

Vol. 8(46), pp. 2242-2256, 11 December, 2013

DOI: 10.5897/SRE2013. 5360

ISSN 1992-2248 © 2013 Academic Journals

http://www.academicjournals.org/SRE

Scientific Research and Essays

Full Length Research Paper

Fine-grained federation of geographic information
services through metadata aggregation

Ahmet Sayar

Department of Computer Engineering, Kocaeli University,Kocaeli, Turkey.

Accepted 25 June, 2013

Large scale Geographic Information Systems (GIS) require experts from different areas, such as data
maintenance and handling, data rendering and displaying, and data processing. However, it is
challenging to host data, processing capabilities, and experts in the same geographical location. To
enable remote coupling of these data and processing services, interoperable distributed system
architectures have been developed. This paper presents a distributed Service Oriented Architecture
(SOA) framework for understanding and managing the production of knowledge from distributed
observations, simulations, and analyses through integrated data-views. Open GIS standards enable us
to develop such a distributed framework by defining the standard common data models and
corresponding web service components. The composability nature of these components has inspired
us to develop a federated information system framework enabling both application-based hierarchical
data definitions and performance enhancing designs.

Key words: Geographic information systems, federation, web services, data models, metadata.

INTRODUCTION

There are large amount of different datasets provided by
various specialized repositories. Users and geo-science
applications would like to access these distributed
heterogeneous data sources from a single access point
through uniform service interfaces enabling unified
querying. In the literature, these requirements are
explained as “federation”, which was initially used by the
database community (Sheth and Larson, 1990). A
federated database architecture is described in which a
collection of independent database systems are united
into a loosely coupled federation in order to share and
exchange information. A federation consists of
components and a single federal dictionary maintaining
the topology of the federation. The federated architecture
provides mechanisms for sharing data, sharing
transactions and combining information from several
autonomous components.

Geographic Information Systems (GIS) are systems for

creating, storing, sharing, analyzing, manipulating, and
displaying spatial data and associated attributes (Peng
and Tsou, 2003). The purpose of GIS is for extracting
information/knowledge from raw geo-data. The raw data
is collected from sensors, satellites or other sources and
stored in databases or file systems. The data goes
through filtering and rendering services and presents to
end-users in recognizable formats, such as images,
graphs, charts, and so on. GIS is used in a wide variety
of tasks, such as urban planning, resource management,
and emergency response planning in case of disasters,
crisis management, and rapid responses.

In this paper we propose a view-level federation of
data/information provided by domain specific
autonomous web services. Geographic Information
Systems (GIS) is our selected domain (Peng and Tsou,
2003). Interoperability issues for the federation of
services (and/or data) are resolved by adopting domain

E-mail: ahmet.sayar@kocaeli.edu.tr. Tel: +90 262 303-3583. Fax: +90 262 303 30 03.

specific standards (Open Geospatial Consortium (OGC,
1994) and ISO/TC211). These standards basically
publish service definitions, data definitions, and metadata
about data and services. There are three major data
types, raster, vector, and coverage, provided by three
major services, map services, feature services, and
coverage services respectively. Map services are called
Web Map Services (WMS) (Beaujardiere, 2004;
Kolodziej, 2004), feature services are called Web Feature
Services (WFS) (Vretanos, 2002), and coverage services
are called Web Coverage Services (WCS) (Evans, 2003).
Domain specific standards and related information are
given in “Open Standards and Web Services in GIS” part
of this work.

The proposed federator framework is an infrastructure
for understanding and managing the production of
knowledge from distributed observation, simulation, and
analysis through integrated data-views in the form of
multilayered map images. Infrastructure is based on a
common data model, OGC compatible standard GIS web
service components, and a federator. The federator
provides one global view over several data sources
processed as one source. The framework enables
displaying geo-scientific application results on multi-layer
map images and also enables scientific analysis and
results to be understood and comprehend not only by the
scientist but also the public and policymakers from
different domains and education level. It gives a lot of
advantages in interpreting and analyzing the geosciences
application results. The integration of heterogeneous
geospatial data offers possibilities to manually and
automatically derive new information, which are not
available when using only a single data source providing
a single layer. For example, data from one information
source (e.g. cadastre) can be used to enrich data from
another one (e.g. topography). In this way, topographic
road data can be enriched with address information,
which is used as an indirect geo-reference in many other
databases. Pattern Informatics (PI) (Tiampo et al., 2002)
application can be given as another example. PI
forecasts earthquake happenings and create a heat-map
layer showing higher and lower possibilities of
earthquake happenings with varying colors. Overlaying
this result on a satellite map image, which is enriched
with various vector data layers such as city-state
boundaries and earthquake seismic data, will help
application users better understand and conceive the
results. Figure 3 shows an application scenario.

View-level federation can be better explained through
an analogy. “Create View” SQL statement in databases
creates a virtual table, called view. View is like a real
table with its rows and columns but they are actually
pointers to the rows and columns in other tables. Views
are created by “create view” SQL statement and enable
much more complicated queries to be created easily. A
view can be used for simplification and customizing the
perception each user has of the database. By following

Sayar 2243

the same logic, we thought we can create a virtual map
image whose layers come from remote servers. Such a
map makes domain specific application developers’ work
easier. Some of geosciences applications produce some
outcomes which only make sense when they are overlaid
on a map. In that way, application users obtain much
more perceivable information for the application
purposes. Application developers only concern with
rendering their application specific data and overlaying it
on the multilayer map image returned by the federator.
From the application users’ point of view, multilayer map
image is conceived as one-layer, but from the federator’s
point of view it is multi-layer and each layer is provided by
geographically distributed GIS web services. The layer
composition is defined in federal schema in federator
according to the application specific purposes. Federator
handles query distribution and merging the results to
create an abstract multilayer map image whose structure
is defined in federal dictionary.

Federation work is based on creating a federal
dictionary for combining services into a single, logically
centralized entity, which we call it federator. Federal
dictionary is created by harvesting standard GIS web
services’ capabilities metadata. Each standard GIS
services is defined with capability metadata. Capability is
metadata about the data and services together. It
includes information about the data and corresponding
operations with the attribute-based constraints and
acceptable request/response formats. Federal dictionary
defines integrated data view in the form of multi-layer
map images whose layers are created from spatially
related vector, raster, and coverage geo-data sets
provided by WFS, WMS and WCS respectively.
Throughout the document, federal dictionary is called
“capability” or “capability metadata”.

In addition to the usability advantages mentioned
earlier, since the federator is a type of central approach
built over the distributed autonomous data sources, the
proposed architecture enables us to develop
performance optimization techniques for distributed data
access and query. GIS, used in emergency early-warning
systems like homeland security and natural disasters
(earthquake, flood, etc.), requires quick responses.
However, because of the characteristics of geo-data
(large sized and un-evenly distributed. such as
populations of human beings), time-consuming rendering
processes, and limited network bandwidth, the
responsiveness of the system is one of the most
challenging issues of the distributed systems In this
context, the federator’s aim is to turn open standards’
compliance requirements (such as using XML-encoded
data models) into competitiveness and to provide
performance enhanced responsive services that still meet
the interoperability requirements. In this context, we have
added topic-based publish-subscribe paradigm, which is
mostly used in P2P systems, to the standard GIS web
service communications. These are investigated in

2244 Sci. Res. Essays

”federator-oriented distributed query optimization” part of
this work.

RELATED WORKS

Federation has been used for many purposes in various
domains, and in many different contexts. It is initially used
by database community (Sheth and Larson,1990;
Vermeer and Apers, 1998) to extend an existing
database with heterogeneous data that are separately
owned. This usage saves maintenance or creation costs
for the warehouse. Wide spread use of internet and
developments in database technologies lead the
federation approach to be used in various area such as
digital library federations (Trnkoczy and Stankovski,
2008; Trnkoczy et al., 2006).

The concept of federation is not only used in data
integration or database-like technologies, but also used in
federation of computation-processing services. This kind
of usage is encountered mostly in compositions of web
services (Huang et al., 2011; Madsen, 2004; Pautasso,
2009) or composition of grid services (Vázquez et al.,
2010; Leal et al., 2009) architectures. Moreover,
federation approach is also utilized in various application
domains such as social network federation (Chao et al.,
2012), software federation (Anh et al., 2003) and wireless
or sensor network federation (Al-Turjman et al., 2011).

It can be easily seen that federation approach might
have varying application area, and developed for varying
purposes. However, the challenge in federation, no
matter what area it is used, arises from the heterogeneity
of the autonomous components. A federated system can
be composed of heterogeneous, that is, autonomous,
components but they need to be interoperable. There are
two levels of interoperability: syntactical interoperability
and semantic interoperability. The former requires that
there is a technical connection, that is, the data can be
transferred between web services. The latter assures that
the contents of data and services are correctly
understood when data/services are connected.

The proposed distributed system framework is based
on federation approach. Brokering (Tanenbaum, 2008;
Erradi and Maheshwari, 2005) is an alternative approach
for the similar purposes. In fact, a brokering solution does
not impose any common/federal model but is able to
implement different federal/common solutions and
mediate between them. This can be thought as an
advantage of brokering solution over federated approach.
On the other hand, developing a federated approach is
easier than developing its brokered counterpart. Since we
develop a fine grained federation of GIS web services at
the “view-level”, developing a federated approach would
be more efficient for the purpose of the paper.

EuroGEOSS (Global Earth Observation System of
Systems) project (EuroGEOSS, 2013) is an application
of brokered approach, implementing multi-disciplinary

interoperability and collaborating spatial data and
services for both users and data providers. The brokering
services in the architecture are grouped into three;
discovery broker, access broker and semantic broker. In
a brokering framework, application-level services might
be possibly provided by the infrastructure to enrich the
basic brokering functionalities. A Broker implements
added-value functionalities related to its specific scope:
Discovery, Access, Semantic expansions, etc.

Ontologies are important for the machines to
understand the semantics of exchanged content (Gruber,
1993). W3C (W3C, 2008) recommends a standard called
Web Ontology Language (OWL) to represent semantics
based on a flexible graph model composed of Resource
Description Framework (RDF) triples. It is initially
introduced for defining resources on the web. Later, it has
been used for some other related purposes in various
domains. In GIS domain, Fonseca et al. (2002) analyses
ontology based federation of services through Web
Ontology Language (OWL). They propose ontologies for
both object and field based modeling of geographic
datasets, and analysis basics and boundaries of
ontology-driven GIS. Morocho et al. (2003) proposes
architectures for schema integration on federated spatial
databases. They propose a federated schema in GIS
framework by using OGC’s Geography Markup Language
(GML) standard (Cox et al., 2003) and Spatial Data
Transfer Standard (SDTS). They basically define
ontology of GML data by means of SDTS. Compared to
the work presented in this paper, they are not defining the
overall federation system; instead they define only
ontology-based semantic data integration. It is not clear
how to access and query the data, which is integrated
into the federated schema.

Another group of related works to solve semantic
heterogeneity for the federation is based on developing
application and/or domain specific schema definitions. In
this case, since the schema definitions are not created in
accordance with the commonly accepted and widely used
standards, it is very hard for such frameworks to be
adapted and extended by the third party applications.
Batcheller (2008) presents a metadata generation
approach for integrated data management. They
implement an extension to Dublin Core geospatial profile
of 23 elements. Dublin Core was originally capable of
generating total for 20 basic metadata entries. Butenuth
et al. (2007) propose a federated database framework for
geospatial data integration. They define geospatial data
semantically by using their own schema for predefined
and classified object classes.

The proposed federation framework is based on
metadata harvesting, similar to Open Archive Initiative’s
Protocol for Metadata Harvesting (OAI-PMH) Lagoze and
Sompel (2006) in digital library domain. Trnkoczy et al.
(2006) work can be given as an example of this approach
on a Grid-computing environment. In an application of
OAI-PMH, digital libraries to be federated need to be

defined earlier. Then, the system (or federator) harvests
metadata from the selected digital libraries and creates
and stores an index. Index represents the topology of
contributing data sources. The focus here is defining
federal dictionary in accordance with the domain specific
application purposes.

In our work, priority is given on data representation.
The syntactic and semantic heterogeneity issues are
taken as granted by adopting domain specific open
standards. If any two datasets are described with the
same spatial reference system and formatted with the
same projection system, then they are semantically
compatible for the view-level integration. Using open
standards enables the proposed federation framework to
be possibly used by the third party systems and
application developers. The proposed federation is based
on defining and creating integrated data-view in the form
of multi-layer map image. The federator provides one
global view over several data sources processed as one
source. Each layer is either rendered from GML data
serviced by WFS or provided by WMS in a ready to use
image format.

OPEN STANDARDS AND WEB SERVICES IN GIS

GIS are systems for creating, storing, sharing, analyzing,
manipulating, and displaying spatial data and associated
attributes. Spatial datasets have two kinds of attributes.
One is spatial attributes and the other is non-spatial
attributes. Spatial attributes carry location information.
Non-spatial attributes are any other type of information
about the data such as name and gender. Spatial data
types are necessary to model geometry and to suitably
represent geometric data in database systems. These
data types are usually called spatial data types, such as
point, line, and polygon. Spatial data types provide a
fundamental abstraction for modeling the geometric
structure of objects in space, their relationships,
properties and operations. These properties of spatial
data enable feature-based querying on the display of the
real world objects.

The purpose of GIS is extracting information/knowledge
from raw geo-data. The raw data is collected from
sensors, satellites or other sources and stored in
databases or file systems. The data goes through filtering
and rendering services and presented to end-users in
recognizable formats, such as images, graphs, charts,
and so on. GIS are used in a wide variety of tasks, such
as urban planning, resource management, emergency
response planning in case of disasters, crisis
management, and rapid responses (Peng and Tsou,
2003).

Over the past decade, GIS have evolved from the
traditional centralized mainframe systems to desktop
systems to modern collaborative distributed systems.
Distributed systems are composed of geographically

Sayar 2245

distributed and loosely coupled autonomous hosts
connected through a computer network. They aim to
share data and computation resources collaborating on
large-scale applications. Modern collaborative GIS
require data and computation resources from distributed
virtual organizations to be composed based on
application requirements, and accessed and queried from
a single uniform access point over the refined data with
interactive display tools. This requires seamless integration
and interaction of data and computation resources. The
resources span organizational disciplinary and technical
boundaries and use different client-server models, data
archiving systems, and heterogeneous message transfer
protocols.

Interoperability and distributed services are clear trends
that today’s GIS is taking. Standards for interoperability
proposed by distributed frameworks such as the Open
Geospatial Consortium (OGC) (OGC, 1994) offer
advantages for data sharing, for combining software
components and for overlaying graphical outputs from
different sources. As a result, with a minimum need for
adapting data products and software components to each
other, standard distributed services offer the possibility to
overlay image products coming from multiple data stores
and processed by multiple map servers. The
standardization efforts cause distributed services to be
widely accepted and used in many areas such as
governmental agencies and educational institutions. Two
well-known and widely accepted standards bodies in the
GIS domain are aimed at overcoming the interoperability
issues (OGC, 1994). The aims of the standards bodies
are to make the geographic information and services
neutral and available across any network, application, or
platform by defining common data models and online
service descriptions. The standards bodies specify
methods, tools, and services for data management,
accessing, processing, analyzing, presenting, and
transferring such data in digital form between different
users and systems. ISO/TC211 defines a high-level data
model for public sectors, such as governments, federal
agencies, and professional organizations (Peng and
Tsou, 2003). On the other hand, the OGC is interested in
developing both abstract definitions of Open GIS
frameworks and technical implementation details of data
models, and to a lesser extent, services. Web Map
Service (WMS) and Web Feature Service (WFS) are two
major services defined by the OGC for creating a basic
GIS framework enabling information rendering of
heterogeneous data sources as map images. Web
Coverage Service (WCS) Evans (2003) is another OGC
defined data service. WCS provide coverages
representing space/time-varying phenomena that relate a
spatio-temporal domain to a (possibly multidimensional)
range of properties. WCS provides available data
together with their detailed descriptions; defines a rich
syntax for requests against these data; and returns data
with its original semantics. WMS are the key services to

2246 Sci. Res. Essays

the information rendering and visualization. WMS
produces maps from the standard geographic data
encoded in the Geography Markup Language (GML) Cox
et al. (2003) obtained from various WFS instances, and
from coverages obtained from WCS instances. It also
enables attribute and feature-based data querying
(through WFS) over the data display from its standard
service interfaces. This general approach is similar to the
SkyServers Gray et al. (2002) defined by the National
Virtual Observatory (NVO) community. The OGC’s WFS
implementation specification defines interfaces for data
access and manipulation operations on geographic
features. Geographic features are basically earth-related
data definitions, such as rivers, lakes, earthquake seismic
records, and so on.

In addition to the domain-level interoperability and
extensibility mentioned above, information systems need
cross-language, operating system, and platform
interoperability to enable data sharing/federating and
analysis over autonomous heterogeneous resources
provided by various organizations. Web service
standards Booth et al. (2004) are a common
implementation of Service-Oriented Architectures (SOA)
ideas, giving us a means of interoperability between
different software applications running on a variety of
platforms. A web service is an interface that describes a
collection of operations that are network accessible
through standardized XML messaging Kreger (2001).
Collectively, web services are a software framework
designed to support interoperable machine-to-machine
interactions over a network. Other systems interact with
the web services in a manner prescribed by its
description using SOAP-messages (Simple Object
Access Protocol), typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related
standards.

Adopting GIS and web service standards and
implementing web service versions of standard GIS
services permits applications to span programming
languages, platforms, and operating systems Pierce et al.
(2008). It also enables application developers to integrate
the third party geo-spatial functionality and data into their
custom applications easily.

FINE-GRAINED FEDERATION ARCHITECTURE

View-based data federation is a framework that solves
the data integration problem for structured data by
integrating sources into a single unified view. This
integration is facilitated by a declarative mapping
language that allows the specification of how each source
relates to the unified view. In GIS domain, such unified
views are used in many geo-science and geo-physics
applications by using ad-hoc solutions. Figure 3 can be
given as a motivating scenario in which earthquake
seismic data records and LandSat satellite map image

are combined at view-level, and as a result, new
information is obtained. Users from different expert levels
can easily see that south west region of Turkey has
higher earthquake records than the other regions.
The proposed federator framework is an infrastructure for
understanding and managing the production of
knowledge from distributed observation, simulation, and
analysis through integrated data-views in the form of
multilayered map images. Infrastructure is based on a
common data model, OGC compatible standard GIS web
service components, and a federator. The precondition to
be able to define a unified view (view-level data
integration) is that all heterogeneous datasets
representing a layer in the view needs to be created and
stored by using the same spatial reference system and
as well as the same projection system. If the data sets
satisfy this condition they are said to be semantically
compatible, that is, they can be overlaid. If a data
provider is not OGC compatible, their data can be
possibly integrated to the system through mediator
services (Wiederhold, 1995). Mediators enable
interoperability between heterogeneous data sources and
the proposed system by performing resource specific
conversions. The federator provides one global view over
several data sources processed as one source (). There
are three general issues here. The first is the data
modeling (how to integrate different source schemas); the
second is their querying (how to answer the queries
posed on the global schema); and the third is the
common presentation model of data sources, that is, the
mapping of a common data model to a display model,
enabling integration/overlaying with other data sets
(integrated data-view). The first two groups of research
issues are related to lower level (database and files) data
format/query/access heterogeneities, summarized as
semantic heterogeneity. In the proposed framework,
OGC specifications for data models (GML) and online
services (WMS and WFS) define these. The following
parts of the work “federation framework” and “federation
through capability aggregation” present the proposed
solution approach to the third issue.

Federation framework

Figure 1 shows a three-level hierarchy data system,
which is the essential framework of the proposed system.
Heterogeneous data sources, which form the bottom
layer of the hierarchy, are integrated into the system
through mediators (WMS and WFS). Mediators provide
an interface for the local data sources and play the roles
of connectors between the local and the global sources
Wiederhold (1995). The mediators not only enable data
sources integrated into the system to conform to the
global data model, but also enable the data sources to
maintain their internal structure. In the end, the whole
mediator system provides a large degree of autonomy
(Figure 1).

Sayar 2247

Figure 1. Data life-cycle and integrated data-view creation.

Figure 2. Federated GIS framework.

The proposed federation framework is a 2-stage
process. The stages are compile-time (or setup time) and
run-time. The compile-time stage defines integrated data-
view and its components in terms of layers and
corresponding web services. In the first stage, the
federator searches for the standard GIS web service
components (WMS or WFS) providing required data
layers and organizes them into one aggregated capability
file as indicated in the dotted lines in Figure 2. There is
no client/user interaction with the system in this first
stage. This stage is the core of the proposed framework
and explained in “federation through capability

aggregation” part of the work in detail. In the run-time
stage, there is client/user interaction with the system
through a browser that provides an event-based
interactive display and query tools, such as map
displaying tools as indicated in the solid arrows in Figure
2. Zooming in/out, distance calculation, dragging and
dropping are given as examples of event-based queries
in Figure 2.

The proposed federation framework does not support
automated service registry or sign off. It does not have
automatic service discovery capability. The topology of
contributing services (aggregated capability metadata) is

2248 Sci. Res. Essays

Figure 3. Integrated data-view. Layers are Nasa-Satellite (raster)
and Earthquake-seismic (vector).

defined at the beginning at compile/setup time manually
by the developer. Contributing components are supposed
to define their standard services and data in accordance
with the publicly available open standards (OGC). These
definitions are done through capability metadata. Each
type of component (WMS and WFS) has its own type of
schema to define its capability metadata in which
available information/data and related operations are
defined and binding information (information about how to
access those data) is provided. In GIS, each component
has its own global schema. Underlying data accesses are
manipulated and mediated by their global schema. All
these services and their data are publicly available and
autonomous. We have nothing to do with those services
except using their data through their standard service
interfaces.

Figure 2 represents the proposed federation framework
on a sample scenario. A WMS provides NASA satellite
map images in raster formats with corresponding
capabilities metadata. Its metadata is called “a”. A WFS
provides earthquake seismic data records in GML format
with its corresponding capabilities metadata are called
“b”. At compile time federator collects their metadata and
creates a aggregated metadata carrying information
about satellite map images and earthquake seismic data
records (a and b). The federator serves these datasets as
if they are its own. Figure 2 also shows an event-based
interactive map tool displayed on browsers and enable
user interaction with the system. The client tools convert
users’ event-based actions into standard web service
queries sent to the federator.

The focus of this paper is on combining information
from several components to form a view as a map.
Federation is based on a hierarchical data definition as
multilayer maps. This definition is done in the federator.
Hierarchical data is described as below. The more
detailed illustration of this is given in “federation through
capability aggregation” part of this work as a capability
metadata.

Map -> Layer -> Data [vector (GML) / raster (binary images)] --->Raw data

A sample scenario illustrated in Figure 2:
[Map]

– [Layer]
• [Data] - raster

– Nasa Satellite Earth Images (binding information for WMS)
– [Layer]

• [Data] - vector
– Earthquake-Seismic-Data (binding information for WFS)

A map is an application-based, human-recognizable,
integrated data display and is composed of layers. A
layer is data rendering of a single homogeneous data
source. Layers are created from the structured XML-
encoded common data model (GML) or binary map
images (raster data). Heterogeneous data sources (raw
data) are integrated into the system as GML or binary
map images through the resource specific mediators. The
mediators have resource specific adaptors for request
and response conversions and appropriate capability
metadata describing the data and resources.

To illustrate service federation, we give a real geo-
science application as an example. In the Pattern
Informatics (PI) application (Tiampo et al., 2002),
decision makers need to see earthquake forecast values
and seismic data records plotted on satellite map images.
Satellite map images are provided by the NASA OnEarth
server (a WMS) located at the NASA Jet Propulsion
Laboratory (JPL) (OnEarth, 2007), and the WFS at the
Visualization Laboratory at Kocaeli University provides
the earthquake seismic data records. The federator
aggregates these services’ standard capability metadata
and creates an aggregated one as if those data sets were
its own. The output of this federation is an integrated data
view given in Figure 3. The users access the system as
though all the data and functions come from the
federator. The data distribution and connection paths stay
hidden and formulated in the federator’s aggregated
capability metadata.

Federation through capability aggregation

Capabilities are metadata about the data and services
and have an XML schema defined by the OGC.
Capability descriptions include information about data
and its corresponding operations with the attribute-based
constraints and acceptable request/response formats. It
supplements the Web Service Description Language
(WSDL) (Christensen et al. 2001), which specifies key
low-level message formats but does not define
information or data architecture. These are left to domain
specific capabilities metadata and data description
languages (such as GML). Capabilities also provide
machine and human readable information that enables
integration and federation of data/information. It also aids
the development of interactive, reusable client tools for

data access/query and display. We use the open
standard specifications’ definitions and present the
required extensions for the federation through
hierarchical data creation.

Let’s assume we are federating two datasets as shown
in Figure 2. These datasets are “Nasa Satellite” and
“Earthquake-Seismic-Data”. “Earthquake-Seismic-Data”
is also called earthquake data. As mentioned earlier in
“federation framework” part of this work, these datasets
are actually defined as layers and federation outcome is
defined as a map. The remaining of this part of this work
describes our approaches to view-level federation of
those datasets and creating a data representation model
through a capability metadata (that is, federal dictionary).

There are two possible ways to bind the services to the
federator to be able to create an application specific
hierarchical data in an integrated data-view. One is
borrowing some definitions of Web Map Context’s (WMC)
standards (Sonnet, 2005) and extending them for the
federation purposes. WMC do not include WFS binding
information in its service composition definition which is
called context-document. It needs to be extended in
accordance with federator’s aims. Another alternative is
extending the WMS’ standard capability schema
definitions by giving the reference to the service access
points providing the required layer (WMS) and/or feature
data (WFS). These approaches are explained below.

In the first approach, this paper utilizes the context
document specifications of the OGC. The OGC’s WMS
and WFS services are inherently capable of being

Sayar 2249

cascaded and chained in order to create more complex
data/information. To standardize these issues, the OGC
introduced the Web Map Context (WMC) standard
specifications. A WMC is actually a companion
specification to WMS. It is one of OGC specifications for
describing how a specific grouping of maps from
distributed Web Map Servers can be described in a
portable, platform-independent format to store or transmit
between clients. WMC define project-based contents of
layers possibly be used as a map in a GIS application.
WMC do not define overlay layers, which are rendered
from GML provided by WFS. It only describes layers from
WMS. In this paper, we extend context-document
schema definition for the federation purposes, and enable
integration of layers both from WMS and WFS.
This description of federal schema is done in a portable
and platform-independent format (XML) and called
“context document” or “context”. A context document
contains information about the composed layers to create
an overall map. Each layer is described with domain
specific attributes such as map projection system and
bounding boxes in which layers are available. The
context document can provide default startup views for
particular classes of users. An example of a context
document is given below. It describes the integrated data
view displayed in Figure 3. The unnecessary details at
the above context file are truncated. We just use related
elements and tags for the data cascading and service
binding. The standard schema for a context document is
given in Sonnet (2005).

<ViewContext version="1.0.0" id="OGCContext"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <General>
 <Window width="500" height="400" />
 <BoundingBox srs="EPSG:4326" minx="-180.00" miny="-90.00" maxx="180.00"
maxy="83.62" />
 <Title>Maps for Pattern Informatics Application</Title>
 <Abstract />
 </General>
 ….
 <LayerList>
 <Layer queryable="1" hidden="0"> WFS Binding
 <Extension infoFormat="text/xml" ID="4e4b-83e" editable="0" local="1" />
 <Server service="WFS" version="1.1.0" title="CGL_WFS">
 <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" />
 </Server>
 <Name> Earthquake-Seismic-Data </Name>
 <Title>Earthquake Seismic Data</Title>
 <Abstract>Sample WMS to WFS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 <FormatList>
 <Format current="1">image/png</Format>
 </FormatList>
 …..
 </Layer>
 <Layer hidden="0"> WMS Binding
 <Extension infoFormat="text/html" ID="1fc-4e4b-83e" editable="0" local="1" />
 <Server service="WMS" version="1.1.1" title="CGL_WMS">
 <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" />
 </Server>
 <Name> Nasa Satellite Earth Images </Name>
 <Title>Nasa Satellite Data</Title>
 <Abstract>Sample WMS to WMS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 </Layer>
 …..
 </LayerList>
 …
</ViewContext>

2250 Sci. Res. Essays

<ViewContext version="1.0.0" id="OGCContext"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <General>
 <Window width="500" height="400" />
 <BoundingBox srs="EPSG:4326" minx="-180.00" miny="-90.00" maxx="180.00"
maxy="83.62" />
 <Title>Maps for Pattern Informatics Application</Title>
 <Abstract />
 </General>
 ….
 <LayerList>
 <Layer queryable="1" hidden="0"> WFS Binding
 <Extension infoFormat="text/xml" ID="4e4b-83e" editable="0" local="1" />
 <Server service="WFS" version="1.1.0" title="CGL_WFS">
 <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" />
 </Server>
 <Name> Earthquake-Seismic-Data </Name>
 <Title>Earthquake Seismic Data</Title>
 <Abstract>Sample WMS to WFS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 <FormatList>
 <Format current="1">image/png</Format>
 </FormatList>
 …..
 </Layer>
 <Layer hidden="0"> WMS Binding
 <Extension infoFormat="text/html" ID="1fc-4e4b-83e" editable="0" local="1" />
 <Server service="WMS" version="1.1.1" title="CGL_WMS">
 <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" />
 </Server>
 <Name> Nasa Satellite Earth Images </Name>
 <Title>Nasa Satellite Data</Title>
 <Abstract>Sample WMS to WMS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 </Layer>
 …..
 </LayerList>
 …
</ViewContext>

In the second approach, WMS are extended with the
federator capabilities. Data providing in the WMS are
called “layers” and defined in layer tags in the capability
metadata with attributes and features according to the
standard WMS capability schema (Beaujardiere, 2004).
Service binding is accomplished through the cascaded
layer definition. A layer is regarded to have been
“cascaded” if it was obtained from an originating server
and then included in the capabilities XML of a different
server. The second server may simply offer an additional
access point for the layer, or may add value by offering
additional output formats or spatial reference systems. If
a WMS cascades the content of another WMS, then it
must increment the value of the cascaded attribute for the
affected layers by 1 (see the example below). If that

attribute is missing from the originating WMS’s
capabilities XML (that is, the layer has not been
cascaded before), then the cascading WMS inserts the
“cascade” attribute to the layer tag and sets it to 1. The
default value of cascading is 0 (Kolodziej, 2004).
Federator is not supposed to provide any layer by itself, it
is a uniform access point for the registered data services.
Therefore each layer in its capability metadata needs to
be defined with the attribute cascaded and set to 1. A
small part of the federator’s capability metadata is
displayed below, unnecessary details are truncated. It is
developed for the sample case illustrated in Figures 2
and 3. WMS’s standard capability metadata schema is
available at OGC (2012).

<?xml version="1.0" encoding="UTF-8"?>
<WMS_Capabilities xmlns="http://www.opengis.net/wms"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wms>
……
….
<Layer cascaded="1">

<Name> Earthquake-Seismic-Data </Name>
<Title> Earthquake-Seismic-Data layer</Title>

 <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" />
…
<DataURL>

 <Format>image/gif</Format>
 <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple" xlink:href=" http://toro.ucs.indiana.edu/cgi-
bin/wms0.cgi?" />

</DataURL>
</Layer>
…..
<Layer cascaded="1">

<Name>NASA Satellite</Name>
<Title> NASA Satellite </Title>

 <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" />
<SRS>EPSG:4326</SRS>
…
<DataURL>

 <Format>image/gif</Format>
 <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple" xlink:href=" http://wms.jpl.nasa.gov/wms.cgi?" />

</DataURL>
</Layer>
…..

</Capability>
</WMS_Capabilities>

Sayar 2251

<?xml version="1.0" encoding="UTF-8"?>
<WMS_Capabilities xmlns="http://www.opengis.net/wms"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wms>
……
….
<Layer cascaded="1">

<Name> Earthquake-Seismic-Data </Name>
<Title> Earthquake-Seismic-Data layer</Title>

 <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" />
…
<DataURL>

 <Format>image/gif</Format>
 <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple" xlink:href=" http://toro.ucs.indiana.edu/cgi-
bin/wms0.cgi?" />

</DataURL>
</Layer>
…..
<Layer cascaded="1">

<Name>NASA Satellite</Name>
<Title> NASA Satellite </Title>

 <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" />
<SRS>EPSG:4326</SRS>
…
<DataURL>

 <Format>image/gif</Format>
 <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple" xlink:href=" http://wms.jpl.nasa.gov/wms.cgi?" />

</DataURL>
</Layer>
…..

</Capability>
</WMS_Capabilities>

FEDERATOR-ORIENTED DISTRIBUTED QUERY
OPTIMIZATION

Distributed GIS systems typically handle large volume of
datasets. Therefore, transmission, processing, and
visualization/rendering techniques need to be responsive
to provide quick, interactive feedback. Some
characteristics of GIS services and data make it difficult
to design the distributed GIS with a satisfactory
performance. One is that processes and analysis in GIS
necessitate heavy CPU usage. This mostly stem from the
complexities in underlying computational geometry.
Another is that processes and analysis in GIS often
require transmitting large datasets, such as annotated-
structured data (due to the interoperability requirements),
images, or large files in tabular-matrix formats. In most
cases, the amount of collected data reaches an amount
in the order of gigabytes or even terabytes. Therefore,
the GIS services must enable accessing and processing
of these large data sets in a reasonable time period. This
scenario is even worse when map animations and map
movies are created (requiring many static map images to
be created successively). Furthermore, due to the limited
bandwidth and network speed, a GIS system faces the
same performance problem as all the large-scale
distributed applications do. This challenge prevents
making large-scale geo-science applications feasible.
In such an application framework (fine-grained federation
architecture and Figure 2), in which you know what data
sets need to be used and from where, you can apply
some well-known performance improving techniques.
Federator is a kind of central approach built over
distributed autonomous data sources. The central
approaches give the better performance but in most
cases, due to the application requirements, it is inevitable
that distributed approaches will be used. In the proposed
framework, we take advantage of both centralized and
distributed approaches. The following part of this work

“Pre-fetching” presents the architecture details.

Pre-fetching

Pre-fetching is briefly defined as retrieving the data
before it is needed and used to overcome the
performance bottleneck of the distributed systems. The
bottleneck is transferring large-sized data from source
(database) to destination in the common data model,
GML. On-demand accesses to the originating databases
through WFS are very costly, not only because of the
requirement of moving the large data, but also due to
query and response conversions. To solve that
bottleneck problem, the federator periodically fetches and
updates whole data in databases into GML sets and
stores it locally. The successive queries are served from
pre-fetched data in a federator’s local disk. To reduce the
inconsistency problem, the fetching module fetches and
updates the data periodically. It indirectly enables getting
over the query/response transformation overhead at
WFS.

Datasets to be pre-fetched are predefined by
application developer. Developer needs to be
experienced about the contributing servers and their
performance. If the contributing servers’ performances
are good enough, then their data do not need to be pre-
fetched.

The proposed architecture has two processes. The first
process is pre-fetching, which is independent of
application run time, and it does not affect on-demand
data accesses from the clients. The second process is
users’ on-demand access, which is served from the pre-
fetched data. The federator behaves as proxy for other
distributed data sources by collecting their data in a ready
to use common data model (GML) at periodic intervals,
and successive queries are responded centrally from a
federator’s disk space in which the pre-fetched GML data

2252 Sci. Res. Essays

Figure 4. Pre-fetching architecture.

sets are stored. Figure 4 presents the pre-fetching
approach.

Data transfers between standard GIS web services are
done over the standard HTTP protocol. In our earlier
works, we have extended OGC’s transfer protocol in
accordance with web service standards. Here, we go one
step further and integrate topic based publish-subscribe
paradigms (which is mostly used in P2P systems) into the
communication between WFS and federator to transfer
feature collections. NaradaBrokering Pallickara and Fox
(2003) is one of the well-known applications of that
approach enabling streaming data transport, reliable
delivery, and recovery from network failures at the
application level. In this approach, standard web service
interfaces are used as a handshake protocol and the
actual data is transferred over publish-subscribe based
messaging system (NaradaBrokering, in Figure 4). This
approach has some advantages over using pure web
services. The system gets rid of the SOAP message
creation overheads, and enables creation of map layers
with partially returned data.

As shown in Figure 4, in the pre-fetching, requests
requests for data are done through standard SOAP
messages. On the other hand, to retrieving the results,
NaradaBrokering system is used in which WFS (server)
become publishers and the federator (client) becomes
subscriber. Through the “getFeature” interface of WFS
web services, the pre-fetching module gets the topic
name (publish-subscribe for a specific data), IP, and port
on which WFS stream the requested data. The

NaradaBrokering subscriber does the second request
using the returned parameters. GML data is provided by
streaming WFS (Vretanos, 2002). It uses standard SOAP
messages for receiving queries from the clients; however,
the query results are published (streamed) to a
NaradaBrokering topic as they become available. To do

that, we define the “task” and “timer”. Task defines the
pre-fetching job, and timer defines the running periodicity
of the task. Aydin et al. (2008) for more details about the
streaming data transfer between GIS web services by
using NaradaBrokering.

As Figure 4 illustrates, there are two separate storage
locations for the data: temporary storage and stable
storage. The former is for pre-fetching, and the latter is
for serving the clients’ on-demand queries. Even if the
system is busy with pre-fetching, it keeps itself up and
running for the clients by using the stable storage. When
the data transfer to the temporary location is complete, all
data at that location will be moved to stable location.
Reading and writing the data files at the stable locations
are synchronized to keep the data consistent. This cycle
is repeated at some time intervals predefined by the
periodicity parameter of the pre-fetching module. Since
the data fetching is done independent of real application
time, it does not affect the application performance. In
order for the pre-fetching algorithm to work properly, the
pre-fetching module fetches the data as a whole; the
query should not define any constraints. On the other
hand, the requests from clients contain some query
constraints. The federator side handles these queries and
their constraints. Queries are processed by using parser
techniques and XPATH (Clark and DeRose, 1999)
queries over the pre-fetched data.

The pre-fetching module is composed of two
components. One is “timer”, defining the periodicity that
pre-fetching will be running on, and the other is “task”,
defining what to fetch. The periodicity should not be less
than the data transfer time. The periodicity for data
fetching is defined under the considerations of data
characteristics and the developer’s experience on the
domain specific application. Here is the pre-fetching task
defined in a pseudo code:

public void task() {

 //List all the data sets to be pre-fetched
 dataList = getDataNamesTobePrefetched();

 // Define the storage locations
 String tempDatastore = applpath + "/whereDataTobePlaced";
 String stableDatastore = applpath + "/whereDataTobeServedFrom";
 //Fetching all the data in CDM format (GML)
 fd.FetchDataWithStreaming(NBip,NBport,NBtopic,
 wfs_address,tempDatastore,CDMdataList);
 // move the data to the stable storage
 fd.moveData(tempDatastore, stableDatastore);
 }

Here is the sample timer: timer. schedule (task, 0,
40000);

Timer schedules the specified task for repeated fixed-
delay execution, and subsequent executions take place
at regular intervals.

There are three concerns in developing an efficient pre-
fetching architecture. The first one is regarding the limited
storage capacity for a node. In other words, the
federator’s storage capacity constrains the size of the
pre-fetched data. In the future, we plan to use Apache
Hadoop (distributed data storage framework) (Apache
Hadoop Project, 2007) to overcome the storage
limitations for the federator. The second concern is that
system might possibly have inconsistent datasets in a
short period of time. This is also related to the
characteristics of data. Some archived data are updated
so often that they look like real-time data. In that case,
pre-fetching becomes unfeasible and cannot be
benefited. Our criterion whether this technique is
applicable or not depends on two measurements. One is
the minimum time required to fetch a whole critical data
from the source and another is the time periodicity in
which dataset is updated in its storage. If the dataset
changes less than a time period in which whole critical
dataset is fetched, then the dataset is called frequently
changing. Therefore, it can be concluded that this
technique is not applicable for the frequently changing
datasets. The third, and final, concern is about the
availability of the data sources. When the originating data
server is down and the federator cannot perform
synchronization regularly, then the federator will have to
serve its clients from the last pre-fetched, possibly
outdated, data sets. When the data server comes to live,
the federator starts performing its pre-fetching.

Performance evaluation of pre-fetching

The proposed pre-fetching technique is tested on real-
world Pattern Informatics earthquake geo-science
application . Pattern Informatics is an earthquake
forecasting application developed at University of

Sayar 2253

California at Davis and uses archived earthquake seismic
records stored at the WFS as feature collections encoded
in GML.

Every machine (on which servers are deployed) in the
test setup has 2 Quad-core Intel Xeon processors with 8
GB of memory and running at 2.33 GHz. They are
operating Red Hat Linux ES. WFS, WMS, federator and
Map Client tools are deployed in separate machines in
Kocaeli University’s Local Area Network (LAN). Figure 4
illustrates the pre-fetching technique and can be
considered as a test setup. In case of serving client
requests from original resources (on-demand fetching
approach), one end is the database and other end is the
user. This is shown with the broken arrows in the Figure
4. In case of serving client requests from pre-fetched data
(pre-fetching approach), one end is the federator and
other end is the user, which is shown as thick solid
arrows in the Figure 4. Thin solid lines are pre-fetching
module which is independent of the application runtime
and does not affect the response times of clients’ on
demand requests.

The pre-fetched data size does not change as long as
the data in the originating source remain the same. For
the test case scenario, pre-fetching is applied on
earthquake seismic data records. Seismic data records
are fetched and stored in the federator’s local file system
in GML form and periodically synchronized with the
originating data source. Every time a request comes
(even for 1 KB of data) from a client, federator scans
whole GML file to extract the requested part. The size of
GML is about 127 MB, which represents the whole data
in its originating source (WFS). For the 127 MB of GML
data, parsing and data extraction time is average 5.69 s.
This value is a part of overall response time is case of
using pre-fetched data. As the query size increases the
ratio of this value in overall response time decreases. In
case of serving clients from pre-fetched dataset,
response time does not include data transfer time. This
explains why, in, response time does not change
considerably depending on the increasing query payload
size as indicated in the dotted line in Figure 5.

Figure 5 shows that the performance results for pre-
fetching and on-demand fetching seem very close until a
specific threshold data size (around 500 KB). After that
threshold value, performance difference increases
significantly. For example, for 10 MB of data, the pre-
fetching is about 7 times faster than on-demand fetching.
also shows that the larger the data size the higher the
performance gains when the pre-fetched dataset is used
by means of the federator. Figure 5 also shows that on-
demand fetching curve linearly increases by the
increasing data sizes. This is because of WFS used in
the test scenario. When the request comes; WFS parse
the query, access the databases, get the feature data
and convert the result sets to GML data. Since OGC
services are stateless and WFS used in the system do
not use any performance enhancing techniques,

2254 Sci. Res. Essays

Figure 5. Performance comparison of pre-fetching and ordinary
way.

response time increases linearly.

SUMMARY AND FUTURE WORKS

Open GIS standards define standard data services that
provide data in standard formats (common data models)
with the corresponding capability metadata (about the
data+services) and the standard service API. These
service properties and standardization make them
composable. We have introduced a federator, which
federates the standard GIS web services components
through aggregation of their capabilities’ metadata and
presents a single database image to the user, which is
defined in federator’s aggregated capability metadata.

The proposed framework federates service-oriented
GIS web services and addresses interoperability issues
by integrating web services with Open Geographic
Standards. The framework provides interoperability at
data, service, and application levels, and integrates geo-
data sources into geo-science grid applications
seamlessly. We have also outlined our research and
implementations to build a distributed geophysical SOA
enabling fine-grained information/knowledge
presentations in multilayered map images through a
novel federator architecture. The proposed architecture is
based on a XML-encoded common data model, standard
GIS web service components, and a federator service.
We have addressed several issues related to archival
data access and processing from a single access point,
and investigated novel techniques to federate distributed
GIS web services.

Federator approach is a kind of centralized approaches

over distributed web services. It has some advantages in
terms of performance through the applications of caching,
load balancing, sessionful service policies, etc. However,
it might cause data inconsistencies due to having
centralized characteristics and keeping data at multiple
geographically distributed places simultaneously. Another
drawback of the federated systems is single point of
failure issue. However, this risk is present in most of the
"ultimate" and successful platforms, including:
GoogleMap/Earth; Cloud Computing platforms, etc. The
system reliability will be enhanced by adopting backup
servers and modular software components.

Even though it has some performance and easy to use
advantages for the users, federated approach is not
going in the direction of an efficient and distributed
environment. Brokering approach on the other hand can
be considered for further developments of the project. It
offers a greater level of flexibility than other architectural
solutions. A broker can implement added-value
functionalities related to data discovery, access and
semantic expansions.

In the proposed system, we use a static approach to
create application-specific hierarchical data layers in the
federator’s aggregated capability metadata. That is, the
federated capabilities file defining the data and
corresponding data sources are not allowed to be
changed or updated after the application runs. It would be
useful for the system to automatically create, deploy, and
update the required layers and to add the corresponding
services dynamically. To enable such quality of services,
we plan to enhance the system through data registry and
discovery services. Federator automatically looks up the
registry service and finds out the required data layers and
updates its aggregated metadata automatically. To do
that registry services need to keep metadata for the data
sets, as well as service API. In addition, we plan to
enhance the system with Web 2.0 (Shuen, 2008)
standards. The concept of services has been changing in
recent years. The new generation service concept is
letting people collaborate and share information online.
This concept is represented with the term Web 2.0. It
would be useful to see if the proposed framework can be
extended with Web 2.0 and what kind of outcomes can
be obtained.

The pre-fetching technique gives the best performance
outcomes for archived data, but may cause inconsistency
depending on the fetching and data updating periodicity
in their originating sources. It is not easy to apply the pre-
fetching approach on dynamically changing data sets
used in some applications, such as early warning
systems. The criterion for selecting the technique to apply
depends on two measurements. One is the minimum
time required to fetch a whole data from the source and
another is the time periodicity in which the data are
updated in its storage. If the former is smaller than the
latter, it is not feasible to apply the proposed pre-fetching
technique. Another concern with the pre-fetching is the

limited storage capacity of the federator. In the future, this
problem can be solved by using a distributed file system
such as Apache Hadoop. The work presented in this
paper was aimed towards problems in geo-science, and
we believe it can be adopted for other scientific domains,
if the data in those domains can be spatially defined. The
data space may be real space (such as astronomy), or
takes a part in a parameter space (e.g. chemical spaces).
However, the effects of domain-specific requirements are
not well understood. We think that it is important to
explore how the common data standards, such as GML,
and service standards, such as WFS or WMS, can be
adapted to these different domains.

REFERENCES

Al-Turjman FM, Hassanein HS, Oteafy SMA (2011). Towards
Augmenting Federated Wireless Sensor Networks. Procedia
Computer Science. 5:224-231.

Anh TL, Villalobos J, Estublier J (2003). Multi-Level Composition for
Software Federations. Electronic Notes in Theoretical Computer
Science. 82(5):164-173.

Apache Hadoop Project (2007). The Apache Software Foundation.
http://hadoop.apache.org/. Accessed 24/12/2010 2010.

Aydin G, Sayar A, Gadgil H, Aktas MS, Fox GC, Ko S, Bulut H, Pierce
ME (2008). Building and Applying Geographical Information Systems
Grids. Concurrency and Computation: Practice and Experience.
20(14):1653-1695.

Batcheller JK (2008). Automating geospatial metadata generation—An
integrated data management and documentation approach.
Computers & Geosciences. 34(4):387–398

Beaujardiere Jdl (2004). OGC Web Map Service Interface. 1.3 edn.
Open GIS Consortium Inc. (OGC).

Booth D, Haas H, McCabe F, Newcomer E, Champion M, Ferris C,
Orchard D (2004). Web Services Architecture. World Wide Web
(W3C),

Butenuth M, Gösseln Gv, Tiedge M, Heipke C, Lipeck U, Sester M
(2007). Integration of heterogeneous geospatial data in a federated
database. ISPRS Journal of Photogrammetry & Remote Sensing.
62(5):328–346.

Chao W, Guo Y, Zhou B (2012). Social networking federation: A
position paper. Computers and Electrical Engineering. 38(2):306-329.

Christensen E, Curbera F, Meredith G, Weerawarana S (2001). Web
Services Description Language (WSDL) World Wide Web
Consortium (W3C),

Clark J, DeRose S (1999). XML Path Language (XPath) Version 1.0.
Cox S, Daisey P, Lake R, Portele C, Whiteside A (2003). OpenGIS®

Geography Markup Language (GML) Encoding Specification. 3.0
edn. Open Geospatial Consortium (OGC),

Erradi A, Maheshwari P A(2005). Broker-Based Approach for Improving
Web Services Reliability. In: IEEE International Conference on Web
Services, 11-15 July 2005. IEEE, pp. 355-362.

EuroGEOSS (2013). http://www.eurogeoss.eu/default.aspx. Accessed
June 20, 2013

Evans JD (2003) Web Coverage Service (WCS), Version 1.0.0.
Fonseca FT, Egenhofer MJ, Agouris P, Cámara G (2002). Using

Ontologies for Integrated Geographic Information Systems.
Transactions in GIS. 6(3):231-257.

Gray J, Szalay AS, Thakar AR, Kunszt PZ, Stoughton C, Slutz D,
vandenBerg J (2002). Data Mining the SDSS SkyServer Database.
Microsoft.

Gruber TR (1993). A translation approach to portable ontology
specification. Knowledge Acquisition. 5(2):199-220.

Huang Y, Cai G, Wang G (2011). Dynamic Service Composition Based
on Federated Agents. Energy Procedia. 13:5536-5543.

ISO. (2008). http://www.isotc211.org/. Accessed 03/27/2008 2008.
Kolodziej K (2004). OpenGIS Web Map Server Cookbook. Open

Sayar 2255

 Geospatial Consortium Inc. (OGC).
Kreger H (2001). Web Services Conceptual Architecture (WSCA 1.0).

IBM.
Lagoze C, Sompel HVd (2006). The Open Archives Initiative Protocol

for Metadata Harvesting (OAI-PMH).
Leal K, Huedob E, Llorente IM (2009). A decentralized model for

scheduling independent tasks in Federated Grids. Future Generation
Computer Systems. 25(8):840 -852.

Madsen P (2004). Federated identity and web services. Information
Security Tech Report. 9(3):133-121.

Morocho V, Saltor F, Perez-Vidal L (2003). Schema Integration on
Federated Spatial DB across Ontologies. In: Proceedings of the 5TH
International Workshop on Engineering Federated Information
Systems (EFIS2003), Coventry, UK, Jul 2003. pp. 63-72.

OGC (1994). http://www.opengeospatial.org/. Accessed 02/14/2008.
OGC (2012). WMS capability schema.
OnEarth (2007). NASA - Jet Propulsion Laboratories.

http://onearth.jpl.nasa.gov. Accessed 03/15/2008.
Pallickara S, Fox G (2003). Narada Brokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer
Grids. Paper presented at the ACM/IFIP/USENIX, Rio Janeiro, Brazil,
June 2003.

Pautasso C (2009). RESTful Web service composition with BPEL for
REST. Data and Knowledge Engineering. 68(9):851-866.

Peng ZR, Tsou MH (2003). Internet GIS: Distributed Geographic
Information Services for the Internet and Wireless Networks. John
Wiley & Sons, New Jersey, USA.

Pierce ME, Fox GC, Aktas MS, Aydin G, Qi Z, Sayar. A (2008). The
QuakeSim Project: Web Services for Managing Geophysical Data
and Applications. Pure and Applied Geophysics (PAGEOPH). 165(3-
4):635-651.

Sheth A, Larson J (1990). Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases. ACM
Computing Surveys. 22(3):183-236.

Sonnet J (2005). Web Map Context Documents (WMC). Open
Geospatial Consortium Inc. (OGC).

Tanenbaum AS (2008) Modern Operating Systems. Third edn. Pearson
Prentice Hall, NJ, USA.

Tiampo KF, Rundle JB, Mcginnis SA, Klein W (2002). Pattern Dynamics
and Forecast Methods in Seismically Active Regions. Pure and
Applied Geophysics. 159(10):2429-2467.

Trnkoczy J, Stankovski V (2008). Improving the performance of
Federated Digital Library services. Future Generation Computer
Systems. 24(8):824-832.

Trnkoczy J, Turk Ž, Stankovski V (2006). A grid-based architecture for
personalized federation of digital libraries. Computer and Information
Science. 30(3/4):139-153.

Vázquez C, Huedo E, Montero RS, Llorente IM (2010). Federation of
TeraGrid, EGEE and OSG infrastructures through a metascheduler.
Future Generation Computer Systems 26(7):979-985.

Vermeer MWW, Apers PMG (1998) Specifying Global Behaviour In
Database Federations. Information Systems 23 (3/4):217-233.

Vretanos PA (2002). Web Feature Service Implementation
Specification.

W3C. (2008). http://www.w3c.org.
Wiederhold G (1995). Mediation in Information Systems. ACM

Computing Surveys (ACM). 27(2):265-267.

2256 Sci. Res. Essays

Glossary

API: Application Programming Interface
Bbox: (Bounding box) (OGC-defined) A geo-data
attribute to define 2-dimensional ranges in rectangular
shapes (minx, miny maxx, maxy).
Capability metadata: A metadata about the data and
services together. It includes information about the data
and corresponding operations with the attribute-based
constraints and acceptable request/response formats.
Context document: A context document is an XML-
encoded description of map layer compositions. It is
defined as a part of WMC specifications. It includes
information about layer descriptions in terms of server
bindings and URLs, projection system, available
bounding boxes etc.
Fine-grained: Smaller components of which the larger
ones are composed. It can also be described as dense or
compact in structure or texture.
Geographic features: Earth-related data definitions,
such as rivers, lakes, earthquake seismic records, and so
on
GIS: (Geographic Information Systems) represent the
main technology motivating interest in developing
spatially enabled system. GIS also provide convenient
mechanisms for analyzing and visualizing geographic
data.
GML: (Geographic Markup Language) (OGC-defined) An
XML grammar defined by OGC to model geo-data in
commonly accepted widely used standard. It enables
datasets to be easily accessed, integrated and analyzed
across the heterogeneous and autonomous
organizations.
HTTP: (Hyper Text Transport Protocol) A stateless
internet protocol for transferring hyper text data between
server and client.
ISO/TC211: A standard technical committee formed
within ISO for geographic information.
Metadata: Simply described as data about data.
Metadata describes other data.
NaradaBrokering: A P2P overlay network developed at
Indiana University, Community Grids Labs. It consists of
broker nodes and based on topic-based publish
subscribe paradigm developed as an overlay network.
OGC: (Open Geospatial Consortium) is an international
standards (not-for-profit) development consortium. It has
365+ industry, government, and university member. It’s
standards are publicly available and widely-used in GIS
domain.
PI: (Pattern Informatics) An earthquake Geo-science
application developed at UC-Davis. It defines method
using observational data to identify the existence of
correlated regions of seismicity.
Raster data: The raster data model is used to model
spatial phenomena that vary continuously over a surface
and that do not have discrete dimension. Examples of
this are elevation, temperature, rainfall and noise levels.

Rendering: Rendering is a process for creating an image
from raw datasets having geometric attributes. Rendering
is done by using computer programs.
Service Oriented Architecture: SOA
SOA: (Service Oriented Architecture) SOA is basically a
collection of communicating services, and organized as
distributed systems. The communication is accomplished
through message passing or some other means.
SOAP: (Simple Object Access Protocol) A simple
protocol specification for exchanging messages between
clients and servers in web services. It consists of three
parts: an envelope, encoding rules and principles for
representing calls and responses.
Vector data: Vector data uses points and their (X,Y)
coordinates to represent spatial features. Point sets come
together in a mathematical model and form lines, line-
strings and polygons to represent spatial data.
Web Services: Web services are basically services
available on the web. They are identified with URI and
their binding information and interfaces (such as types
and numbers of request and response parameters) are
defined by using XML. It also uses XML-encoded
protocol called SOAP for client-server communications.
WFS: (Web Feature Service) (OGC-defined) provides
standards for creating a service to serve any data in an
XML-encoded standard data format (GML) with standard
service interfaces. Geo-data is described with its various
attributes in GML and WFS allows attribute-based
queries with standard.
WSDL: (Description Language for web service) is s a
language to define web services. It is XML-based, and
service descriptions can be accessed through HTML.
WMC: (Web Map Context) (OGC-defined) One of OGC
specifications for describing how a particular overlaying
(combination) of map images from distributed Web Map
Servers can be described in a portable, platform-
independent format to store or transmit between clients.
This description is known as a "Web Map Context
Document," or simply a "Context." Presently, context
documents are primarily designed for WMS bindings.
WMS: (Web Map Service) (OGC-defined) Creates digital
maps from abstract datasets retrieved from Web Feature
Services (WFS). Abstract datasets carry some geometric
attributes to be drawn as digital images.

XML: (Extensible Markup Language): XML is a W3C-
proposed standard, and enables interoperable way to
represent documents for flexible processing. It is based
on SGML (ISO 2008), which is a standardization for
markup languages.

