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This study analyzed a tandem queueing system with blocking and no waiting line. The arrival process is 

assumed to be Poisson with rate . There are two non-identical servers in the system. The service 

times are exponentially distributed with parameters
1  and 

2  at servers 1 and 2, respectively. Besides, 

the catastrophes occur in a Poisson manner with rate   in the system. When server 1 is busy or 

blocked, the customer who arrives in the system leaves the system without being served. Such 
customers are called “lost customers”. The probability of losing a customer was computed for the 
system. 
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INTRODUCTION 
 
The tandem queueing models with blocking used to 
model the systems encountered in fields such as 
manufacturing systems (Qiu and Zang, 2008; Seo and 
Lee, 2011), computer communications systems (Chu et 
al., 1981; Modiano et al., 1996), and wireless networks 
(Le et al., 2007; Niyato, 2010) have been examined and 
analyzed under the different assumptions suggested 
regarding arrival process, service process and service 
disciplines so far. The exact analytic solutions of such 
queueing models are only possible for the cases with a 
small number of servers (Gordon and Newell, 1967; 
Konheim and Reiser, 1976, 1978; Alpaslan, 1996; 
Grassmann and Drekic, 2000). Therefore, approximate 
solutions were obtained by using approximation methods 
for the systems of tandem queues with blocking in many 
studies in the literature (Boxma and Konheim, 1981; 
Foster and Perros, 1980; Altiok, 1982; Altiok and 
Stidham, 1982; Brandwajn and Jow, 1988; and Altiok, 
1989). 

Alpaslan (1996) dealt with the tandem queueing  model 

 
 
 
*Corresponding author. E-mail: okan.isguder@deu.edu.tr Tel: 
00902323018561. Fax: 00902324534265. 

with no waiting line and obtained the probability of lost 
customers in the system. Kumar et al. (2007) examined 
the M/M/2 queueing model with two parallel servers also 
considering the fact that catastrophes fitting the Poisson 
distribution with rate   might take place. As soon as a 

catastrophe occurs, both servers are inactivated 
momentarily and, immediately afterwards, the system 
returns to its initial state with probability 1. Although 
tandem queueing models have been examined under 
many service disciplines in the studies in the literature, 
the case of catastrophe has not been considered in any 
studies. In real systems, a catastrophe might result either 
from outside the system/facility or from another service 
station. Computer networks with a virus infection might 
be considered examples of tandem queueing models with 
catastrophes. Furthermore, the return of the system to 
the initial state either automatically or by the admin due to 
the busy condition of the Internet systems or any hitch 
might be considered examples of models with 
catastrophes. 

In this study, a system of tandem queue with 
heterogeneous servers subject to catastrophes is 
examined and the mean number of customers in the 
system and the probability of lost customers are 
computed.   It   is   proved   that   the   loss   probability  is 
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Figure 1. State transition-rate diagram. 

 
 
 
minimum when the customer having arrived in the system 
is first served at the fast server and then at the slow 
server, respectively. 

The results of this paper are organized as follows: the 
assumptions of the model are first described; followed by 
an analysis of the system with the Markov process and 
the steady-state probabilities of the system, the mean 
number of customers in the system and the loss 
probability are computed. Thereafter, the conditions 
under which the loss probability is optimum are 
determined. A numerical example of the model under 
consideration is subsequently provided, the obtained 
results are evaluated and the new studies likely to be 
made concerning the subject and recommendations are 
discussed. 
 
 
THE MODEL AND ITS ASSUMPTIONS 
 
“The tandem queueing system with blocking, 
heterogeneous servers and no waiting line subject to 
catastrophes” will be analyzed in this study. In this model, 

arrival times are Poisson distributed with parameter . 

There are two heterogeneous tandem servers in the 
system. Their mean service times are assumed to be 
different from each other. The service time of each 

customer at server k is random variable k  and has an 

exponential distribution with parameter )2,1( kk , that 

is, 0,1)( 


tetP
t

k
k . Apart from arrival and 

service processes, the catastrophes occur in a Poisson 
manner with rate  in the system. Let the instants of 

catastrophe times be ,,, 210  , where 

 100 
 
and 1 kkT   for 1k . Due to 

the relationship between Poisson distribution and 
exponential distribution, the time between two instants  of 
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catastrophe is exponentially distributed. That is, T  has 
an exponential distribution with parameter  , that is, 

0,1)(   tetTP t
. As soon as a catastrophe 

takes place in the system, all customers are immediately 
destroyed. Both servers are inactivated momentarily and 
when there is a new arrival, both servers get ready to 
serve. Briefly, when there is a catastrophe in the system, 
the system returns to its initial state with probability 1.  

Each customer arriving in the system is first served at 
server 1 and then at server 2, respectively. Waiting line is 
not allowed in front of the servers. If server 2 is busy 
when the service time has been completed at server 1, 
then server 1 is blocked until the service is completed at 
server 2. If server 1 is busy or blocked at the time of 
arrival of a customer in the system, that customer leaves 
the system without being served at all. Such customers 
are called “lost customers”. Thus, the main problem 
herein is to compute the probability of lost customers in 
the system and minimize this probability. Loss probability 
and the minimization of loss probability were examined 
by Nath and Enns (1981), Yao (1987), Isguder and 
Uzunoglu-Kocer (2010), Isguder et al. (2011) and Isguder 
and Celikoglu (2012) particularly for queueing models 
with no waiting line. 
 
 
ANALYZING THE MODEL USING MARKOV PROCESS 
 

Let }0,),()({  tvutX tt  be the number of customers 

in the system at time t, let tu  and tv  be the states of 

servers 1 and 2, respectively. Let )0)(()(00  tXPtP  

be the probability that the system is empty at time t. Let 

)1)(()(10  tXPtP  be the probability that there is one 

customer served by server 1 in the system at time t. Let 

)1)(()(01  tXPtP  be the probability that there is one 

customer served by server 2 in the system at time t. Let 

)2)(()(11  tXPtP be the probability that there are two 

customers in the system at time t, and that both servers 

are busy. In addition, let )1)(()(1  tXPtPb  be the 

probability that there is one customer who is served by 
server 2 in the system at time t and that server 1 is 

blocked. It is clear that 0,},{ tvu tt  is a continuous-

parameter Markov process with state spaces 

)}1,(),1,1(),1,0(),0,1(),0,0{( bS   and 

SjijviuPtP ttij  ),(,},{)(  (Figure 1). 

Under the model assumptions, state probabilities )(tPij  

satisfy the following system of differential equations: 
 

)](1[)()(
)(

0001200
00 tPtPtP
dt

tdP
  ,              (1) 
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)()()()(
)(

11200101
10 tPtPtP
dt

tdP
  ,    (2)

  

)()()()(
)(

12101012
01 tPtPtP
dt

tdP
b  ,

  

 (3)

  

 

)()()(
)(

011121
11 tPtP
dt

tdP
  ,           (4)

  

 

)()()(
)(

11112
1 tPtP

dt

tdP
b

b   .

                

(5)
 

 

The limits SjijviuPP tt
t

ij 


),(,},{lim  exist and 

satisfy the system of linear equations. These equations 
are obtained from (1) to (5) on replacing the derivatives 
on the left by zero as follows: 
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Steady-state probabilities 
ijP  are expressed in terms of  

00P
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where 21   . Unknown probability 
00P   is 

determined using the condition
 

1111011000  bPPPPP  as follows: 
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where 
21   . By using Equations (7), (8), (9), (10) 

and (11), the expected number of customers in the 

system, 
sL  , and the probability of lost customers in the 

system, 
LP  , are obtained as follows: 
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OPTIMIZATION OF LOSS PROBABILITY 
 
As no waiting line is available in the system, some of the 
customers arriving in the system have to leave the 
system without being served. Such customers are called 
“lost customers”. The probability of lost customers is 
easily obtained from formula (13). In such systems, the 
minimization of loss probability is a serious problem. In 
the model considered in this study, the customer arriving 
in the system first enters the first server and then the 
second server, respectively. How should these servers 
be put in order in terms of the minimization of loss 
probability? The answer to this question is revealed with 
a theorem. 
 
 
Theorem 1 
 

Loss probability LP  takes the minimum value when 

servers are ordered according to the values of 1  and 

2 , satisfying inequality 21   , under the condition 

  21 . 

 
 
Proof 
 

Let 
LP

~
 be the probability of lost customers in  the  system  



 
 
 
 

Table 1. Calculations of the performance measures using the given 
values of parameters. 
 

Parameter Value Parameter Value 

λ 1.5600 λ 1.5600 

µ1 2.1300 µ1 5.9200 

µ2 5.9200 µ2 2.1300 

γ 0.1000 γ 0.1000 
    

Performance 

measure 
Calculation 

Performance 

measure 
Calculation 

P00 0.4108 P00 0.4692 

Ls 0.5621 Ls 0.7921 

PL 0.4162 PL 0.3161 
 
 
 

for 
21    under the condition

 
and   21

. 

For easiness, let us reorganize the loss probability 

provided with formula (13) for 0  in the following way: 
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If we multiply both the numerator and denominator of 

formula (14) by 
1  , formula (15) is obtained as follows: 
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For easiness, let   symbolize term 

)( 21

2

21

2    in formula (15). In other words, 

considering that 21    , the formula of loss 

probability is obtained as follows: 
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Term   is present both in the numerator and 

denominator of formula (16) and it takes the same value 

for 21    and 21    , respectively. Terms 
2

2

2

1   

and 
2

2

2

1   are present in the numerator and 

denominator of Equation (16), respectively. Both terms 

take the same value for 21    and 21    , 

respectively. The value that term 
3

1

2  in the 

denominator of Equation (16) takes for 21  
 
is either 

equal to or greater than the value it takes for 21   . 

Hence, the value the denominator of Equation (16) 

takes for 21    is either equal to or greater than the 

value   it   takes   for    21       under    the    condition 

Isguder and Kaya         4079 
 
 
 

  21
. 

Let the numerator of Equation (16) be examined. It will 

be 0)( 2   , 0)( 2    and 0)( 2  
 
for 

2  , 
2   and 

2  , respectively. For 

0)( 2    and 0)( 2    , the denominator of 

Equation (16) always decreases under the condition 

  21
 while 

1  is increasing and 
2  is 

decreasing. Depending on the above-mentioned remarks, 
the value that the numerator of Equation (16), 

2

2

2

12

3

1 )(  
 
, takes for 

21    is either 

equal to or smaller than the value it takes for 
21    

under the conditions 0)( 2   , 0)( 2  
 
and 

  21
. On the other hand, the numerator and the 

denominator of Equation (16) should be considered 

together for 0)( 2   . In this case, the increase in 

the denominator of Equation (16) is either equal to or 

greater than the increase in its numerator while 
1  is 

increasing and 
2  is decreasing. 

2

2

2

12

3

1

2

2

2

1

3

1

2 )(    under the 

condition   21
. 

In conclusion, loss probability 
LP  obtained for 

21    

is either equal to or smaller than the loss probability 

obtained for 
21    under the condition   21

. 

That is,  
LL PP

~
 . The proof has been completed. 

When the customers are first served at the fast server 
and then at the slow server, the system becomes optimal 
in terms of the probability of customers leaving without 
being served. 
 
 

NUMERICAL EXAMPLE 
 
In this part of the work, the probability of lost customers in 
the system and the mean number of customers in the 
system are explained with a numerical example. It is 
numerically shown that the loss probability is minimum 
when the customers who have arrived in the system are 
first served at the fast server and then at the slow server. 
The assumptions of the system are as explained in the 
second section. The parameters of the system, the mean 
number of customers computed by the help of these 
parameters and the loss probability are as in Table 1. 

The P00, Ls and PL values obtained in Table 1 were 
computed by the help of formulae (11), (12) and (13), 
respectively. As clearly seen from this table, the loss 
probability (PL) takes its minimum value if the customer 
who has arrived in the system is first served at the fast 
server and then at the slow server. On the other hand, 
the mean number of customers in the system (Ls) 
increases as the loss probability in the system decreases. 
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DISCUSSION 
 

In this study, “the tandem queueing system with blocking 
and two heterogeneous servers” was analyzed using the 
Markov process. The mean number of customers in the 
system and the probability of lost customers were 
obtained. Unlike the studies in the literature, some 
modeling that is more approximate to real systems was 
made by considering the reality that catastrophes might 
occur. Furthermore, considering that the customer having 
arrived in the system was first served at the fast server 
and then at the slow server, it was proved that the 
probability of lost customers in the system was minimum. 
The obtained results were supported with a numerical 
example. 

On the other hand, the absence of waiting lines in the 
system is the weakness of the model. The addition of a 
limited or unlimited number of waiting lines to the system 
by further generalizing this model will enable the model to 
be more realistic. The computation of the probability of 
lost customers in the system especially by adding a 
limited number of waiting lines to the model will enable 
the model to be implemented in more fields in real life.   

Moreover, the mathematical model established in this 
study and the obtained results will facilitate the modeling 
of more complicated systems with simulation and the 
computation of performance measures such as the mean 
number of customers in the system and the loss 
probability with the simulation approach and they can be 
used to test the accuracy of the results obtained with the 
simulation approach. 
 
 
RECOMMENDATIONS FOR FUTURE RESEARCH 
 
The results obtained for the tandem queueing model 
considered in this paper will guide the analysis of 
complex models which are more approximate to real 
systems. Analysis of the model to be obtained by adding 
a limited or unlimited number of waiting lines to this 
model under consideration can be thought as future 
research. On the other hand, mathematical modeling of 
the system will become more difficult when the number of 
servers is more than two and it will be impossible to 
obtain the exact solutions of the performance measures 
of the system. In such cases, approximate solutions 
might be obtained by developing simulation techniques or 
approximate methods. In terms of the minimization of lost 
customers, whether the optimization performed 
considering the entries first into the fast server and then 
into the slow server is preserved when the number of 
servers is three or more can be proved by a simulation 
optimization. 
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