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Review of literature related to the impact of climate change on maize (Zea mays L.) yield using Global 
Climate Models (GCMs), statistical downscaling, and crop simulation (APSIM-maize-and-CERES-maize 
models) models are discussed. GCMs can simulate the current and future climatic scenarios. Crop yield 
projections using crop models require climate inputs at higher spatial resolution than that provided by 
GCMs. The computationally inexpensive statistical downscaling technique is widely used for this 
translation. Studies on regional climate modeling have mostly focused on Southern Africa and West 
Africa, with very few studies in Zambia. Additionally, the integrated use of climate and crop models 
have received relatively less attention in Africa compared to other parts of the world. Conversely, the 
AgMIP protocols have been implemented in Sub-Saharan Africa (SSA) (Ethiopia, Kenya, Tanzania, 
Uganda and South Africa) and South Asia (SA) (Sri Lanka). In Zambia, however, the protocols have not 
been applied at either regional or local scale. Applying crop and statistical downscaling models 
requires calibration and validation, and these are crucial for correct climate and crop simulation. The 
review shows that although uncertainties exist in the design of models, and parameters, soil, climate 
and management options, the climate would adversely affect maize yield production in SSA. The 
potential effect of climate change on maize production can be studied using crop models such as 
agricultural production simulator (APSIM) and decision support system for agrotechnology (DSSAT) 
models. There is need to use integrated assessment modeling to study future climate impact on maize 
yield. The assessment is essential for long-term planning in food security and in developing adaptation 
and mitigation strategies in the face of climate variability and change. 
 
Key words: Review, AgMIP, climate scenario, climate change, variability, crop simulation model, bias 
correction, dynamical downscaling, Global Climate Model (GCM), statistical downscaling. 

 

 
INTRODUCTION 
 
Energy, water, transportation, wildlife, health, and 
agriculture sectors are being affected by climate change. 
Climate change poses challenges for sustainable 
development of the human society, and agriculture is the 
most sensitive sector facing climate change and 
variability (IPCC, 2007a; Ahmed et al., 2013;  Wenjiao  et 

al., 2013). Global climate models (GCMs) with very 
coarse spatial resolutions (50 to 400 km) are tools used 
for simulating the current and future climate change 
under increasing greenhouse gas (GHG [carbon dioxide 
(CO2), methane (CH4) and nitrous oxide (N2O)]) 
concentrations.  Dynamical  and   statistical   downscaling  
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techniques are used to bridge the gap between the 
predictors (large-scale GCM output) and predictands 
(local-scale variables). 

According to Intergovernmental Panel on Climate 
Change (IPCC) 5th Assessment Report (AR5), global 
(land and ocean) average temperature has shown a 
0.85°C (0.65 to 1.06°C) increase over the period of 1800 
to 2012 (IPCC, 2013a), and a 0.74 ± 0.18°C increase 
during the last hundred years (1906 to 2005) (IPCC, 
2007b). Prediction of temperature from GCMs in 
Southern Africa suggests an increase of 0.6 to 1.4°C by 
2030 while the mean annual temperature increase in 
Zambia had been 1.3°C since 1960. Conversely, annual 
rainfall has declined across the country by 2.3% per 
decade from 1960 to 1990. Before the century ends, 
there would be a warming between 2.4 and 4.3°C relative 
to 1961 to 1990, and this is likely in Zambia. Crop growth 
and yield are influenced by climate change and variability 
in the world. Frequent precipitation variability and 
droughts have reduced maize yields in Zambia. 

Assessing climate change impact on agricultural 
production are mostly undertaken at large spatial scales, 
missing out on local scale impacts and adaptation 
potential under which farmers operate (Zinyengere et al., 
2014). Existing studies on regional climate modeling have 
mostly focused on southern Africa and West Africa 
(Hewitson and Crane, 2006; Stockdale et al., 2010; Paeth 
et al., 2011) with very few studies in Zambia. The 
literature review indicated insufficient research on 
modeling local-scale climate change and variability 
impacts using crop and statistical downscaling models. A 
holistic use of GCMs, statistical downscaling, and crop 
simulation models are vital in assessing the site-specific 
climate change impact on crop growth and yield. In 
Zambia, maize production is dependent on climatic 
conditions and any changes in the climate can affect its 
output negatively or positively. However, documents 
reviewed indicated that insufficient studies had been 
undertaken at local-scale that combined the use of 
statistical downscaling techniques and crop simulation 
models. Very little has been documented as to the extent 
maize yield would change under future climate during 
2010 to 2039 (the 2020s) and 2040 to 2069 (2055s). 
Statistical downscaling techniques such as Long Ashton 
Research Station Weather Generator (LARS-WG), delta-
based approaches using Agricultural Model 
Intercomparison and Improvement Project (AgMIP) 
protocols and Statistical DownScaling Model (SDSM) 
have not been parameterized and tested locally in 
generating current and future climate scenarios from 
GCMs to drive crop simulation models like agricultural 
production   simulator   (APSIM)   and   decision   support  

 
 
 
 
system for agrotechnology (DSSAT). A climate scenario 
is a description of the possible future climate based on 
radiative force and can be visualized using GCMs and 
regional climate models (Kang et al., 2009). 

The combined use of GCMs, crop simulation models 
and statistical downscaling techniques are the primary 
tools available to assess climate change impact on maize 
growth and yield. Statistical downscaling techniques are 
computationally inexpensive tools used to generate site-
specific daily climate scenarios of meteorological 
parameters for impact assessment of climate change 
under different emissions scenarios and GCM pairings. 
Reliable prediction of climate change scenarios and their 
effect on crop yield are important for identifying 
appropriate mitigation and adaptation strategies (Jones et 
al., 2014). The traditional agronomic experimentation is 
time-consuming, costly and labor-intensive. Crop 
simulation modeling offers an opportunity for exploring 
cultivar potential for new areas before establishing 
expensive and time-consuming field experiments 
(Bationo et al., 2012a). Therefore, system analysis and 
simulations provide critical roles in developing this 
understanding of options. A proper understanding of 
climate change and its impact on crop yield would assist 
scientists, planners and policy makers to sensitize and 
guide farmers to make informed discussions as it relates 
to aspects of  proper select of crops, and cultivar, dates 
of planting, application of irrigation water and  scheduling 
to reduce the risks (Rauff and Bello, 2015).  

The application of GCMs, crop simulation-and-
statistical downscaling models to understand climate 
change impact on crop growth and yield offers a direct 
link between climate models, crop models, economic 
models, agrometeorology and concerns of society (Rauff 
and Bello, 2015). Additionally, integrated use of GCMs, 
statistical downscaling techniques, and crop simulation 
models provide an approach that applied scientific vigor 
in assessing the impact of climate change on agricultural 
production and world food security compared to other 
surveys. APSIM-maize-and-CERES-maize models are 
employed to evaluate the effects of climate change on 
maize growth and yield. Reliable projections of 
meteorological parameters such as precipitation, the 
wind, solar radiation and temperature from GCMs are 
required for evaluating the future impact of climate 
change on the main sectors. 
This paper reviews the use of GCMs, statistical 
downscaling techniques, and crop simulation models and 
provides a basic framework for generating information to 
farmers, policy makers and planners on the anticipated 
climate change impact on maize yield using an integrated 
approach. 
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GLOBAL CLIMATE MODELS 
 

The tools currently available to simulate the global 
climate system due to greenhouse gases (GHGs) are the 
GCMs (IPCC-TGCIA, 2007). The IPCC defines a GCM 
as a quantitative illustration of the climate system 
(atmosphere, ocean, land and sea ice) based on the 
chemical, biological and physical properties, their 
interactions and feedback processes (Flato et al., 2013; 
Charron, 2014). GCMs depict the climate using a three-
dimensional grid over the globe, and these typically have 
10 to 20 vertical layers in the atmosphere, a horizontal 
resolution of 250 and 600 km and close to 30 layers in 
the oceans (IPCC-TGCIA, 2007) as presented in Figure 
3. 

 The baseline climatological data can be obtained from 
four sources namely: National Meteorological Agencies, 
GCMs and Regional Climate Models (RCMs), weather 
generators, global climate center, and archives and 
National Centres for Environmental Prediction (NCEP), 
and these datasets can be applied in impact 
assessments (IPCC-TGCIA, 2007). The GCMs focus 
mostly on changes in temperature and precipitation (Yin 
et al., 2013) and are divided into three categories, 
namely: (i) Atmospheric Global Circulation Models 
(AGCMs); (ii) Oceanic Global Circulation Models 
(OGCMs); and (iii) Atmospheric Oceanic Global 
Circulation Models (AOGCMs). 
i) Atmospheric Global Circulation Models (AGCMs) 
represent only the atmosphere, and in these models, sea 
surface temperatures are imposed. The AGCM 
dynamically simulates the atmospheric circulation 
processes that regulate energy transfer and exchange in 
the atmospheric flow. Fundamental equations are used to 
represent the atmospheric flows that link the mass 
distribution and the wind field. Practically, AGCMs are 
used for meteorological forecasts and includes United 
Kingdom Meteorological Office (UKMO), UK High 
Resolution (UKHI), Canadian Centre for Climate 
(Modelling and Analysis) (Canada) (CCC), Geophysical 
Fluid Dynamics Laboratory (GFDL), and Goddard 
Institute for Space Studies (GISS) (Santoso et al., 2008). 
AGCMs tend to simulate the intensity of extreme 
precipitation analogous to observed estimates (Flato et 
al., 2013). Furthermore, the stand-alone AGCMs run at 
higher resolution compared to AOGCMs, and they 
provide complimentary regional-scale climate data; 
ii) Oceanic Global Circulation Models (OGCMs) describe 
physical and thermodynamical processes in oceans, and 
they include all the main influences on the general 
oceanic circulation. Santoso et al. (2008) noted that some 
AOGCMs (HadCM3, ECHAM4, and CSIRO-Mk2) could 
simulate important aspects of El Niño-Southern 
Oscillation (ENSO). Aerosols included in AOGCMs may 
affect climate directly by scattering and absorbing solar 
radiation and this, in turn, cools the surface temperature 
and indirectly alters the properties and lifetime of the 
clouds (Santoso et al., 2008); and 
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iii) Atmospheric Oceanic Global Circulation Models 
(AOGCMs) are used in modelling atmospheric and 
oceanic processes and their interactions. These models 
are composed of seven basic mathematical equations 
with seven basic variables that describe the 
instantaneous state of the atmosphere over time. 
Additionally, it includes a three-dimensional 
representation of the ocean and atmosphere making it 
possible to determine temperatures, humidity, salinity, 
and the wind and ocean currents.

1
 In Atmospheric 

Oceanic Global Circulation Models (AOGCM) such as 
United Kingdom Transient climate experiment (UKTR), 
European Centre-Hamburg model version 1 (ECHAM1), 
and Global Sea Ice and Sea Surface Temperature 
(GISSTR), ocean currents and heat transport are 
represented with simple land-surface parameterization 
schemes, and these are the models used by 
climatologists (Santoso et al., 2008). The quantitative 
estimates of future climate change using AOGCMs have 
gained confidence, and the ability to simulate extreme 
events such as El Niño-Southern Oscillation (ENSO) has 
improved (Santoso et al., 2008). The AOGCMs were 
assessed in the AR4, and they are used to understand 
the dynamics of the physical components of the climate 
system and in projecting future GHG and aerosol forcing 
(Flato et al., 2013). 

 
 
Bias correction 

 
Global Climate Models (GCMs) have biases in their 
outputs although they are used in projecting future 
climate. This means GCMs cannot be used directly at 
local-or-regional-scale for impact studies, especially in 
the tropics where there is spatial and temporal variation 
in the orographic and climatic conditions (Navarro-
Racines and Tarapues-Montenegro, 2015). These biases 
are the deviation of GCM output from the observed time 
series data (Wang, 2015). It has been reported by 
researchers such as Ramirez-Villegas et al. (2013), that 
biases in GCM simulations outputs relative to observed 
baseline time series data are huge. Bias correction is the 
changing of simulated values to reflect the baseline time 
series distribution and statistics (Trzaska and Schnarr, 
2014). It is performed in two ways; by correcting the bias 
in GCM outputs and bias in the predictands such as 
precipitation and temperature downscaled from the GCM 
output (Wang, 2015). Typically, regional biases of 
seasonal surface temperature and precipitation are 
usually within the range of 2°C and 50 to 60% of 
observed time series data, respectively (Mearns et al., 
2003). Hempel et al. (2013) noted that statistical bias 
correction is applied to the simulated climate to correct  

                                                 
1
 Source: IPCC 2007 WG1, ESCRIME 



170          Sci. Res. Essays 
 
 
 

 
 
Figure 1. Atmospheric concentration of GHGs.  
Source: IPCC (2007e). 

 
 
 
for the systematic deviations from observed time series 
data. Many statistical bias correction approaches have 
been developed and are being utilized to remove 
systematic model errors. (Switanek et al., 2016). 

In correcting for biases statistically, the probability 
density function (PDF) of the modelled data is mapped 
onto the observed time series (Haerter et al., 2011). 
These statistical bias correction techniques are used to 
link the data provided by the climate modeling community 
and the climate data necessary for quantitative climate 
data generation (Hempel et al., 2013). Moreover, 

Navarro-Racines and Tarapues-Montenegro (2015) 
showed that there is a need to correct for biases in raw 
climate model outputs at the downscaling stage to 
generate climate projections that can be used in impact 
studies such as agricultural and hydrological modeling. 
The error correction techniques are based on statistical 
methods such as transfer functions which can map the 
distribution of the simulated baseline data to the 
observed time series. 

Statistical bias correction (BC) is performed to better 
match the GCM outputs to the observed daily time  series  



 
 
 
 
data (Trzaska and Schnarr, 2014). In BC approach, the 
projected raw daily GCM output is corrected using the 
differences in the means and variances between GCM 
outputs and observed data in a baseline period (Navarro-
Racines and Tarapues-Montenegro, 2015). Correcting 
and accounting for biases in climate model output is vital 
in producing reliable climate model simulations. Any 
method for correcting biases in the GCM outputs requires 
a baseline or reference data sets, and the bias 
adjustment quality is thus restricted by the quality and 
availability of the observed time series or reanalysis data. 
Three calibration methods are used to produce consistent 
time series data for future periods under the CGIAR 
Research Programme on Climate Change, Agriculture 
and Food Security (CCAFS) - Climate portal interface 
(www.ccafs-climate.org/data_bias_corrected/) and these 
are: (a) 'nudging' (bias correction) [Equation 1] (Hawkins 
et al., 2013c), (b) change factor (CF) [Equation 2] 
(Ramirez-Villegas and Jarvis, 2010; Hawkins et al., 
2013c; Navarro-Racines and Tarapues-Montenegro, 
2015); and (c) Quantile Mapping (QM) [Equation 3] 
(Gudmundsson et al., 2012; Gudmundsson, 2016). 

The BC technique can be applied to correct both the 
historical and future time periods using the GCM output 
(Ho et al., 2012; Hawkins et al., 2013b; Chisanga et al., 
2017) as presented in Equation 1. 
 

         (1) 

 

Where  and  is the standard deviation 

( ) during the baseline of the daily GCM output and 

observed time series, respectively. 
The CF assumes the daily variance correction is to the 

same degree during the future and baseline and the 
corrected daily time series data is computed by the 
equation below which considers changes in variance as 
reported by Ho et al. (2012) and Chisanga et al. (2017). 
 

         (2) 

 

Where  and  denote the standard 

deviation ( ) in the future time segment of the GCM 

output and observed time series, respectively. 
Observations with much higher resolution, QM attempts 

to bridge this scale mismatch (Chisanga et al., 2017). QM 
method minimizes the differences between the 
observed/predicted data based on empirical probability 
distributions (Kum et al., 2014) as presented in the 
following equation. 
 

 

          (3) 

 

Where  is the cumulative distribution function (CDF) of 

the  daily  observation  for  day  i,    is  the  CDF  of  the  
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simulated data from historical simulations, and  and  

are the simulated and transformed (bias-corrected) data, 
respectively, for day i. Kum et al. (2014) described that 
the transformed predictions have the same probability 
distribution with the observations, but QM has a limitation 
in generating distributions on a monthly basis due to 
insufficient data points. Other bias correction methods 
are: cumulative distribution function transform (CDF-t) 
and equidistant quantile matching (EDCDFm) (Pierce et 
al., 2015), gamma-gamma transformation (Sharma et al., 
2007; Hawkins et al., 2013a), the non-informative 
Bayesian (NIB) method and the informative Bayesian (IB) 
method (Kim et al., 2015a), combined CF + QM method 
(Kum et al., 2014). These have been used to correct for 
errors in daily precipitation and temperature for use as 
inputs to impact models. Three types of information can 
be obtained from GCMs that describe the baseline 
climatology: (1) reanalysis data; (ii) outputs from 
GCM/RCM simulations; and (iii) stochastic weather 
generators (IPCC-TGCIA, 2007). The World 
Meteorological Organization (WMO) defined a 
climatological reference as a 30-year period from 1961 to 
1990 (IPCC-TGCIA, 2007) and currently, 1981 to 2010. 
The 30-year period is used as a reference, as it has 
sufficient data to define a reliable climatology and 
corresponds to the actual highest quality of records in 
recent years (Wilby et al., 2004). Baseline climatological 
data can be obtained from four sources as earlier 
explained (IPCC-TGCIA, 2007). Due to potential bias 
within GCM models, it is recommended that impacts 
researchers examine downscaled results from two or 
more models (IPCC, 2001). The multi-model ensemble 
mean could be used for analyzing GCM output data as it 
reduces errors and reproduces a more realistic future 
climate situation compared with a single model (Hao et 
al., 2013). 
 
 
Climate scenarios 
 
Climate scenarios are defined as probable and simplified 
representations of future climate conditions for 
precipitation, temperature, the wind and other 
meteorological parameters constructed from climate 
simulations that are consistent with suppositions about 
future emissions of aerosols and GHGs (IPCC-TGCIA, 
2007; Dos-Santos, 2011; Charron, 2014). Climate 
scenarios are often used as inputs into crop models to 
predict climate change impact as presented in Figure 4. 
Three methods are used to generate climate scenarios, 
and these are synthetic, analogue and outputs from 
GCMs and RCMs. Synthetic scenarios are developed by 
adjusting a baseline parameter by a fixed percentage 
such as 10% increase in current precipitation or by a 
fixed amount like a 2°C increase in temperature (IPCC-
TGCIA, 2007). The baseline temperature may be 
adjusted either  by  +4,  +3,  +2  and  +1°C a nd  baseline  

http://www.ccafs-climate.org/data_bias_corrected/
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precipitation by ±20, ±15, ±10 and ±5% which may 
characterize different extents of future change. Analogue 
climate scenarios are constructed by identifying recorded 
climate systems which may resemble the future climate 
scenarios in a particular area, and these records may be 
obtained as historical records or spatial analogues 
(IPCC-TGCIA, 2007). Climate scenarios may also be 
constructed from GCM outputs by adjusting a baseline 
climate by the absolute or relative change between the 
current and future simulated climates (IPCC-TGCIA, 
2007). Current and future climate scenarios have been 
constructed based on transient GCM spatial and 
temporal resolution outputs downscaled to the required 
scale (Santoso et al., 2008). 
 
 
DOWNSCALING TECHNIQUES 
 

Two downscaling techniques are used in generating 
climate scenarios: dynamical (10 to 50 km) and statistical 
techniques. Dynamical downscaling techniques uses 
numerical equations governing the atmosphere on a finer 
grid while statistical downscaling techniques try to 
establish empirical relationships between the predictor 
(large-scale climatic variables) and predictand (local 
scale variable) (Chen et al., 2012; Devak and Dhanya, 
2014). Based on statistical relationships developed 
between the GCMs and observed time series data, 
statistical downscaling is a straightforward means of 
generating high-resolution local scale climate information 
(Bhuvandas et al., 2014). Statistical downscaling models 
are developed in two stages with the first, focusing on 
daily precipitation modelling and the second parameters 
such as temperature, humidity, solar radiation and wind 
speed conditioned based on precipitation occurrence. 
Statistical downscaling can be used to generate small-
scale data required by impact models provided quality 
station data is available. Dynamical downscaling is based 
on the use of RCMs which are nested within the GCM 
and generate finer spatial resolution output. Dynamical 
downscaling techniques are divided into three types 
namely: limited-area models (LAMs), stretched-grid 
models, and uniformly high-resolution atmospheric 
AGCMs nested within a coarse resolution AOGCMs to 
simulate climate data that is more reliable than direct 
AOGCM output (Wilby et al., 2002; Irwin et al., 2012). 
Three statistical downscaling techniques are used: (i) 
synoptic weather typing; (ii) weather generation (LARS-
WG); and (iii) regression methods or transfer-functions 
(SDSM) (Semenov and Barrow, 2002; Wilby and 
Dawson, 2007; CSIRO and BOM, 2015). Weather 
generators are computer models used to produce 
artificial time series of daily weather data at a single site 
based on the statistics of the baseline climate (IPCC-
TGCIA, 2007). 

Research institutions with appropriate computational 
capacity and technical expertise generate RCMs outputs 
(Trzaska   and   Schnarr,    2014).    However,    statistical  

 
 
 
 
downscaling methods are easy and cheaper to use in 
generating future climate scenarios compared to 
dynamical techniques (Lapp et al., 2008). They are used 
to downscale monthly to seasonal climate forecasts, from 
numerical climate models to time series datasets for use 
as inputs into crop simulation and hydrological models for 
impact studies. 
 
 
IPCC SPECIAL REPORT ON EMISSION SCENARIOS 
AND REPRESENTATIVE CONCENTRATION 
PATHWAYS (RCPs) 
 
In 1988, the United Nations Environment Programme 
(UNEP) and World Meteorological Organization (WMO) 
established the Intergovernmental Panel on Climate 
Change (IPCC). The establishment of IPCC was 
motivated by the fact that anthropogenic GHG emissions 
have altered the climate system. The role of the IPCC is 
to evaluate climate information and provide an 
assessment of the understanding of climate change 
characteristics (IPCC, 2007c). A hierarchy of GCMs is 
used to predict variations in the world climate systems 
based on human activities (IPCC, 2013b). Five 
assessments were undertaken by the IPCC where 
Special Report on Emissions Scenarios (SRES) reports 
have been used in negotiations under the United Nations 
Framework Convention on Climate Change (UNFCCC)

2
. 

The SRES have been utilized as inputs into the climate 
models for the published IPCC Third (2001), and Fourth 
Assessment Reports published (2007) (Nakicenovic et 
al., 2000; Charron, 2014). Emission scenarios are 
constructed based on a set of assumptions such as 
technological change, demographic and socio-economic 
development and their fundamental associations (IPCC, 
2007d; Trzaska and Schnarr, 2014). 

The Coupled Model Inter-comparison Project phase 3 
(CMIP3) multi-model dataset consists of 112 model runs 
from 16 GCMs using various emissions scenarios 
(Trzaska and Schnarr, 2014). The A1, A2, B1, and B2 are 
four SRES scenario families that explore different 
development pathways. The SRES is useful in future 
climate change assessments (IPCC, 2007b). More details 
on the storylines are provided by Nakicenovic et al. 
(2000), IPCC (2007b) and IPCC-TGCIA (2007).  

Climate models have improved since the AR4 (IPCC, 
2013a). The Representative Concentration Pathways 
(RCPs) under the Coupled Model Inter-comparison 
Project Phase 5 (CMIP5) of the World Climate Research 
Programme (IPCC, 2013a) were developed based on the 
Integrated Assessment Models (IAMs) that incorporate 
climate modelling, demographic, economic and energy 
(Khadka and Pathak, 2016). There are four categories of 
RCPs    (RCP2.6,    RCP4.5,    RCP6.0,    and    RCP8.5)  

                                                 
2
http://worldbank.mrooms.net/file.php/703/html/ppt/M01/index.html, 

Accessed: 10th April 2015 

http://worldbank.mrooms.net/file.php/703/html/ppt/M01/index.html


 
 
 
 
developed for the Fifth Assessment Report (AR5) and 
these correspond to four different levels of radiative 
forcing of the atmosphere by 2100 relative to preindustrial 
levels with 48 CMIP5 experiments (IPCC, 2014a). 
RCP2.6 represents radiative forcing levels of stringent 
mitigation scenarios (450 ppm CO2eq), RCP4.5 and 6.0 
represents intermediate scenarios 650 and 850 ppm 
CO2eq, respectively. RCP8.5 is the scenario with very 
high GHG emissions 1370 ppm CO2eq (IPCC, 2014a,b). 
The projected values of increase under RCP2.6, RCP4.5, 
RCP6.0 and RCP8.5 are 0.3 to 1.7°C, 1.1 to 2.6°C, 1.4 to 
3.1°C and 2.6 to 4.8°C for 2081 to 2100, relative to 1986 
to 2005, respectively (IPCC, 2013b, 2014a). Even with a 
shift to using the CMIP5, the CMIP3 models can still be 
used in climate studies. 
 
 
AGRICULTURAL MODEL INTERCOMPARISON AND 
IMPROVEMENT PROJECT (AgMIP) 
 
There is need to quantify the impacts of climate change 
and variability in sub-Saharan Africa (Kassie et al., 2014). 
This has been explored under the Agricultural Model 
Intercomparison and Improvement Project (AgMIP) 
(www.agmip.org) which aims to improve the description 
of climate-crop-and-economic interactions in models and 
to foster the application of multiple crop simulation 
models in climate impact assessments (Asseng et al., 
2013; Kassie et al., 2014). The AgMIP launched in 
October, 2010 is an international research programme 
which focuses on climate modelling, crop modelling and 
economic modelling in coordinated global and regional 
assessments of the future impact of climate change on 
world food security. AgMIP (Rosenzweig et al., 2013b) 
goals are to advance the characterization of world food 
security substantially under climate change and to 
improve adaptive capacity in developing and developed 
nations. Analysing impacts of climate change and 
variability in the agricultural sector requires trans-
disciplinary efforts to link current and future climate 
scenarios to crop simulation and economic models 
(Rosenzweig et al., 2015). Crop simulation model outputs 
are used as inputs into the global and regional economic 
models to evaluate global and regional vulnerabilities, 
price effects, changes in comparative advantage and 
potential mitigation, and adaptation strategies.  

The AgMIP uses 1980 to 2010 as the baseline and 
three future time periods (2010 to 2039, 2040 to 2069 
and 2070 to 2099). The 2010 to 2039 period is used to 
understand climate variability to develop effective 
adaptation strategies. The 2040 to 2069 and 2070 to 
2099 time slices are used to assess the impact of climate 
change and variability (Rosenzweig et al., 2015). The 
AgMIP protocols define the processes and tasks required 
to undertake inter-comparisons and multiple-model 
assessments proficiently and systematically (Rosenzweig 
et al., 2013a, 2015). The protocols are designed to  guide  
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climate modeling, crop simulation modeling, economic 
modeling, and Information Technology Communication 
(ITC) of its projects (Valdivia et al., 2015). The protocols 
have been implemented in South Asia (SA) (Sri Lanka) 
and Sub-Saharan Africa (SSA) (Rosenzweig et al., 
2013b). The AgMIP team in East Africa consists of 
Ethiopia, Kenya, Tanzania, Uganda and South Africa as it 
member states and runs projects under AgMIP umbrella 
in SSA. In Africa, the uses of AgMIP protocols in climate 
modeling have mostly been implemented in Eastern and 
South Africa. However, the protocols have not been 
applied in Zambia at either regional or local scale to 
evaluate impacts of climate change on agricultural 
productivity. This AgMIP methodology involves using of 
several climate scenarios, crop simulation and economic 
models to predict future crop growth and yield. 
Additionally, LARS-WG and SDSM have also not been 
used to produce current and future climate scenarios as 
inputs into crop simulation models to assess the future 
climate change impact on maize in Zambia. 

Under AgMIP methodologies, future scenarios have 
been produced using the change factor, and this allows 
comparison with many published studies. Stochastic 
weather generators and quantile-based distributional 
shifts are used to generate climate scenarios that change 
interannual and intraseasonal climate variability based on 
RCM and GCM projections (Rosenzweig et al., 2015). 
Rosenzweig et al. (2013a) stated that AgMIP also 
coordinates inter-comparison studies on global 
biophysical and economic modelling and this brings 
together key international modeling groups to test the 
observational and future impact of climate change under 
the Inter-Sectoral Impact Model Intercomparison Project 
(ISI-MIP). Agricultural assessment models operate at 
both global and regional scales and global level 
biophysical models can be simulated on a gridded basis 
or a point basis and then aggregate the data (Valdivia et 
al., 2015).  

For each site of interest, changes corresponding to 
monthly precipitation, maximum, and minimum 
temperature are calculated by comparing 30-year future 
climate periods. Under AgMIP, 20 CMIP5 GCMs for the 
best-calibrated site have been implemented. It has been 
reported by Rosenzweig et al. (2014) that climate 
scenarios should be generated based on 20 GCMs at the 
best-calibrated site at the region of interest. Moreover, 
farm survey sites can only use a subset of 5 GCMs 
(Community Climate System Model 4 [CCSM4 (E)], 
Geophysical Fluid Dynamics Laboratory-Earth System 
Model 2M [GFDL-ESM2M (I)], Hadley Centre Global 
Environmental Model 2 - Earth System [HadGEM2-ES 
(K)], Model for Interdisciplinary Research On Climate 
version 5 [MIROC5 (O)] and Max Planck Institute – Earth 
System Model - Medium Resolution [MPI-ESM-MR (R)]) 
to generate climate scenarios for crop simulation that 
focuses on the primary climate change impact questions. 
According to Ruiter (2012), the five GCMs are  accessible  

http://www.agmip.org/
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in the Cartesian latitude-longitude grid while the grid-size 
and reference system for each model is different. The 
CCSM4, GFDL-ESM2M and MIROC5 models have a 
365-day calendar without leap-days. The MPI-ESM-LR 
model uses a Gregorian based calendar which includes 
leap days. The HadGEM2-ES GCM, on the other hand, 
uses a 360-day calendar. The 5 GCMs are necessary for 
generating current and future climate scenarios. This 
GCM subset has been used in South-east Asia, Europe, 
and Africa due to their long history of development, 
assessment, higher spatial resolution, established 
performance and suitability (McSweeney et al., 2012; 
Msongaleli et al., 2015). The AgMERRA weather data 
have been used as alternatives in regions where quality 
observational time series data are unavailable (Zare et 
al., 2016). 
 
 
IMPACT OF CLIMATE CHANGE ON AGRICULTURE 
 
Agricultural production is dependent on weather and as a 
result is affected by climate variability and change 
(Nelson et al., 2014). Agriculture contributes to climate 
change through anthropogenic emissions of GHGs and 
the conversion of non­agricultural land such as forests 
into agricultural land. The GHG concentration in the 
atmosphere has been increasing since 1750 due to 
anthropogenic activity (IPCC, 2013a). Additionally, an 
increase is expected in crop yield for most crops by 
approximately 13% due to elevated levels of CO2 in the 
atmosphere. Unfortunately, crop yields for C4 crops will 
remain unchanged. Climate change will lead to the 
reduction in water utilization by all crops, but this effect 
will be nearly canceled out by the effect of the increased 
temperature on evapotranspiration rates. In many places, 
the temperature increase would provide prospects in 
plant breeding to enhance crop performance. Results 
based on the GCM predictions show that the African 
climate was warmer 100 years ago compared to the 
current condition. The finding suggested that the 
continent was warming up and this would continue to 
accelerate over Africa in most future climate scenarios 
(Herrero et al., 2010). It is projected that African countries 
will be compromised severely due to climate change and 
variability (IPCC, 2013b). The suitable agricultural areas, 
growing season length and the potential crop yield within 
the arid and semi-arid areas would decrease. 
Additionally, crop yields in some African countries would 
reduce under rain-fed conditions by 50% in 2020. Studies 
have revealed that the most vulnerable continents in the 
world to climate change and variability is Africa due to 
numerous stresses and low capacity for adaptation 
(IPCC, 2013b). 

Southern Africa will experience temperature and 
precipitation changes by 2 to 4°C and 10 to 15%  
(Makadho, 1996), respectively. Temperature prediction 
using 20 GCMs from 2020 to 2040  over  Southern  Africa  

 
 
 
 
would increase from 0.6 to 1.4°C relative to the baseline 
(1980 to 2000) (Arslan et al., 2015b). Variability in 
precipitation affects agriculture more significantly, and 
maize yields in southern Africa have been projected to 
reduce by 30% without adaptation strategies in place  
(Lobell et al., 2008). It has been noted by IPCC (2014a) 
that under RCP8.5 temperatures over large areas of 
Africa would range from 3 to 6°C from the mid to the end 
of the century. As a consequence, land temperature over 
Africa would increase faster compared to the average 
global land temperature, especially in arid regions. The 
minimum temperature would increase at a faster rate 
compared to the maximum temperature.  

Eighty percent of the global cropped land area is under 
rain-fed agriculture (Turral et al., 2011). Globally, 60% of 
the food output is susceptible to climate change impact 
especially in the semi-arid and arid regions (Turral et al., 
2011). The agricultural production system is dominated 
by rain-fed agriculture which accounts for 97% of the 
cropped land and. The rain-fed agricultural production 
suffers from the risks of seasonal precipitation variability 
(Tumbo et al., 2012). The African agriculture is 
dominated by small-scale farms, mainly rain-fed with low 
and unpredictable rainfalls over the whole continent 
(Turral et al., 2011) and crop growth is limited by water 
availability (Turral et al., 2011; Sebastian, 2014). 
Agricultural production is affected by changes in 
precipitation during the growing season, and this leads to 
variability in yields. The other reason is that 85% of 
Africa’s water is used for agriculture and the farming 
techniques are less mechanized, and the greater part of 
the continent is already hot and dry. The sub-Saharan 
Africa agriculture sector contributes 30% to Gross 
Domestic Product (GDP) and sustains 70 to 80% of 
employment (Tumbo et al., 2012). Future climate change 
poses challenges to agricultural production in Africa as it 
is the most susceptible sector to climate change and 
variability due to extensive poverty and this limits its 
adaptive capacity (Tumbo et al., 2012).  
 
 
IMPACT OF CLIMATE CHANGE ON MAIZE YIELD 
USING CROP MODELS 
 
Crop simulation models 
 
Crop simulation models (CSM) or crop models are 
computerized representations of crop growth, 
development, and yield, simulated through mathematical 
equations as a function of soil conditions, weather, and 
management options (Hoogenboom et al., 2004; 
Salvacion, 2011; Basso et al., 2013). Crop models have 
been developed to simulate risks associated with crop 
management options in the face of climatic change and 
variability. They simulate plant growth, development, and 
yield in response to water, temperature, solar radiation 
and   nutrient   inputs.    They    describe    crop    growth,  



 
 
 
 
development and yield at field scale on a daily time 
stamp and require site-specific, spatially homogeneous 
weather data as input (Zare et al., 2016). Crop models 
assist in understanding the relationship between weather, 
climate and crop yield (Vučetić, 2006). They are used in 
impact and climate change and variability studies, as they 
account for plant eco-physiological processes, 
environmental and management options for different 
cultivars and locations (Bassu et al., 2014).  

Yield forecasting can be carried out using crop models 
to give the yield of a precise and scientific crop as early 
as possible during the crops' growing season by 
considering the effect of the weather and climate (Basso 
et al., 2013). Crop models can be used to evaluate the 
site-specific impact of climate change, agro-technologies 
and to accurately predict crop yield with prior knowledge 
of the soil properties and crop management practices or 
options (Figure 4). Crop models have been applied in 
approximating yield potential in crop ideotypes designed 
for simulated future climate scenarios (Rötter et al., 
2015). Crop simulation models have been used to 
describe systems and processes at genotype level, crop, 
farming system, region, and global environment. 
However, the extent to which crop models in developing 
countries have benefited the poor is limited (Uthes et al., 
2011). Crop models offer opportunities for exploring 
cultivar potential in areas not explored before, 
establishing expensive and laborious field trials (Bationo 
et al., 2012b,c). Lengthy and costly agronomic and 
modelling field trials with a high number of treatments, 
could be pre-evaluated by conducting, in minutes, 
experiments on a desktop computer or laptop (Steduto et 
al., 2009). Crop simulation modeling can be used to 
decide on the optimum plant densities and dates of 
planting for maize crop (Soler et al., 2005; Chisanga et 
al., 2015). 

Crop simulation models such as APSIM (Keating et al., 
2003) and DSSAT (Jones et al., 2003) can be used to 
analyze different scenarios to combat the impact of 
climate change on agricultural production. The literature 
review showed that 5 crop simulation models: APSIM-
Wheat, CERES-Wheat, two SALUS wheat models and 
APES-Wheat have been used to analyze the baseline, in 
sensitivity tests, and future climate predictions by the 
AgMIP team (Rosenzweig et al., 2015). Simulation 
models are widely used to address "what if" type 
questions (Mohanty et al., 2012). The Crop 
Environmental Resource Synthesis (CERES) maize 
model in DSSAT (Jones et al., 1986; Kiniry et al., 1997; 
Yang et al., 2004; Liu et al., 2012) is a process-oriented, 
management-level model that simulates crop growth, 
development and yield, soil water and nitrogen balance 
on homogeneous units from field to regional scales. It is 
the most widely used maize model and is a recognized 
reference for comparing new developments in maize 
growth, development and yield simulation (Lizaso et al., 
2011). It  has  been  evaluated  under  a  wide   range   of 
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experimental practices and environmental conditions 
(Jones et al., 2003, 2010). The model is able to 
accurately predict yield variability, nitrogen uptake and 
maize growth response to nitrogen (Pang et al., 1997). It 
can also be used to explore the potential of new cultivars 
for new areas before establishing costly field experiments 
(Bationo et al., 2012b) and to determine the optimum 
planting dates (Soler et al., 2005; Chisanga et al., 2015). 
The APSIM, on the other hand, is a modular modeling 
framework that runs at a daily time-step and mimics crop 
growth and development, yield, soil water and nitrogen 
dynamics either for single crop or crop rotations in 
response to climatic and management scenarios (He et 
al., 2015).  

The CERES-Maize, SWAP (soil-water-atmosphere-
plant), CERES-Wheat and APSIM models have been 
used extensively to evaluate crop production due to the 
effects of climate variability and change and in analyzing 
crop yield-climate sensitivity under different climate 
scenarios (Kang et al., 2009). The required data as input 
into CSMs include: weather data (rainfall, maximum, and 
minimum temperature, solar radiation), location (weather 
station latitude and longitude), soil physical and chemical 
properties, crop management practices (cultivar, 
irrigation, fertilizer type and amounts, row spacing, 
planting date, planting depth,  plant population,  tillage 
operations and dates, weed control, leaf area index [LAI]) 
and cultivar genetic coefficients.  

Understanding the impact of climate change based on 
carbon dioxide fertilization, temperature changes and 
rainfall on plant growth, development and yield can be 
evaluated using crop models. The APSIM-and-CERES-
Maize models have been used effectively to simulate 
maize growth, development, and yield (Rauff and Bello, 
2015). The performance of APSIM-and-CERES-maize 
models is limited by the quality of input data such as daily 
weather data, soil profile characterization data, surface 
residues, crop management, initial soil condition and 
plant growth analysis. In cropping systems, it is very 
common to have sufficient data collected on 
aboveground biomass but inadequate data on soil 
characterization and root growth (Motha, 2011). Most 
crop simulation models necessitate that meteorological 
data such as precipitation, temperature, and solar 
radiation be reliable, complete and of good quality. 

Crop model requires reliable and complete 
meteorological parameters. Agromet stations may not 
have complete daily time series data at a specific 
location, and in some cases, data may be available only 
for temperature and precipitation or rainfall only, solar 
radiation may be missing or unavailable which is required 
by crop models in the estimation of photosynthesis and 
biomass accumulation. Gaps in incomplete data records 
are filled using stochastic weather generators (Motha, 
2011). As explained by Motha (2011), a stochastic 
weather generator produces synthetic data based on 
statistical characteristics  of  observed  data  of  unlimited 
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length. The WGEN, SIMMETEO, CropSyst (ClimGen) 
and LARS-WG stochastic weather generators have been 
used widely in crop simulation studies to determine the 
potential impact of future climate scenarios on crop 
growth, development, and yield (Wang, 2015). Wang 
(2015) stated that the weather generators simulate 
temperature and solar radiation accurately, nonetheless, 
they have difficulties in reproducing precipitation values 
and their performance differs from location to location. 
Modelling of daily precipitation using statistical 
downscaling models are useful in characterizing 
precipitation and temperature in conjunction with climate, 
agricultural, hydrological and economic modelling. 
 
 
Impact of climate change on maize yield using crop 
simulation models 
 
Crop productivity as affected by climate change can be 
projected by evaluating the outputs from crop models 
when running with baseline and future climate scenarios 
generated from GCM (Ruiz-Ramos and Mínguez, 2010). 
Crop models simulate daily interactions with climate, 
soils, and management that determine growth, 
development, and yield of individual crops (Ruiz-Ramos 
and Mínguez, 2010). Climate models, and in particular 
RCMs and weather generators provide the necessary 
driving climatic variables of solar radiation, temperature, 
rainfall, pressure water vapor and the wind at several 
geographic scales (Mearns and Hulme, 2001; Mearns et 
al., 2003). The currently available crop models being 
utilized in evaluating climate change include options for 
simulating the effects of increased CO2 on crop yield and 
water use (Rosenzweig and Iglesias, 1998). All widely 
used crop models include consideration of nitrogen and 
water balance, and the impact of crop water deficit.  

The crop models due to rising global temperature 
predict minor changes in world agricultural production as 
a result of the negative impact of climate change in the 
tropics and most developing countries, and these are 
offset by gains in temperate in industrial countries (The 
World Bank, 2007). Moderate warming of 1 and 2°C for 
wheat, maize, and rice in tropical countries would lead to 
the reduction of crop yields significantly (The World Bank, 
2007). Temperature increases have multiple effects on 
crop growth, development and yield depending on the 
crop growth stage. Higher temperatures usually 
accelerate rates of crop development and this results in a 
shortened growing period, and typically but not always in 
lower crop yields (Rötter and Höhn, 2015; Rötter et al., 
2015). For example, temperature thresholds of 32 to 
36°C for a few hours around flowering may strongly affect 
floret mortality/spikelet fertility, resulting in reduced yield 
that is dependent on the frequency and intensity of the 
stress - as has been reported for wheat, groundnut, 
sunflower, maize and rice (Rötter and Höhn, 2015). 

Crop  yields   are  most   sensitive   to   heat   stress   at  

 
 
 
 
flowering and grain filling stages (The World Bank, 2007). 
Furthermore, a small temperature increase occurring at 
flowering and grain filling stages affect the crop, and this 
is not included in crop simulation model (The World Bank, 
2007).  

There is need to appreciate the observed historical time 
series data. GCMs are calibrated to reproduce historical 
time series data while weather generators and crop 
models are calibrated and validated using historical time 
series data. The scenarios generated from GCMs are 
indispensable for evaluating potential crop yield, but they 
do not represent the actual environment that would occur 
(Iglesias, 2006; Donatelli et al., 2012). Crop modeling 
shows positive trends of climate change impact on the 
main crop yields in 2050 (Reidsma et al., 2015). 
Moreover, Reidsma et al. (2015) noted that crop models 
could be exploited in assessing the impacts of climate 
change, but these models are intended to assess the 
potential or water-limited yields rather than actual yield. 
Therefore, the influence of management is widely 
neglected. Seasonal crop yield forecasts can be 
produced by utilizing downscaled current and future 
climate scenarios to effectively and efficiently plan for the 
allocation of agricultural resources to reduce risk and 
uncertainties due to seasonal climate variability 
(Jintrawet, 2015). The integrated use of GCMs, crop 
models, and statistical downscaling models has received 
relatively less attention in Africa in comparison to another 
part of the world. Crop model can be used in assessing 
the impact of climate change on grain yield, yield 
variability, and spatial distribution. They can use climate 
scenarios generated from downscaling of GCM outputs 
as inputs to quantify the impact of climate change on crop 
growth, development and yield of maize. 
 
 
Impact of climate change on maize yield using 
DSSAT CERES-maize model 
 
Soler et al. (2007) evaluated the effect of planting dates 
(PDs) four maize cultivars grown under irrigated and rain-
fed conditions off-season in a subtropical region in Brazil. 
The CERES-maize model was used to simulate the 
impact of variable conditions on maize production. 
Results revealed that the CERES-Maize was capable of 
simulating phenology and grain yield accurately, with 
normalized root-mean-square error (RMSE) being <15%. 
Analysis showed that a delay in sowing from February 1 
to April 15 caused a 55 and 21% decrease in grain yield 
under rainfed and irrigated conditions, respectively. The 
SIMMETEO weather generator programme in DSSAT 
version 3.5 was used to generate future climate 
scenarios based on weather data from 9 consecutive 
years in Kharagpur, West Bengal, India (Sarkar and Kar, 
2006). Sarkar and Kar (2006) noted that the generated 
weather scenarios were used as inputs into DSSAT to 
conduct the seasonal  analysis.  The  study  showed  that 



 
 
 
 
the generated future climate scenarios used by the 
DSSAT were reliable and could be used to predict the 
future crop yields under different management options to 
select the best. The prediction of maize yield using the 
generated future climate scenarios for 2050 in the states 
of Indiana and Ohio was simulated using the CERES-
Maize model by Johnston (2013). Results indicated that 
predicted evapotranspiration in maize grown under 
irrigated and rain-fed increased. However, 
evapotranspiration predicted under rain-fed condition 
declined. Maize yields in Indiana and Ohio were 
predicted to increase under rainfed and irrigation 
conditions relative to 1997 to 2007. Under rain-fed 
conditions, declines in maize yield predictions were 
observed in Illinois, Indiana, and Ohio. Predicted maize 
yield was observed under irrigated conditions in South 
Dakota. The study envisaged that maize yield would 
improve under future climate change scenarios and shifts 
in maize production should be made to the western 
locations to maximize maize yield in 2050.  

The CERES-maize model was used to assess the date 
of planting and cultivar variations in China for mitigating 
the risks of climate change. The results showed that the 
duration of reproductive phases in maize from 
emergence to flowering and physiological maturity would 
be shortened under future climate change, and yield 
would reduce by 11 to 46% from 2011 to 2099 relative to 
1981 to 2010 (Lin et al., 2015). Additionally, maize 
production would not benefit significantly from increased 
CO2 fertilization. A sequential model simulation of the 
long-term maize yield from 1959 to 2008, 0 to 30 cm soil, 
nitrogen (N) content, and soil nitrate loss from 1998 to 
2000 was compared to measured values using DSSAT 
CERES-maize v4.5  model at Woodslee, Ontario, 
Canada by Liu et al. (2011). Study results revealed that 
the CERES-Maize model did not provide accurate annual 
maize yield and the overall agreement was as good as 
those obtained by other researchers. 

In Eastern India, historical weather data at Kharagpur 
(1977 to 2007), Dumdum (1974 to 2003), and Purulia 
(1986 to 2000) was used as an input into the CERES-
Maize model in DSSAT v4.0 to simulate maize yield 
under climate variability scenarios. The study results 
revealed that temperature would increase by 3°C above 
the current and it would have substantial negative impact 
on maize yield; while the positive effect on maize grain 
yield was observed at 700 ppm of CO2.

3
 The CERES-

Maize model in DSSAT version 3.0 was used to simulate 
the current and future management practices in Greece. 
The GISS, GFDL, and UKMO GCMs were used to 
generate CO2 doubling climate scenarios while the GISS 
GCM was used to derive a transient scenario as input 
into the CERES-maize model (Kapetanaki and 
Rosenzweig, 1997).   

                                                 
3
 http://ijc.cgpublisher.com/product/pub.185/prod.134; Accessed 5th 

November 2016 
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The results showed increases in temperature and solar 

radiation while precipitation showed variability. Under 
present management practices, maize yield decreased 
due to reduced duration of the growing period at all study 
sites. Early sowing and the use of new maize varieties 
were the proposed mitigation measures (Kapetanaki and 
Rosenzweig, 1997). The impact of climate change was 
assessed in semi-arid and sub-humid regions of Ethiopia 
using a calibrated and validated CERES-maize model 
and major maize varieties by Araya et al. (2015a). It was 
observed that the median maize yield increased slightly 
and decreased in the sub-humid and semi-arid regions of 
Ethiopia, respectively. The study concluded that future 
maize yield would not decrease significantly relative to 
the baseline (Araya et al., 2015a, b). 

A study by Zinyengere et al. (2014), in Southern Africa, 
exploring the effect of climate change on various crops in 
specific locations using statistically downscaled climate 
scenarios from nine GCMs and the DSSAT, indicated 
that impacts of climate change on crop yields varied 
across locations and crops. The DSSAT-CERES-maize 
model has been extensively used and tested for different 
soil types and under a wide range of climatic conditions 
using various types of cultivars. The CERES-maize 
model was evaluated by Pang et al. (1998), in 
characterizing nitrate leaching potential in various soil 
types. Study results showed that the CERES-maize 
model could be used as a decision support system for 
soil specific nitrogen leaching characterization and to 
increase food production while using the fertilizers and 
water efficiently (Sarkar, 2009) in both developed and 
developing countries. The CERES-maize model has 
been evaluated in Zimbabwe, Malawi and South Africa 
(Tsimba, 2011; Tsimba et al., 2013) and Zambia 
(Chinene, 1985; Chisanga et al., 2015). It has also been 
extensively tested in Kenya and under tropical conditions 
in Hawaii, Indonesia, and the Philippines.  

A study by Makadho (1996), in Zimbabwe, using GCMs 
and CERES-maize model to evaluate the potential effect 
of climate change on maize, concluded that maize 
productivity decreased drastically under non-irrigated and 
irrigated conditions 

in selected agricultural production regions. The 
reduction in maize yield was attributed to a temperature 
increase which shortened crop growth period during 
grain-filling period. A study in Latin America and Africa 
carried out by Jones and Thornton (2003) using DSSAT 
for simulating the impacts of climate change on maize 
productivity revealed that there would be a 10% decrease 
in aggregate maize yield by 2055.  

The DSSAT and APSIM were used in the West African 
Sub-Saharan region, and yields of maize were 
reasonably simulated from the household survey.

4
 R and 

K GCMs gave  the  lowest  simulated  maize  yield  under  
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future climate scenarios. The reduced maize yield was as 
a result of low projected precipitation. It was suggested 
by Kang et al. (2009a) that the projected impact of 
climate change on maize yield would be different in 
diverse areas. It is anticipated that in some regions there 
would be an increase or decrease in maize yields 
depending on the latitude and application of irrigation. 
Available modeling results indicate that an increase in 
rainfall would increase crop yield. Reduction of water 
availability under future climate change shows that soils 
with high water holding capacity would abate the impact 
of drought while sustaining crop yield. It has been 
reported that crop growth, development, and yield are 
more sensitive to rainfall compared to temperature (Kang 
et al., 2009). 
 
 
Impact of climate change on maize yield using APSIM 
model 
 
Araya et al. (2015b) undertook a study in Ethiopia to 
assess the impact of climate change on future maize 
yield from 2010 to 2039, 2040 to 2069 and 2070 to 2099. 
Future climate simulations were generated for 20 GCMs 
for two RCPs (4.5 and 8.5). Simulation results from 
APSIM and CERES-Maize models showed that anthesis, 
maturity, and crop yield were reasonable with CERES-
maize d-index of 0.86, 0.80, and 0.77 and APSIM d-index 
of 0.50, 0.89 and 0.60, respectively. Project increases in 
yields were 1.7 to 2.9% (2010 to 2039) and 0.6 to 4.2% 
(2040 to 2069). Results indicated that uncertainty in grain 
yield would increase toward mid-and-end of the century 
relative to the baseline.  

The response of maize yield potential (Yp) to climate 
change scenario using APSIM model over the 
Southwestern United States (SWUS) region was 
investigated by Kim et al. (2015b). Results showed that 
maximum and minimum temperature greatly contributed 
to the variation in maize yields over the SWUS at inter-
annual time scale (Kim et al., 2015a). The planting date 
of maize was sensitive to climate change and variability. 
The effect of planting date on maize yields under various 
temperature regimes in the SWUS was studied by 
Myoung et al. (2015). The study findings showed that 
maize planted earlier would give higher yield due to the 
length of the growing season in cold mountainous 
regions. In mountainous regions, there are warmer than 
normal conditions during the planting period, and this 
tended to advance the planting date which resulted in 
increased maize yield (Myoung et al., 2015). 
Furthermore, in warmer low laying altitudes, yields were 
less correlated with dates of planting. The growing 
season length and higher temperatures enhanced the 
fast growth of the crop. In warmer regions, maize yield 
was sensitive to temperature variations during the early 
and late planting due to the adverse effects of extremely 
high-temperature  events  on  maize   development.   The  

 
 
 
 
study concluded that appropriate adaptations in planting 
date could improve maize yield considerably. 

A study undertaken by Dimes et al. (2008), using 
APSIM showed that increasing CO2 concentrations would 
lead to a 6 to 8% upsurge in crop yield while the 
reduction in rainfall amount had an adverse impact on 
grain yield. Wheat growth, development, yield and water 
balance processes for 117 years using the baseline, the 
2050s and 2070s under climate change were simulated 
using the APSIM model by Wang et al. (2009). The study 
concluded that wheat yield reduced by a 1°C increase in 
temperature and a 10% decrease in the amount of 
rainfall. Additionally, the yield of wheat could be 
compensated by an increase of CO2 to 266 ppm without 
any interactions between treatment effects. Increases in 
temperature had very little effect on the long-term 
average water balance, while CO2 levels reduced 
evapotranspiration. 

A study by Fosu-mensah (2013), to simulate the effects 
of climate change on maize yield using different rates of 
nitrogen (N) and phosphorus (P) under rainfed conditions 
was carried out in 2008, Ejura, Ghana. The A1B and B1 
(2030 to 2050) scenarios obtained from the regional 
mesoscale model MM5 were used as inputs into APSIM 
to assess the impact of climate change on the onset of 
the rainy season (ORS). The simulated results suggested 
a six-week probable shift on the onset of the rainy season 
from week three of March to week two of May. A six-
week delay in planting caused a significant reduction in 
maize yield and increased maize yield variability under 
A1B and B1 scenarios. Another study by Tachie-Obeng 
et al. (2013) in Ghana using the statistically downscaled 
climate scenarios for 9 GCMs as inputs into the APSIM 
and farmer practices were used to develop adaptation 
options shortly (2046 to 2065) based on IPCC A2 
emission scenario at the local scale in Wa and Wenchi. 
The findings from the single-maize cropping season at 
Wa savannah zone showed a six-week delay in planting 
from 1961 to 2000. Planting maize on the 1st

 
May to 15th

 

June was considered as the most appropriate period to 
offset the adverse effects of potential climate change 
resulting in maize yield increase of 8.2%. At Wenchi, a 
four-week delay in the major seasons sowing date from 
15th March to 15th

 
April showed no change in the minor 

season sowing date of 15th
 
August which resulted in a 

slight maize yield increase of 3.9%.  
A study in Zimbabwe using APSIM model and climate 

data from Bulawayo (1951 to 2001), examined the impact 
of climate change on the potential yield of maize, 
sorghum, pigeon pea and groundnut (Dimes et al., 2008). 
The output from APSIM showed that increasing CO2 
concentrations would increase maize yields in the order 
of 6 to 8%. Reduction in rainfall amount would reduce 
grain yield (Dimes et al., 2008). On the other hand, 
increasing temperature had the most dramatic impact on 
maize grain yields; 16, 31 and 3% reduction in two bowls 
of cereals, groundnut, and pigeon pea, respectively.  



 
 
 
 

Maize simulation efforts have focused on both rainfed 
and irrigated conditions under climate change and 
variability, and this has a lead of drought-prone rainfed 
environments based on eco-physiological being 
understood properly. Many agronomists, climatologist, 
soil scientists and crop modellers do not fully understand 
the concept of statistical downscaling and crop simulation 
models and systems-based research, hence capacity 
building in this area is inevitable. Comprehensive 
calibration and validation are needed for both statistical 
downscaling and crop simulation models to be used 
efficiently and more in conducting research that would 
conserve resources and significantly contribute to 
developing mitigation and adaptation strategies that meet 
the world’s needs for food.  
 
 
Limitation of statistical downscaling and crop 
simulation models 
 
According to Chen et al. (2010), stochastic weather 
generators and transfer functions are good at preserving 
the precipitation quantities but tend to underestimate low-
frequency variations and inter-annual variability. Inter-
annual variability is a year-to-year change in the mean 
state of the climate (Trzaska and Schnarr, 2014). An 
example of the inter-annual variability is the El Niño-
Southern Oscillation (ENSO) that causes a periodic 
variation in the atmospheric and oceanic circulation 
patterns in the Pacific Ocean. It is a quasi-periodic 
change of atmospheric and oceanic circulation patterns in 
the Tropical Pacific region. Weather generators are 
conditioned using local climate relationships and may not 
be automatically applied in other climatic conditions 
(Hassan et al., 2014). Wilby and Wigley (1997) argued 
that non-stationarity of predictor-predictand relationships 
has long been recognized as a limitation of all 
downscaling techniques. Weather generators do not take 
into account the spatial structure of weather and climate 
for any given region. 

All crop simulation models require adequate calibration, 
testing and validation against measured field data to 
ensure that the simulation results are reasonable (Thorp 
et al., 2009; Chisanga, 2014). All crop models require 
adequate calibration and validation to account for 
cultivars parameters, soil water and nitrogen balance, 
crop growth, development, and yield and environmental 
conditions for the study site in question (Sinclair and 
Seligman, 1995). The models need data and technical 
expertise, and they do not provide an answer and a 
solution to all the problems and requirements, therefore, 
stakeholder interaction is essential. Some simulation 
models such as DSSAT CERES-maize, APSIM, and 
GROWIT have been used in simulating land use, land 
cover changes, soil and landscape evaluation (Bhatt et 
al., 2014). However, interpreting and visualizing the crop 
simulation model output is laborious and time-consuming.  
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Consequently, comparing the simulated and measured 
values usually requires the use of statistical software 
packages (Yang et al., 2000). Conversely, crop models 
have limitations in simulating the impact of extreme 
events such as precipitation including pests and diseases 
(Reidsma et al., 2015).  
 
 
Integrated assessment models (IAMs) 
 
Scientists and researchers have developed integrated 
assessment models (IAMs), and these combine climate 
models (GCMs), crop models (APSIM, DSSAT, 
AquaCrop, CropSyst) and economic models (Tradeoff 

Analysis Model for Multi‐Dimensional Impact Assessment 
[TOA-MD]). IAMs describe the causes and effects of 
climate change and integrates knowledge from different 
academic disciplines to assess the natural and economic 
impacts due to the accumulation of GHGs in the 
atmosphere (De Salvo et al., 2013). IAM, for agriculture 
under climate change either at the farm, regional or 
supranational level requires that many biophysical output 
variables be considered simultaneously. In evaluating 
effects of climate change and management options 
besides crop yields, crop models need to provide 
information based on the effects of the production 
process on environmental indicators such as nitrogen 
leaching, GHG emissions and water use (Rötter and 
Höhn, 2015). Nelson et al. (2014) argued that simplified 
representation of future climate change impacts on 
agriculture requires combined use of climate models, 
crop simulation models and economic models. A unique 
opportunity for analyzing multi-model ensembles of 
current and future climate scenarios across different 
sectors in a consistent, holistic framework is provided for 
by the Inter-Sectoral Impact Model Intercomparison 
Project (ISI-MIP, www.isi-mip.org) and this should be 
adopted (Piontek et al., 2014). The multi-model ensemble 
approach that uses many different climate models, 
emissions scenarios, downscaling techniques, crop 
models and economic models would enable a move 
towards a complete assessment of uncertainty in future 
crop (maize) yield forecasting and predictions (Surampalli 
et al., 2012; UNFCCC, 2012). 
 
 
Situational analysis of climate change in Zambia 
 
Temperature and precipitation 
 
Zambia is characterized by classic dry and wet climate 
(Sichingabula, 1998; Palijah, 2015). The annual rainfall is 
strongly influenced by the shifting of the Pacific Ocean’s 
El Nino Southern Oscillation (ENSO), the Inter-Tropical 
Convergence Zone (ITCZ) and the Congo Air Boundary. 
The mean annual temperature has increased since 1960 
by 1.3°C,  an  average  of  0.29°C  per  decade  (MTENR, 

http://www.isi-mip.org/
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Figure 2. Agro-ecological regions of Zambia. 

 
 
 
2010; Muchanga, 2012; UN, 2012). A slight increase in 
temperature was observed from 1970 to 2000 across the 
country. Warming rates per decade of 0.48, 0.34 and 
0.26°C for Agricultural Ecological Regions (AERs) I, II, 
and III (Figure 2) have been observed from 1970 to 2000. 
The AERs differ based on the amount of precipitation: 
Region I is a low rainfall (<800 mm/year) area which 
covers the country’s major valleys; Region II, the medium 
rainfall (800 to 1000 mm/year) area, covers Sandveld 
plateau of Central, Eastern, Lusaka and Southern 
provinces; and Region III has the highest rainfall (1000 to 
1500 mm/year). There has been a decrease in annual 
rainfall of 1.9 mm per month (2.3% per decade) since 
1960 particularly in December, January and February 
(MTENR, 2010; UN, 2012). Baseline data (1961 to 1990) 
showed that AERI has the lowest rainfall followed by 
AERs II and III (Fumpa-Makano, 2011). Temperature 
projections from GCMs suggest an increase in 
temperature by the end of the century ranging from 2.4 to 
4.3°C relative to 1961 to 1990 is likely (GIZ, 2014). GCMs 
predictions over Zambia indicated that rainfall in AER I, 
IIa and IIb has decreased with significant warming 

detected in AER I while rainfall in AER III has increased 
(Arslan et al., 2015b). The estimated maize yield decline 
in Zambia is concentrated in Southern and Eastern 
provinces, highlighting the importance of how climate 
change impacts on crop yields.  

In Zambia, the threat of climate change is characterized 
by floods and droughts (Fumpa-Makano, 2011). In the 
last 20 years, maize yield has reduced by 40% in AERs I 
and II as a result of shortening rain season and persistent 
dry spell (UNDP, 2010). The worst of these was the 1991 
to 92 droughts and 2006 to 07 floods (Fumpa-Makano, 
2011). Zambia has experienced droughts (1916/17, 
1924/25, 1949/50, 1983/84, 1987/88, 1991/92, 1994/95 
and 1997/98) and high intensity of floods (2007/08, 
2009/2010) (Sichingabula, 1998). There has been a 
tendency for late-onset and early withdrawal of rains in 
Zambia since the end of the 1980s (Fumpa-Makano, 
2011). The strong dependence on maize as the staple 
food in Zambia is a serious concern and requires much 
effective adaptation options to reduce negative impacts of 
climate change since much of the maize is grown by 
small-scale  farmers  and  is  rain-fed.  The  ability  of  the  
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Figure 3. Climate models are based on basic laws of physics, biology, fluid motion and chemistry. 
Source: (https://celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html; Date accessed 
18th May 2017, https://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html; 
Accessed 7th August 2017). 

 
 
 
agricultural sector in Zambia to cope with projected 
changes in rainfall and temperatures is limited due to low 
levels of investment, land degradation, limited access to 
agricultural inputs such as fertilizers and seed and 
reduced labor due to HIV/AIDS (Arslan et al., 2015a). 
 
 
Impact of climate change on maize yield using APSIM 
and DSSAT models in Zambia 
 
The CERES-maize model has been used in Zambia by 
researchers such as Chinene (1985), GRZ and UNDP 
(2007) and Chisanga et al. (2015) in simulating maize 
yield. Chinene (1985) also evaluated the effect of water 
and nitrogen on grain yield on a clayey, kaolinitic 

isohyperthermic oxic paleausalf in Zambia. He observed 
that nitrogen and water availability were the factors 
limiting grain yield. The United States Country Studies 
Programme (USCSP) undertook an assessment in 
Zambia that focused on the vulnerability of crop cultivars 
under a variety of climate change scenarios in the AERs 
of Zambia using DSSAT version 3. Assessments by 
MTENR et al. (2007) and UNDP (2010) using DSSAT 
revealed that the predicted reduction in the length of the 
rainy days would inhibit crop varieties such as maize 
attaining physiological maturity in AER I and II. Current 
and future climate scenarios (2 × CO2) were generated 
using the CCCM and GFDL GCMs and used as inputs 
into DSSAT version 3 by GRZ and UNDP (2007). DSSAT 
models were used to simulate the length  of  the  growing  
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Figure 4. Scenarios of climate change scenarios for agricultural applications.  
Source: Authors (2017). 

 
 
 
season and crop yield under irrigated and rain-fed 
conditions. Furthermore, the nitrogen and water balance 
were simulated to estimate the vulnerability to climate 
change of the selected maize varieties (MM 752, MM603 
and MM601], sorghum variety (SIMA) and groundnut 
varieties (Natal Common, Makulu Red, and Chalimbana). 
The 1997/78 simulated outputs indicated that MM752 and 
MM603 maize varieties would not mature due to 
shortening of the growing season in AERs I and II, 
respectively.

5
 In ensuring the national and household 

food security, adaptation strategies were proposed by 
GRZ and UNDP (2007). These strategies were: 
diversification of the agricultural sector (that is, promoting 
horticulture), adopting and planting new seed such as 
open pollinating varieties (OPV), developing drought-
tolerant and early maturing crop varieties by plant 
breeder, improvement of crop management through 
information dissemination to farmers and construction of 
dams for water storage in drought-prone areas of the 
country and maintaining all feeder roads to reduce post-
harvest losses. There is also need to use a combination 
of climate models and crop simulation models to study 
the impact of future climate scenarios on maize growth, 
development and  yield.  This  is  essential  for  long-term 

                                                 
5
 http://adaptation-

undp.org/sites/default/files/downloads/zambia_snc_prodoc.pdf; 

Accessed on 7
th

 November 2016 

planning in household food security and in developing 
mitigation and adaptation plans. 

Maize growth, development and yield are projected to 
be affected differently by climate change in diverse 
locations depending on temperature and water 
availability. The review shows that although uncertainties 
exist in the model design parameters, soil, climate and 
management options, the climate would adversely affect 
maize yield production in Sub-Saharan Africa. The focus 
of crop modeling has been on maize for decades, and the 
widely known maize models are DSSAT CERES-Maize 
model (Jones et al., 1986) and APSIM (Keating et al., 
2003) platforms. CERES-Maize-and-APSIM-Maize 
models have been designed to support management 
decisions and to develop management strategies, though 
their calibration parameters are quite demanding. 
Comprehensive data on grain number per cob and the 
rate of grain filling in milligrams per day, or the phyllocron 
interval in thermal time are required by the two crop 
simulation models. 
 
 
CONCLUSION AND RECOMMENDATION 
 

Reliable projections of meteorological parameters from 
climate models are needed to evaluate impacts of future 
climate change. Combining climate models and crop 
simulations models represent a holistic approach that 
synthesizes     information     about     different      system  

http://adaptation-undp.org/sites/default/files/downloads/zambia_snc_prodoc.pdf
http://adaptation-undp.org/sites/default/files/downloads/zambia_snc_prodoc.pdf


 
 
 
 
components, synthesizing of data and dissemination of 
the study findings to end users. The literature review 
suggests that many crop models such as APSIM-maize 
and DSSAT-CERES-maize have been employed in many 
applications such as precision agriculture and on-farm 
management and regional assessments of the impact of 
climate variability and change. The effects of climate 
change on climate-plant interaction can be evaluated 
quantitatively using crop models. There is significant 
uncertainty in future climate scenarios used in simulating 
crop response due to climate change.  

The use of GCMs, statistical downscaling, and crop 
models are the primary tools available to assess the site-
specific effects of climate change on maize growth, 
development and yield. Statistical downscaling 
techniques are computationally cheap to run and produce 
local-scale synthetic daily time series of meteorological 
parameters for impact assessment of climate change 
under different emissions scenarios and GCM pairings. 
Developing proactive mitigation and adaptation plans 
using climate data for managing inter-annual variability 
within the agricultural communities and the organizations 
that interface with them in the agricultural sector would 
assist in building resilience due to long-term climate 
changes. The multi-ensemble methodology that uses 
different GCMs/RCMs, and downscaling techniques and 
crop simulation models would facilitate a move towards a 
complete assessment of uncertainty in crop yield 
simulations.  

The GCM outputs should be corrected for biases, and 
this depends on improvement advances achieved in both 
GCMs and downscaling approaches. The generated 
future climate scenarios should be of high-quality 
required by crop simulation models and must include the 
simulated changes in mean and variability of climate 
variables. It is recommended that an integrated 
assessment modeling framework should be adopted that 
generate useful information for the farmer, planners and 
policy makers. The framework should incorporate 
climate, crop simulation, and economic modeling. 
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