate. 

 

Solution          

Current 19.7273 49.3242 49.3242 78.8848 98.5628 98.5628 128.1362 128.1362 167.6745 

Li (2004) 19.74 49.35 49.35 78.96 98.70 98.70    

Low et al.(1998) 19.74 49.35 49.35 78.96      

Chakraverty(2009) 19.739 49.348 49.348 79.400 100.17     

Leissa (1973) 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960 128.3049 128.3049 167.7833 

 
 
 

Table 5. Frequency parameters for a C-C-C-C square plate. 
 

Solution       

Current 35.8742 71.3933 71.4026 102.8787 131.0094 131.6766 

Li et al.(2004, 2009) 35.986 73.398 73.398 108.24 131.59 132.22 

Low et al.(1998) 36.02 73.50 73.50 108.45   

Chakraverty (2009) 35.988 73.398 73.398 108.26 131.89  

Leissa (1973) 35.992 73.413 73.413 108.27 131.64 132.24 
 
 

 
Table 6. Frequency parameters for a C-S-S-F square plate. 

 

Solution       

Current 15.9363 29.6641 51.4547 63.3525 68.4213 102.6084 

Li (2004, 2009) 16.785 31.14 51.392 64.016 67.549 101.21 

Chakraverty (2009) 16.811 31.173 51.454 65.735 67.794  

Leissa (1973) 16.865 31.138 51.631 64.043 67.646 101.21 

 
 
 
boundary condition was readily represented by setting 

; ,  and finally 

.Frequency parameters were presented for 
simply supported plate (S-S-S-S, Simple- Simple-Simple-
Simple) along all edges in Table 4 for term number M = N 
= 4. This boundary condition was readily represented by 

setting , and . The accuracy 

and convergence of the current solution were again 
demonstrated. 
   Then, consider a C-C-C-C (Clamped-Clamped-
Clamped-Clamped) plate clamped along all edges. 
Clamped boundary conditions were obtained when the 
(Clamped-Simple-Elastic-Simple) estimated by using M = 
N = 4 terms were given in Table 3 with references. This 
stiffness’s for the boundary springs become infinitely 

large as  and . The first 

six frequency parameters were presented in Table 5 for 
the C-C-C-C plate assuming M = N = 4. 
Finally, consider a square plate clamped along a C-S-S-F 
(Clamped-Simple-Simple-Free) square plate. This 
boundary conditions were created by simply setting the 
stiffness’s of the translational and rotational springs 

, , 

 and . The six smallest frequency 
parameters were given in Table 6 with respect to 
references.  

 
 
Conclusion 

 
A set of admissible functions developed by Li  has  been  
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employed for the free vibrations of rectangular plates with 
general elastic restraints along all the edges. This 
proposed study has actually developed a general 
technique for deriving a complete set of Li’s functions. 
Polynomial-Fourier series solution approach for Levy type 
plate proposed by Li was adopted for full elastic 
restrained plates. The plate displacement was expressed 
as a Fourier sine series plus an auxiliary polynomial. 
Since each of the series expansions should be truncated 
to a finite number of terms as M = N = 4 in actual 
numerical calculations. As a result, several numerical 
examples were presented to demonstrate the accuracy 
and reliability of the proposed solution method. It is 
believed that the proposed method was universally 
applicable to different boundary conditions, including all 
the classical cases. 
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