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A low resolution ETM+ and higher resolution IKONOS images obtained in 2000 - 2003, respectively, are 
compared using post-classification comparison algorithm to detect changes due to a new major 
highway construction initiated in 2000. The spatial resolution difference between the input images, 
which may lead to wrong registration, thereby, wrong post-classification comparison results, are 
minimized by fusing the 30 meter resolution ETM+ multispectral bands with its 15 meter resolution 
panchromatic band using à trous wavelet transform image fusion method. The IKONOS image has color 
change on the sea surface especially at the river mouth and its vicinity because of mud and sediments 
carried by Degirmendere Creek. Therefore, maximum Likelihood, Spectral Angular Mapping, Fisher 
Linear Likelihood, and ECHO classifiers are used for image classification. The best results are obtained 
from the ECHO classifier since it considers both spectral and spatial variations in the input images. The 
results show that the land fill on costal zone due to new high way construction is detected successfully 
with ECHO classifier. It is also seen that improving the spatial resolution of the ETM+ via image fusion 
minimizes the impact of misclassification on final change image generated by post-classification 
comparison.  
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INTRODUCTION 
 
Change detection is the process of identifying thematic 
change information occurred on earth’s surface at 
different times. Timely and accurate change detection of 
earth’s surface is very important since it helps in under-
standing the relationship and interactions between 
human and natural phenomena to better manage and 
use land resources. Change detection is widely used in 
many applications such as detection of change in land-
cover, land-use, forest, coastal zones, etc. 
(Ramachandra and Kumar, 2004).  

Land-cover refers to the physical material at the 
surface of the earth including vegetation, water, soil, and 
physical features those created by human activities such 
as buildings, asphalt, etc. The land-cover changes occur 
naturally in a progressive and gradual way, however, 
some times it may be  rapid  and  abrupt  due  to   human  
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activities and interactions (Ramachandra and Kumar, 
2004), and it is very important to detect the rate and 
dimension of these changes. The change on coastal 
areas is also crucial in environmental monitoring since 
the impact of human activities and natural processes on 
the coastal environment is a major concern (Huang and 
Fu, 2000; Chen and Rau, 1998). Coastal zones are the 
borders between water and land. The co-existence of 
human activities and natural resources often creates 
conflicts of use in the coastal zones, and coastal zones 
are subject to a constant change which often results in 
negative effects on their natural structure.  

Maps of coastal zones are produced via ground 
surveys, aerial images, lidar technology, or satellite 
images. Although, it offers high accuracy, mapping 
coastal resources by ground surveys is costly, labor 
intensive and time consuming (Huang and Fu, 2000; 
Chen and Rau, 1998). Airborne imagery provides 
adequate information about coastal zone, yet data 
acquisition and data  reduction   process  also  costly and  



 
 
 
 
time consuming at a certain degree (Chen and Rau, 
1998). Lidar technology has some advantages over 
traditional photogrammetry and land surveying for 
topographic mapping since it offers high accuracy, fast 
acquisition and processing time with minimum human 
dependence. However, especially airborne lidar systems 
are expensive and are currently less available. On the 
other hand, using high resolution satellite data, large 
coastal areas can be mapped at regular time intervals 
with larger ground coverage and revisit capability of 
remote sensing satellites. Having multispectral optical 
sensors is another advantage of satellite images. Thus, 
satellite imagery provides a good alternative for mapping 
and detecting coastal changes because of its general 
availability, large ground coverage, sufficient information 
contents, and the trend of higher spatial resolution (Chen 
and Rau, 1998). 

In ideal case, the remotely sensed data are acquired by 
a sensor system which collects data with the same 
spatial resolution on each date. However, it is not always 
possible to have same spatial resolution image data of 
the scene which is taken in different times. When this is 
the case, lower resolution image is resampled such that it 
has the same pixel size as the higher resolution one. 
However, resampling does not improve the detail content 
of the lower resolution image, which is crucial for 
registration process. In change detection, generally, the 
lower resolution multispectral images are registered using 
the higher resolution ones for post-classification com-
parison. Registration needs common control points on 
both images. However, it is may be very difficult to select 
control point on poor resolution images. Thus, poor 
registration results in wrong land-cover change results. 
On the other hand, one object may contain area 
representative of more than one information class in the 
spatial domain. This can be regarded as spatial overlap 
(Tso and Mather, 2001), Spatial overlap of classes is the 
main difficulty in image classification to get high 
classification accuracies and reliable results from post-
classification comparison. Another problem in pixel-based 
image classification is the mixed radiance values. 
Radiance value of an object is sensed by the sensor and 
assigned as the gray value of a particular pixel. However, 
the gray value of one particular object is affected by the 
neighboring objects due to atmospheric effects and the 
properties of the instrument optics. Hence, gray value of 
a pixel is affected by the gray value of the neighboring 
pixels (Tso and Mather, 2001).  

In this study, the changes occurred on the costal zone 
of the city center of Trabzon due to a new major highway 
construction initiated along Black Sea cost in 2000 were 
evaluated. A 30 m resolution ETM+ multispectral image 
and a 4 m resolution IKONOS image acquired in 2000 
and 2003, respectively, were only available multispectral 
image data in hand for post-classification comparison 
method (Figure 1). To tackle the poor spatial resolution 
problem and make major roads and other details  smaller  
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than 30 m in size detectable, the ETM+ multispectral 
image was fused with its 15 m resolution panchromatic 
band using à trous image fusion algorithm. Thus, the 
post-classification comparison was performed between 4 
m resolution IKONOS multispectral (4 m) and 15 m 
resolution fused ETM+ images.   
 
 
MATERIALS AND METHODS 
 
Pre-processing of the Input Images 
 
The pre-processing of the input images is almost necessary for all 
change detection problems. This may include resampling, 
radiometric correction, histogram matching, possible registration 
and image fusion of the input images. 

If possible, the remotely sensed data that have same spatial 
resolution is used for change detection process. However, it is still 
possible to perform change detection even if the spatial resolution 
of the input images does not match. In this case, lower resolution 
image is resampled such that it has the same pixel size as the 
higher resolution one has. Most image fusion algorithms also need 
resampling before fusion process since fusion essentially occurs 
when the involved images have the same spatial resolution. Thus, 
multispectral images may need to be resampled (generally up 
sampled) such that they have the same spatial resolution with the 
panchromatic image. The nearest neighbour method is the simplest 
one among resampling methods such as bilinear interpolation, 
bicubic approximation to sinc function, or 8-point or 10-point sinc 
function interpolation methods. In the nearest neighbour method, 
the new pixel value is assigned as the value of its nearest pixel. 
That is, the original pixel values repeat. However, other methods 
mentioned above interpolate new pixel values using the 
surrounding pixels, resulting in color content change in the original 
image Gungor and Shan, 2005). Therefore, nearest neighbour 
method is used for resampling to keep the original spectral 
properties of the multispectral image. 

Ideally, the input images should have the same radiometric 
precision on both dates. In our case, ETM+ images have 8-bit 
precision, whereas IKONOS image has 11-bit resolution. When the 
radiometric resolution of data acquired by one system (8-bits) are 
compared with data acquired by a higher radiometric resolution 
instrument (11-bits), the lower resolution data should be 
decompressed to 11-bits for change detection purposes. In 
addition, to minimize the impacts of the atmospheric conditions, 
illumination and viewing angles, and soil moistures, images need to 
be radiometrically enhanced. For this purpose, histogram matching 
is applied between the input multispectral images. Matching the 
histogram of one image to that of another image makes the 
distribution of brightness values in the two images as close as 
possible. Thus, histogram matching is applied between original 
ETM+ and IKONOS multispectral images to make the histogram 
and the radiometric precision of the ETM+ resemble to those of 
IKONOS image as histogram matching also increases the 
radiometric precision of ETM+ image to 11-bits.  

In some change detection algorithms such as post-classification 
comparison, it is essential to geometrically rectify the input images 
such that each pixel location on both input images represents the 
same location on the ground (Macleod and Congalton, 1998; 
Kwarteng and Chavez, 1998; Tardie and Congalton, 2004). This is 
done by registering the input images. Image fusion also requires 
geometric rectification of the input images since different images of 
the same area are used together. Registration can be done in 
various ways. The most accurate way is to register the input images 
separately  by  establishing  geometric   relationship   between   the  
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IKONOS Multispectral (Bands: 4,3,2) 

ETM+ Panchromatic 

ETM+ Multispectral (Bands: 4,3,2) 

 
 
Figure 1. Remote sensing data used ETM+ panchromatic and multispectral image obtained in 
2000 and IKONOS multispectral image obtained in 2003. 

 
 
 
image and the ground using rigorous photogrammetric methods 
(Lee and Bethel, 2001). This process is called georegistration. The 
georegistration process can also be done for pushbroom imaging 
systems such as IKONOS and Quickbird sensors (Lee and Bethel, 
2001). Another way of registering the input images is to use 
polynomial transforms. When ground control is known, such 
transform can be performed to the ground truth, otherwise it can be 
applied between images.  In this case, one image (generally, the 
one that have better resolution) is taken as the reference and the 
other one is registered using this reference image. The accuracy of 
image registration is usually conveyed in terms of root-mean-square 
(RMS) error. In this study, the first order polynomial transformation 
method is used for registration refinement of multispectral images 
by taking the IKONOS multispectral image as the reference. 
Common points on both images are selected carefully such that 
they produce an RMS error smaller than 0.5 pixels with respect to 
the pixel size of the fused ETM+ image. 

Image fusion methods are designed to increase the spatial 
resolution   of   the  multispectral  images   without   distorting  their 

spectral contents. The missing spatial detail in the multispectral 
images are found and then transferred into the multispectral images 
with the help of higher spatial resolution panchromatic one. Hence, 
higher resolution images highlight linear features on the images, 
such as roads, build up areas and coastlines, which leads to better 
registration of the input images and more accurate post-
classification comparison results. Image fusion algorithms are 
categorized as color-based, wavelet transform-based and statistical 
methods (Gungor, 2008). Examples of color-based fusion include 
IHS (Intensity, Hue, and Saturation), Brovey, and SVR (Synthetic 
Variable Ratio) methods. Mallat’s multiresolution, the à trous, and 
M-Band wavelet transform approaches are the most common 
wavelet transform-based fusion algorithms, and statistical image 
fusion methods include Principal Component Analysis (PCA), linear 
regression method (Price, 1999), spatially adaptive image fusion 
(Park and Kang, 2004), � - � method (Gungor and Shan, 2005), 
and criteria-based method (Gungor, 2008). The wavelet transform-
based fusion methods are successful in terms of keeping the color 
quality   of   the   original   multispectral   images;    however,    their   
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Fused ETM+ Multispectral (Bands: 4,3,2) 

ETM+ Multispectral (Bands: 4,3,2) 

 
 
Figure 2. Fusion of ETM+ multispectral and panchromatic bands. 

 
 
 
performances are not appealing as the results obtained from color-
based and statistical methods in terms of improving the spatial 
detail content (Gungor, 2008). On the other hand, color-based and 
statistical methods are not successful as the wavelet-transform 
based methods in terms of color quality. This study uses 
multispectral images for image classification to detect the changes 
occurred in the scene. Therefore, keeping the color quality of the 
original multispectral image is crucial. For this reason, the à trous 
wavelet transform method, one of the most successful represen-
tative of the wavelet-transform based fusion methods, is chosen as 
the fusion method since it is fast and easy to implement, and 
reliable in terms of good color quality. The spatial resolution of 
ETM+ multispectral data is improved from 30 - 15 m using 15 m 
spatial resolution panchromatic image via à trous image fusion 
algorithm. Then, 4 m resolution IKONOS multispectral image and 
15 m resolution fused ETM+ multispectral image is registered and 
used for classification. The original and fused ETM+ images are 
displayed in Figure 2.  

The à trous algorithm is a non-orthogonal, dyadic, undecimated, 
DWT algorithm. It uses a low-pass filter associated to a scale 
function )(tφ  to obtain successive approximations of the original 
image. It also uses a high-pass filter to get three detail images 
(Aiazzi et al., 2002). Instead of decimation during the transform, the 
low-pass and high-pass filters are up-sampled by inserting 2j-1-1 
zeros between the filter coefficients at each decomposition level j to 
reduce the resolution of the original image (Wegner et al., 2006). 
Since decimation is not applied, approximation and detail images 
have the same size as the original input images at every 
decomposition level. The inverse transform gets  the original  image  

by using two synthesis filters.  
There is also a practical implementation of the à trous wavelet 

transform algorithm (Starck and Murtagh, 1994). This algorithm 
uses a scaling function, a B-spline of degree 3, which leads to the 
following 2-D 5x5 convolution mask 0H . 
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To calculate the approximation image that contains the high 
frequency part of the original image, the low-pass filter is up-
sampled before each decomposition level by inserting zeros 
between filter coefficients using the same methodology explained 
above. The detail image w , which contains the high frequency part 
of the original image, is obtained as the difference of two 
successive approximation images.  For image fusion, each 

multispectral band
M
kI , where k denotes the k-th multispectral 

band, is resampled to the same size of the panchromatic 

image
PI 0 . Then, 

PI 0  is decomposed until the resolution of 
P
jI  (in 

terms of spatial detail content, not pixel size) equals to the 

resolution  of 
M
kI .  Next,  summation  of  { jw }   is   calculated   as  
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Figure 3. Classification results of IKONOS multispectral image using ML, SAM, FLL, and 
ECHO with fisher linear likelihood algorithms  
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to detect the spatial detail difference between 

panchromatic and multispectral image. Finally, W is added to each 

original multispectral band 
M
kI  to construct k-th fused band. The 

number of decomposition level is determined with respect to the 
resolutions of the panchromatic and the multispectral images. For 
example, for ETM+ panchromatic and multispectral images case, 
one level wavelet decomposition to the panchromatic image is 
enough to make its resolution the same as the multispectral image 
since the resolution of the multispectral image is two times coarser 
than the panchromatic image.  
 
 
Post-classification comparison 
 
Once input images are pre-processed for change detection, next 
step is to decide on a change detection algorithm. In the literature, 
many change detection algorithms are available. Tardie and 
Congalton (2004) use multi-date visual composite, image 
differencing, and post-classification algorithms are used for change 
detection problems (Tardie and Congalton, 2004). Furthermore, 
cross-correlation analysis, multi-date principal components analysis 
and RGB-NDVI color composite change detection is added to these 
methods (Civco et al., 2002). Additionally, techniques such as 
spectral mixture analysis, the Li–Strahler canopy model, Chi-square 
transformation, fuzzy sets, artificial neural networks and integration 
of multi-source data that have been used for change detection 
applications. 

In this study, post-classification comparison method is adopted 
as standard change detection algorithm. In this technique, two 
images from different dates are separately classified. Then, 
classified images are compared pixel by pixel to create a new 
change image, which indicates the changes that took place as 
“from” and “to” information (Tardie and Congalton, 2004; Mas, 
1999). Since input images are classified separately, atmospheric 
effects, sensor and environmental differences between multi-
temporal images are minimized and a complete matrix of change 
information is obtained (Lu et al., 2004).  

Accurate classification  is   very  important   for   reliable   change  

detection results as the final accuracy depends on the quality of the 
classified image of each date (Lu et al., 2004). Therefore, choosing 
the best classification algorithm, depending on the nature of the 
data, is crucial. IKONOS image was taken in 2003 after a heavy 
rain in Black Sea Region; therefore, the surface of the Black Sea 
was rough because of waves resulting from windy weather. 
Degirmendere Creek that flows into the Black Sea was also 
carrying mud and sediments as a result of heavy rain and caused 
intensive color change in water especially at the river mouth and its 
vicinity. Accordingly, wave patterns and sediments at the river 
mouth could provoke misclassification of pixels as land in Black 
Sea, and misclassification affects the post classification comparison 
results negatively. Thus, input images are classified using 
Maximum Likelihood (ML), SAM (Spectral Angular Mapping), Fisher 
Linear Likelihood (FLL), and ECHO classifiers and best result is 
obtained from ECHO classifier. ECHO is a spatial-spectral classifier 
that incorporates not only spectral variations but spatial ones as 
well as into the decision-making process. It is a classifier that first 
segments the scene into spectrally homogenous objects. Then, it 
performs a sample classification algorithm based upon a maximum 
likelihood object classification scheme in which each object 
delineated would be classified based on the statistical properties of 
the pixels of the object (Landgrebe, 2003).  
 
 
RESULTS AND DISCUSSION 
 
Preliminary classifications were performed on the fused 
ETM+ and IKONOS multispectral images to carry out a 
post-classification analysis procedure. Classification of 
both images are performed using Maximum Likelihood 
(ML), SAM (Spectral Angular Mapping), Fisher Linear 
Likelihood (FLL), and ECHO with FLL classifiers. Results 
show that, ML, SAM, and FLL classifiers misclassify the 
wave patterns and sediments carried to the Black Sea 
through Degirmendere Creek, particularly in IKONOS 
image (Figure 3). The best classification result was 
obtained using ECHO classifier with fisher linear 
algorithm by  combining   the   spectral   information   with  
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Table 1. Training class performance (resubstitution method) for IKONOS image. 
 

Class  
name 

Reference 
accuracy 

(%) 

# of 
samples 

Number of samples in class 
Sea River Grass Road Shadow Trees Bld_ 

Type 1 
Bld_ 

Type 2 
Bld_ 

Type 3 
Bare 
Soil 

Sea 96.7 23319 22561 15 0 1 733 0 6 3 0 0 
River 100.0 2754 0 2754 0 0 0 0 0 0 0 0 
Grass 89.1 7309 0 0 6511 0 0 798 0 0 0 0 
Road 99.7 5825 0 3 0 5810 0 0 0 4 7 1 
Shadow 99.0 777 8 0 0 0 769 0 0 0 0 0 
Trees 87.1 3366 1 0 3 0 93 3269 0 0 0 0 
Bld _Type1 97.7 259 4 0 0 0 0 0 253 0 0 2 
Bld_Type2 96.4 111 0 0 0 4 0 0 0 107 0 0 
Bld_Type3 25.0 326 0 13 0 227 0 0 0 2 84 0 
Bare Soil 100.0 287 0 0 0 0 0 0 0 0 0 287 
 Total 44333 22574 2785 6514 6042 1595 4067 259 116 91 290 
 Reliability Accuracy (%) 99.9 98.9 100.0 96.2 48.2 80.4 97.7 92.2 92.3 99.0 

 

Overall Class Performance (42405 / 44333) = 95.7%. 
Kappa Statistic (X100) = 93.6%. Kappa Variance = 0.000002. 

 
 
 
Table 2. Training class performance (resubstitution method) for ETM+ image. 
 
Class name Reference 

accuracy 
(%) 

# of 
samples 

Number of samples in class 
Sea River Grass Trees Bld_ 

Type 1 
Road Shadow Bld_ 

Type 2 
Bld_ 

Type 3 
Sea 71.3 34738 247

56 
9982 0 0 0 0 0 0 0 

River 72.2 5834 139
6 

4211 0 7 0 117 103 0 0 

Grass 90.0 20862 0 0 18778 1901 0 126 8 0 49 
Trees 100.0 960 0 0 0 960 0 0 0 0 0 
Bld_Type1 88.1 2141 0 0 0 0 1886 171 0 0 84 
Road 80.8 8934 47 294 0 0 297 7219 944 35 98 
Shadow 74.5 635 74 88 0 0 0 0 473 0 0 
Bld_Type2 91.5 364 0 0 0 0 0 31 0 333 0 
Bld_Type3 97.9 96 0 0 0 0 0 2 0 0 94 
 Total 74564 262

73 
1457

5 
18778 2868 2183 7666 1528 368 325 

 Reliability 
Accuracy (%) 

94.
2 

28.9 100.0 33.5 86.4 94.2 31.0 90.5 28.9 

 

Overall Class Performance (58710 / 74564) = 78.7%. 
 Kappa Statistic (X100) = 71.1%. Kappa Variance = 0.000004. 
 
 
 
spatial information. The misclassified pixels on Black Sea 
are eliminated substantially with ECHO classifier.  

In IKONOS image, 10 classes (Sea, River, Grass, 
Road, Shadow, Trees, Building_Type1, Building_Type2, 
Building_Type3, and Bare Soil) were determined to 
classify the scene. Analogously, the same procedure is 
performed for the fused ETM+ image; however, 9 classes 
were selected by omitting the class Bare Soil since it was 
not possible to select this class on ETM+ image due to its 
relatively course resolution. Training class performances 

for both images are given in Table 1 and Table 2. Overall 
class performances for IKONOS and fused ETM+ images 
are 95.7 - 78.7% and Kappa statistics are 93.6 - 71.1%, 
respectively. These figures indicate that the classification 
accuracy of the fused ETM+ image is lower than the one 
obtained from the IKONOS image. Since the classes 
could be selected more precisely in IKONOS image, it 
has a better classification performance both visually and 
quantitatively. After classification, all classes are grouped 
as     three    final    classes   as   sea,    vegetation,    and  
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Figure 4. Preliminary classification results for ETM+ and IKONOS images. 

 
 
 

 
 
Figure 5. Change image showing the differences between 2000 and 2003.  

 
 
 
Land/Residential. Sea and River was grouped as Sea, 
Grass and Trees are grouped as Vegetation, and Land, 
Shadow, Building_Type1, Building_Type2, and Building_ 
Type3 were grouped as Land/Residential. Classification 
results are displayed in Figure 4. Then, both classified 
images   were  recoded  and  used  for  post-classification 

comparison procedure in ERDAS IMAGINE software. As 
the output, the change image and the confusion matrix 
which contains the “from” and “to” information were 
generated. The change image is illustrated in Figure 5, 
and the confusion matrix is given in Table 3.    

Table 3  displays    both    thematic    and    quantitative       
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Table 3. Confusion matrix. 
 

 ETM+ (2000) 
Sea (ha) Vegetation (ha) Land / Residential (ha) 

IKONOS (2003) 
Sea (ha) 517.89 1.24 12.90 
Vegetation (ha) 2.00 359.48 121.58 
Land / Residential (ha) 23.23 95.15 525.42 

 
 
 
information about changes. The colors used in Table 3 
are the the same as the ones used in Figure 5 to illustrate 
“from” and “to” information of different classes. If the 
pixels classified as Sea in fused ETM+ image did not 
change in IKONOS image, these pixels are displayed in 
blue in Figure 5 and the total area covered by these 
pixels are computed as 517.89 ha. Similarly, if the pixels 
classified as Land / Residential in the fused ETM+ image 
classified as Vegetation in IKONOS image, these pixels 
are displayed in light gray in Figure 5 and the total area 
covered by these pixels are calculated as 121.58 ha. 
Total area for each change is found by multiplying the 
number of changed pixels with 16 square meter (area of 
one pixel on both images), and then, converting to 
hectares. Hence, elaborating Table 3 reveals that an area 
of 23.23 ha turned into land from sea. This area is 
displayed in red in Figure 5 and showed with in ellipses. 
The red objects in Black Sea, which are showed in two 
circles, are ships approaching to the port. These ships 
were classified as land in IKONOS image and detected 
as change (from Sea to Land/Residential) after post 
classification comparison. When Figure 4 is visually 
inspected, it can be concluded that pattern in Vegetation 
and Land/Residential classes do not have a significant 
change between 2000 - 2003. However, Table 3 shows 
that there are considerable “from” and “to” changes 
between these classes. The reason of this change lies in 
the spatial resolution difference of both images. Even 
though spatial resolution of the original ETM+ was 
enhanced and made 15 m, still there is a large difference 
between 4 m resolution IKONOS image. The vegetation 
between buildings and on refuges and traffic islands are 
distinguishable from the other classes on IKONOS image 
and classified correctly. However, the same area on the 
fused ETM+ image could not classified correctly due to its 
low resolution. Therefore, an area of 121.58 ha is 
detected as change from Vegetation in the fused ETM+ 
to Land/Residential in IKONOS image. This result implies 
that the performance of the change detection process 
may be worse, if image fusion had not been applied to 
the original ETM+ image.  
 
 
Conclusion 
 
In this study, the change on costal zone of Trabzon is 
detected using two satellites images having different 
spatial resolutions. As  expected,  the  land  fill  on  costal 

zone due to new high way construction is detected 
successfully. It is seen from the visual inspection of 
individual classification results that the land-cover and 
land-use in Trabzon does not have a pattern of change. 
The changes in these classes detected in post-
classification results are mainly due to the relatively poor 
spatial resolution of the fused ETM+ image. Improving 
the spatial resolution of the ETM+ using à trous wavelet 
transform algorithm minimizes the impact of 
misclassification on final change image generated by 
post-classification comparison.  

Classifiers such as maximum likelihood and fisher 
linear likelihood misclassify wave patterns in IKONOS 
image as bare soil. This problem is misinterpreted by 
post-classification comparison and perceived as a 
change from sea to Land/Residential class. This problem 
is fixed using ECHO classifier, which combines the 
spectral information with spatial information. 
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