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Large scale Geographic Information Systems (GIS) require experts from different areas, such as data 
maintenance and handling, data rendering and displaying, and data processing. However, it is 
challenging to host data, processing capabilities, and experts in the same geographical location. To 
enable remote coupling of these data and processing services, interoperable distributed system 
architectures have been developed. This paper presents a distributed Service Oriented Architecture 
(SOA) framework for understanding and managing the production of knowledge from distributed 
observations, simulations, and analyses through integrated data-views. Open GIS standards enable us 
to develop such a distributed framework by defining the standard common data models and 
corresponding web service components. The composability nature of these components has inspired 
us to develop a federated information system framework enabling both application-based hierarchical 
data definitions and performance enhancing designs. 
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INTRODUCTION 
 
There are large amount of different datasets provided by 
various specialized repositories. Users and geo-science 
applications would like to access these distributed 
heterogeneous data sources from a single access point 
through uniform service interfaces enabling unified 
querying. In the literature, these requirements are 
explained as “federation”, which was initially used by the 
database community (Sheth and Larson, 1990). A 
federated database architecture is described in which a 
collection of independent database systems are united 
into a loosely coupled federation in order to share and 
exchange information. A federation consists of 
components and a single federal dictionary maintaining 
the topology of the federation. The federated architecture 
provides mechanisms for sharing data, sharing 
transactions and combining information from several 
autonomous components. 

Geographic Information Systems (GIS) are systems for 

creating, storing, sharing, analyzing, manipulating, and 
displaying spatial data and associated attributes (Peng 
and Tsou, 2003). The purpose of GIS is for extracting 
information/knowledge from raw geo-data. The raw data 
is collected from sensors, satellites or other sources and 
stored in databases or file systems. The data goes 
through filtering and rendering services and presents to 
end-users in recognizable formats, such as images, 
graphs, charts, and so on. GIS is used in a wide variety 
of tasks, such as urban planning, resource management, 
and emergency response planning in case of disasters, 
crisis management, and rapid responses. 

In this paper we propose a view-level federation of 
data/information provided by domain specific 
autonomous web services. Geographic Information 
Systems (GIS) is our selected domain (Peng and Tsou, 
2003). Interoperability issues for the federation of 
services (and/or data) are resolved by adopting domain

 

E-mail: ahmet.sayar@kocaeli.edu.tr. Tel: +90 262 303-3583. Fax: +90 262 303 30 03. 



 

 
 
 
 
specific standards (Open Geospatial Consortium (OGC, 
1994) and ISO/TC211). These standards basically 
publish service definitions, data definitions, and metadata 
about data and services. There are three major data 
types, raster, vector, and coverage, provided by three 
major services, map services, feature services, and 
coverage services respectively. Map services are called 
Web Map Services (WMS) (Beaujardiere, 2004; 
Kolodziej, 2004), feature services are called Web Feature 
Services (WFS) (Vretanos, 2002), and coverage services 
are called Web Coverage Services (WCS) (Evans, 2003). 
Domain specific standards and related information are 
given in “Open Standards and Web Services in GIS” part 
of this work. 

The proposed federator framework is an infrastructure 
for understanding and managing the production of 
knowledge from distributed observation, simulation, and 
analysis through integrated data-views in the form of 
multilayered map images. Infrastructure is based on a 
common data model, OGC compatible standard GIS web 
service components, and a federator. The federator 
provides one global view over several data sources 
processed as one source. The framework enables 
displaying geo-scientific application results on multi-layer 
map images and also enables scientific analysis and 
results to be understood and comprehend not only by the 
scientist but also the public and policymakers from 
different domains and education level. It gives a lot of 
advantages in interpreting and analyzing the geosciences 
application results. The integration of heterogeneous 
geospatial data offers possibilities to manually and 
automatically derive new information, which are not 
available when using only a single data source providing 
a single layer. For example, data from one information 
source (e.g. cadastre) can be used to enrich data from 
another one (e.g. topography). In this way, topographic 
road data can be enriched with address information, 
which is used as an indirect geo-reference in many other 
databases. Pattern Informatics (PI) (Tiampo et al., 2002) 
application can be given as another example. PI 
forecasts earthquake happenings and create a heat-map 
layer showing higher and lower possibilities of 
earthquake happenings with varying colors. Overlaying 
this result on a satellite map image, which is enriched 
with various vector data layers such as city-state 
boundaries and earthquake seismic data, will help 
application users better understand and conceive the 
results. Figure 3 shows an application scenario. 

View-level federation can be better explained through 
an analogy. “Create View” SQL statement in databases 
creates a virtual table, called view. View is like a real 
table with its rows and columns but they are actually 
pointers to the rows and columns in other tables. Views 
are created by “create view” SQL statement and enable 
much more complicated queries to be created easily. A 
view can be used for simplification and customizing the 
perception each user has of  the  database.  By  following  
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the same logic, we thought we can create a virtual map 
image whose layers come from remote servers. Such a 
map makes domain specific application developers’ work 
easier. Some of geosciences applications produce some 
outcomes which only make sense when they are overlaid 
on a map. In that way, application users obtain much 
more perceivable information for the application 
purposes. Application developers only concern with 
rendering their application specific data and overlaying it 
on the multilayer map image returned by the federator. 
From the application users’ point of view, multilayer map 
image is conceived as one-layer, but from the federator’s 
point of view it is multi-layer and each layer is provided by 
geographically distributed GIS web services. The layer 
composition is defined in federal schema in federator 
according to the application specific purposes. Federator 
handles query distribution and merging the results to 
create an abstract multilayer map image whose structure 
is defined in federal dictionary. 

Federation work is based on creating a federal 
dictionary for combining services into a single, logically 
centralized entity, which we call it federator. Federal 
dictionary is created by harvesting standard GIS web 
services’ capabilities metadata. Each standard GIS 
services is defined with capability metadata. Capability is 
metadata about the data and services together. It 
includes information about the data and corresponding 
operations with the attribute-based constraints and 
acceptable request/response formats. Federal dictionary 
defines integrated data view in the form of multi-layer 
map images whose layers are created from spatially 
related vector, raster, and coverage geo-data sets 
provided by WFS, WMS and WCS respectively. 
Throughout the document, federal dictionary is called 
“capability” or “capability metadata”.  

In addition to the usability advantages mentioned 
earlier, since the federator is a type of central approach 
built over the distributed autonomous data sources, the 
proposed architecture enables us to develop 
performance optimization techniques for distributed data 
access and query. GIS, used in emergency early-warning 
systems like homeland security and natural disasters 
(earthquake, flood, etc.), requires quick responses. 
However, because of the characteristics of geo-data 
(large sized and un-evenly distributed. such as 
populations of human beings), time-consuming rendering 
processes, and limited network bandwidth, the 
responsiveness of the system is one of the most 
challenging issues of the distributed systems In this 
context, the federator’s aim is to turn open standards’ 
compliance requirements (such as using XML-encoded 
data models) into competitiveness and to provide 
performance enhanced responsive services that still meet 
the interoperability requirements. In this context, we have 
added topic-based publish-subscribe paradigm, which is 
mostly used in P2P systems, to the standard GIS web 
service   communications.   These   are   investigated    in  
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”federator-oriented distributed query optimization” part of 
this work. 
 
 
RELATED WORKS 
 
Federation has been used for many purposes in various 
domains, and in many different contexts. It is initially used 
by database community (Sheth and Larson,1990; 
Vermeer and Apers, 1998) to extend an existing 
database with heterogeneous data that are separately 
owned. This usage saves maintenance or creation costs 
for the warehouse. Wide spread use of internet and 
developments in database technologies lead the 
federation approach to be used in various area such as 
digital library federations (Trnkoczy and Stankovski, 
2008; Trnkoczy et al., 2006). 

The concept of federation is not only used in data 
integration or database-like technologies, but also used in 
federation of computation-processing services. This kind 
of usage is encountered mostly in compositions of web 
services (Huang et al., 2011; Madsen, 2004; Pautasso, 
2009) or composition of grid services (Vázquez et al., 
2010; Leal et al., 2009) architectures. Moreover, 
federation approach is also utilized in various application 
domains such as social network federation (Chao et al., 
2012), software federation (Anh et al., 2003) and wireless 
or sensor network federation (Al-Turjman et al., 2011). 

It can be easily seen that federation approach might 
have varying application area, and developed for varying 
purposes. However, the challenge in federation, no 
matter what area it is used, arises from the heterogeneity 
of the autonomous components. A federated system can 
be composed of heterogeneous, that is, autonomous, 
components but they need to be interoperable. There are 
two levels of interoperability: syntactical interoperability 
and semantic interoperability. The former requires that 
there is a technical connection, that is, the data can be 
transferred between web services. The latter assures that 
the contents of data and services are correctly 
understood when data/services are connected. 

The proposed distributed system framework is based 
on federation approach. Brokering (Tanenbaum, 2008; 
Erradi and Maheshwari, 2005) is an alternative approach 
for the similar purposes. In fact, a brokering solution does 
not impose any common/federal model but is able to 
implement different federal/common solutions and 
mediate between them. This can be thought as an 
advantage of brokering solution over federated approach. 
On the other hand, developing a federated approach is 
easier than developing its brokered counterpart. Since we 
develop a fine grained federation of GIS web services at 
the “view-level”, developing a federated approach would 
be more efficient for the purpose of the paper. 

EuroGEOSS (Global Earth Observation System of 
Systems) project  (EuroGEOSS, 2013) is an application 
of  brokered  approach,   implementing   multi-disciplinary  

 
 
 
 
interoperability and collaborating spatial data and 
services for both users and data providers. The brokering 
services in the architecture are grouped into three; 
discovery broker, access broker and semantic broker. In 
a brokering framework, application-level services might 
be possibly provided by the infrastructure to enrich the 
basic brokering functionalities. A Broker implements 
added-value functionalities related to its specific scope: 
Discovery, Access, Semantic expansions, etc. 

Ontologies are important for the machines to 
understand the semantics of exchanged content (Gruber, 
1993). W3C  (W3C, 2008) recommends a standard called 
Web Ontology Language (OWL) to represent semantics 
based on a flexible graph model composed of Resource 
Description Framework (RDF) triples. It is initially 
introduced for defining resources on the web. Later, it has 
been used for some other related purposes in various 
domains. In GIS domain, Fonseca et al. (2002) analyses 
ontology based federation of services through Web 
Ontology Language (OWL). They propose ontologies for 
both object and field based modeling of geographic 
datasets, and analysis basics and boundaries of 
ontology-driven GIS. Morocho et al. (2003) proposes 
architectures for schema integration on federated spatial 
databases. They propose a federated schema in GIS 
framework by using OGC’s Geography Markup Language 
(GML) standard  (Cox et al., 2003) and Spatial Data 
Transfer Standard (SDTS). They basically define 
ontology of GML data by means of SDTS. Compared to 
the work presented in this paper, they are not defining the 
overall federation system; instead they define only 
ontology-based semantic data integration. It is not clear 
how to access and query the data, which is integrated 
into the federated schema. 

Another group of related works to solve semantic 
heterogeneity for the federation is based on developing 
application and/or domain specific schema definitions. In 
this case, since the schema definitions are not created in 
accordance with the commonly accepted and widely used 
standards, it is very hard for such frameworks to be 
adapted and extended by the third party applications. 
Batcheller (2008) presents a metadata generation 
approach for integrated data management. They 
implement an extension to Dublin Core geospatial profile 
of 23 elements. Dublin Core was originally capable of 
generating total for 20 basic metadata entries. Butenuth 
et al. (2007) propose a federated database framework for 
geospatial data integration. They define geospatial data 
semantically by using their own schema for predefined 
and classified object classes. 

The proposed federation framework is based on 
metadata harvesting, similar to Open Archive Initiative’s 
Protocol for Metadata Harvesting (OAI-PMH) Lagoze and 
Sompel (2006) in digital library domain. Trnkoczy et al. 
(2006) work can be given as an example of this approach 
on a Grid-computing environment. In an application of 
OAI-PMH,  digital  libraries  to  be  federated  need  to  be  



 

 
 
 
 
defined earlier. Then, the system (or federator) harvests 
metadata from the selected digital libraries and creates 
and stores an index. Index represents the topology of 
contributing data sources. The focus here is defining 
federal dictionary in accordance with the domain specific 
application purposes. 

In our work, priority is given on data representation. 
The syntactic and semantic heterogeneity issues are 
taken as granted by adopting domain specific open 
standards. If any two datasets are described with the 
same spatial reference system and formatted with the 
same projection system, then they are semantically 
compatible for the view-level integration. Using open 
standards enables the proposed federation framework to 
be possibly used by the third party systems and 
application developers. The proposed federation is based 
on defining and creating integrated data-view in the form 
of multi-layer map image. The federator provides one 
global view over several data sources processed as one 
source. Each layer is either rendered from GML data 
serviced by WFS or provided by WMS in a ready to use 
image format. 
 
 
OPEN STANDARDS AND WEB SERVICES IN GIS 
 
GIS are systems for creating, storing, sharing, analyzing, 
manipulating, and displaying spatial data and associated 
attributes. Spatial datasets have two kinds of attributes. 
One is spatial attributes and the other is non-spatial 
attributes. Spatial attributes carry location information. 
Non-spatial attributes are any other type of information 
about the data such as name and gender. Spatial data 
types are necessary to model geometry and to suitably 
represent geometric data in database systems. These 
data types are usually called spatial data types, such as 
point, line, and polygon. Spatial data types provide a 
fundamental abstraction for modeling the geometric 
structure of objects in space, their relationships, 
properties and operations. These properties of spatial 
data enable feature-based querying on the display of the 
real world objects. 

The purpose of GIS is extracting information/knowledge 
from raw geo-data. The raw data is collected from 
sensors, satellites or other sources and stored in 
databases or file systems. The data goes through filtering 
and rendering services and presented to end-users in 
recognizable formats, such as images, graphs, charts, 
and so on. GIS are used in a wide variety of tasks, such 
as urban planning, resource management, emergency 
response planning in case of disasters, crisis 
management, and rapid responses (Peng and Tsou, 
2003). 

Over the past decade, GIS have evolved from the 
traditional centralized mainframe systems to desktop 
systems to modern collaborative distributed systems. 
Distributed  systems  are   composed   of   geographically  
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distributed and loosely coupled autonomous hosts 
connected through a computer network. They aim to 
share data and computation resources collaborating on 
large-scale applications. Modern collaborative GIS 
require data and computation resources from distributed 
virtual organizations to be composed based on 
application requirements, and accessed and queried from 
a single uniform access point over the refined data with 
interactive display tools. This requires seamless integration 
and interaction of data and computation resources. The 
resources span organizational disciplinary and technical 
boundaries and use different client-server models, data 
archiving systems, and heterogeneous message transfer 
protocols.  

Interoperability and distributed services are clear trends 
that today’s GIS is taking. Standards for interoperability 
proposed by distributed frameworks such as the Open 
Geospatial Consortium (OGC)  (OGC, 1994) offer 
advantages for data sharing, for combining software 
components and for overlaying graphical outputs from 
different sources. As a result, with a minimum need for 
adapting data products and software components to each 
other, standard distributed services offer the possibility to 
overlay image products coming from multiple data stores 
and processed by multiple map servers. The 
standardization efforts cause distributed services to be 
widely accepted and used in many areas such as 
governmental agencies and educational institutions. Two 
well-known and widely accepted standards bodies in the 
GIS domain are aimed at overcoming the interoperability 
issues (OGC, 1994). The aims of the standards bodies 
are to make the geographic information and services 
neutral and available across any network, application, or 
platform by defining common data models and online 
service descriptions. The standards bodies specify 
methods, tools, and services for data management, 
accessing, processing, analyzing, presenting, and 
transferring such data in digital form between different 
users and systems. ISO/TC211 defines a high-level data 
model for public sectors, such as governments, federal 
agencies, and professional organizations (Peng and 
Tsou, 2003). On the other hand, the OGC is interested in 
developing both abstract definitions of Open GIS 
frameworks and technical implementation details of data 
models, and to a lesser extent, services. Web Map 
Service (WMS) and Web Feature Service (WFS) are two 
major services defined by the OGC for creating a basic 
GIS framework enabling information rendering of 
heterogeneous data sources as map images. Web 
Coverage Service (WCS) Evans (2003) is another OGC 
defined data service. WCS provide coverages 
representing space/time-varying phenomena that relate a 
spatio-temporal domain to a (possibly multidimensional) 
range of properties. WCS provides available data 
together with their detailed descriptions; defines a rich 
syntax for requests against these data; and returns data 
with its original semantics. WMS are the  key  services  to  
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the information rendering and visualization. WMS 
produces maps from the standard geographic data 
encoded in the Geography Markup Language (GML) Cox 
et al. (2003) obtained from various WFS instances, and 
from coverages obtained from WCS instances. It also 
enables attribute and feature-based data querying 
(through WFS) over the data display from its standard 
service interfaces. This general approach is similar to the 
SkyServers  Gray et al. (2002) defined by the National 
Virtual Observatory (NVO) community. The OGC’s WFS 
implementation specification defines interfaces for data 
access and manipulation operations on geographic 
features. Geographic features are basically earth-related 
data definitions, such as rivers, lakes, earthquake seismic 
records, and so on.  

In addition to the domain-level interoperability and 
extensibility mentioned above, information systems need 
cross-language, operating system, and platform 
interoperability to enable data sharing/federating and 
analysis over autonomous heterogeneous resources 
provided by various organizations. Web service 
standards Booth et al. (2004) are a common 
implementation of Service-Oriented Architectures (SOA) 
ideas, giving us a means of interoperability between 
different software applications running on a variety of 
platforms. A web service is an interface that describes a 
collection of operations that are network accessible 
through standardized XML messaging Kreger (2001). 
Collectively, web services are a software framework 
designed to support interoperable machine-to-machine 
interactions over a network. Other systems interact with 
the web services in a manner prescribed by its 
description using SOAP-messages (Simple Object 
Access Protocol), typically conveyed using HTTP with an 
XML serialization in conjunction with other Web-related 
standards.  

Adopting GIS and web service standards and 
implementing web service versions of standard GIS 
services permits applications to span programming 
languages, platforms, and operating systems Pierce et al. 
(2008). It also enables application developers to integrate 
the third party geo-spatial functionality and data into their 
custom applications easily. 
 
 
FINE-GRAINED FEDERATION ARCHITECTURE 
 
View-based data federation is a framework that solves 
the data integration problem for structured data by 
integrating sources into a single unified view. This 
integration is facilitated by a declarative mapping 
language that allows the specification of how each source 
relates to the unified view. In GIS domain, such unified 
views are used in many geo-science and geo-physics 
applications by using ad-hoc solutions. Figure 3 can be 
given as a motivating scenario in which earthquake 
seismic data records  and  LandSat  satellite  map  image  

 
 
 
 
are combined at view-level, and as a result, new 
information is obtained. Users from different expert levels 
can easily see that south west region of Turkey has 
higher earthquake records than the other regions.  
The proposed federator framework is an infrastructure for 
understanding and managing the production of 
knowledge from distributed observation, simulation, and 
analysis through integrated data-views in the form of 
multilayered map images. Infrastructure is based on a 
common data model, OGC compatible standard GIS web 
service components, and a federator. The precondition to 
be able to define a unified view (view-level data 
integration) is that all heterogeneous datasets 
representing a layer in the view needs to be created and 
stored by using the same spatial reference system and 
as well as the same projection system. If the data sets 
satisfy this condition they are said to be semantically 
compatible, that is, they can be overlaid. If a data 
provider is not OGC compatible, their data can be 
possibly integrated to the system through mediator 
services (Wiederhold, 1995). Mediators enable 
interoperability between heterogeneous data sources and 
the proposed system by performing resource specific 
conversions. The federator provides one global view over 
several data sources processed as one source (). There 
are three general issues here. The first is the data 
modeling (how to integrate different source schemas); the 
second is their querying (how to answer the queries 
posed on the global schema); and the third is the 
common presentation model of data sources, that is, the 
mapping of a common data model to a display model, 
enabling integration/overlaying with other data sets 
(integrated data-view). The first two groups of research 
issues are related to lower level (database and files) data 
format/query/access heterogeneities, summarized as 
semantic heterogeneity. In the proposed framework, 
OGC specifications for data models (GML) and online 
services (WMS and WFS) define these. The following 
parts of the work “federation framework” and “federation 
through capability aggregation” present the proposed 
solution approach to the third issue. 
 
 

Federation framework 
 

Figure 1 shows a three-level hierarchy data system, 
which is the essential framework of the proposed system. 
Heterogeneous data sources, which form the bottom 
layer of the hierarchy, are integrated into the system 
through mediators (WMS and WFS). Mediators provide 
an interface for the local data sources and play the roles 
of connectors between the local and the global sources 
Wiederhold (1995). The mediators not only enable data 
sources integrated into the system to conform to the 
global data model, but also enable the data sources to 
maintain their internal structure. In the end, the whole 
mediator system provides a large degree of autonomy 
(Figure 1).  
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Figure 1. Data life-cycle and integrated data-view creation. 

 
 
 

 
 

Figure 2. Federated GIS framework. 

 
 
 

The proposed federation framework is a 2-stage 
process. The stages are compile-time (or setup time) and 
run-time. The compile-time stage defines integrated data-
view and its components in terms of layers and 
corresponding web services. In the first stage, the 
federator searches for the standard GIS web service 
components (WMS or WFS) providing required data 
layers and organizes them into one aggregated capability 
file as indicated in the dotted lines in Figure 2. There is 
no client/user interaction with the system in this first 
stage. This stage is the core of the proposed framework 
and explained in “federation through capability 

aggregation” part of the work in detail. In the run-time 
stage, there is client/user interaction with the system 
through a browser that provides an event-based 
interactive display and query tools, such as map 
displaying tools as indicated in the solid arrows in Figure 
2. Zooming in/out, distance calculation, dragging and 
dropping are given as examples of event-based queries 
in Figure 2. 

The proposed federation framework does not support 
automated service registry or sign off. It does not have 
automatic service discovery capability. The topology of 
contributing services (aggregated capability metadata) is 
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Figure 3. Integrated data-view. Layers are Nasa-Satellite (raster) 
and Earthquake-seismic (vector). 

 
 
 

defined at the beginning at compile/setup time manually 
by the developer. Contributing components are supposed 
to define their standard services and data in accordance 
with the publicly available open standards (OGC). These 
definitions are done through capability metadata. Each 
type of component (WMS and WFS) has its own type of 
schema to define its capability metadata in which 
available information/data and related operations are 
defined and binding information (information about how to 
access those data) is provided. In GIS, each component 
has its own global schema. Underlying data accesses are 
manipulated and mediated by their global schema. All 
these services and their data are publicly available and 
autonomous. We have nothing to do with those services 
except using their data through their standard service 
interfaces. 

Figure 2 represents the proposed federation framework 
on a sample scenario. A WMS provides NASA satellite 
map images in raster formats with corresponding 
capabilities metadata. Its metadata is called “a”. A WFS 
provides earthquake seismic data records in GML format 
with its corresponding capabilities metadata are called 
“b”. At compile time federator collects their metadata and 
creates a aggregated metadata carrying information 
about satellite map images and earthquake seismic data 
records (a and b). The federator serves these datasets as 
if they are its own. Figure 2 also shows an event-based 
interactive map tool displayed on browsers and enable 
user interaction with the system. The client tools convert 
users’ event-based actions into standard web service 
queries sent to the federator.  

The focus of this paper is on combining information 
from several components to form a view as a map. 
Federation is based on a hierarchical data definition as 
multilayer maps. This definition is done in the federator. 
Hierarchical data is described as below. The more 
detailed illustration of this is given in “federation through 
capability aggregation” part of this work as a capability 
metadata. 

 
 
 
 

Map -> Layer -> Data [ vector (GML) / raster (binary images) ] --->Raw data 

A sample scenario illustrated in Figure 2: 
[Map]  

–  [Layer]  
• [Data]  -  raster  

– Nasa Satellite Earth Images (binding information for WMS)  
–  [Layer]  

• [Data]  -  vector  
– Earthquake-Seismic-Data (binding information for WFS)  

 
 

 
A map is an application-based, human-recognizable, 
integrated data display and is composed of layers. A 
layer is data rendering of a single homogeneous data 
source. Layers are created from the structured XML-
encoded common data model (GML) or binary map 
images (raster data). Heterogeneous data sources (raw 
data) are integrated into the system as GML or binary 
map images through the resource specific mediators. The 
mediators have resource specific adaptors for request 
and response conversions and appropriate capability 
metadata describing the data and resources. 

To illustrate service federation, we give a real geo-
science application as an example. In the Pattern 
Informatics (PI) application (Tiampo et al., 2002), 
decision makers need to see earthquake forecast values 
and seismic data records plotted on satellite map images. 
Satellite map images are provided by the NASA OnEarth 
server (a WMS) located at the NASA Jet Propulsion 
Laboratory (JPL) (OnEarth, 2007), and the WFS at the 
Visualization Laboratory at Kocaeli University provides 
the earthquake seismic data records. The federator 
aggregates these services’ standard capability metadata 
and creates an aggregated one as if those data sets were 
its own. The output of this federation is an integrated data 
view given in Figure 3. The users access the system as 
though all the data and functions come from the 
federator. The data distribution and connection paths stay 
hidden and formulated in the federator’s aggregated 
capability metadata. 
 
 
Federation through capability aggregation 
 
Capabilities are metadata about the data and services 
and have an XML schema defined by the OGC. 
Capability descriptions include information about data 
and its corresponding operations with the attribute-based 
constraints and acceptable request/response formats. It 
supplements the Web Service Description Language 
(WSDL) (Christensen et al. 2001), which specifies key 
low-level  message  formats  but does  not  define 
information or data architecture. These are left to domain 
specific capabilities metadata and data description 
languages (such as GML). Capabilities also provide 
machine and human readable information that enables 
integration and federation of data/information. It also aids 
the development of interactive,  reusable  client  tools  for  



 

 
 
 
 
data access/query and display. We use the open 
standard specifications’ definitions and present the 
required extensions for the federation through 
hierarchical data creation. 

Let’s assume we are federating two datasets as shown 
in Figure 2. These datasets are “Nasa Satellite” and 
“Earthquake-Seismic-Data”. “Earthquake-Seismic-Data” 
is also called earthquake data. As mentioned earlier in 
“federation framework” part of this work, these datasets 
are actually defined as layers and federation outcome is 
defined as a map. The remaining of this part of this work 
describes our approaches to view-level federation of 
those datasets and creating a data representation model 
through a capability metadata (that is, federal dictionary). 

There are two possible ways to bind the services to the 
federator to be able to create an application specific 
hierarchical data in an integrated data-view. One is 
borrowing some definitions of Web Map Context’s (WMC) 
standards (Sonnet, 2005) and extending them for the 
federation purposes. WMC do not include WFS binding 
information in its service composition definition which is 
called context-document. It needs to be extended in 
accordance with federator’s aims. Another alternative is 
extending the WMS’ standard capability schema 
definitions by giving the reference to the service access 
points providing the required layer (WMS) and/or feature 
data (WFS). These approaches are explained below.  

In the first approach, this paper utilizes the context 
document specifications of the OGC. The OGC’s WMS 
and WFS services are inherently capable of being  
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cascaded and chained in order to create more complex 
data/information. To standardize these issues, the OGC 
introduced the Web Map Context (WMC) standard 
specifications. A WMC is actually a companion 
specification to WMS. It is one of OGC specifications for 
describing how a specific grouping of maps from 
distributed Web Map Servers can be described in a 
portable, platform-independent format to store or transmit 
between clients. WMC define project-based contents of 
layers possibly be used as a map in a GIS application. 
WMC do not define overlay layers, which are rendered 
from GML provided by WFS. It only describes layers from 
WMS. In this paper, we extend context-document 
schema definition for the federation purposes, and enable 
integration of layers both from WMS and WFS. 
This description of federal schema is done in a portable 
and platform-independent format (XML) and called 
“context document” or “context”. A context document 
contains information about the composed layers to create 
an overall map. Each layer is described with domain 
specific attributes such as map projection system and 
bounding boxes in which layers are available. The 
context document can provide default startup views for 
particular classes of users. An example of a context 
document is given below. It describes the integrated data 
view displayed in Figure 3. The unnecessary details at 
the above context file are truncated. We just use related 
elements and tags for the data cascading and service 
binding. The standard schema for a context document is 
given in Sonnet (2005). 

 
<ViewContext version="1.0.0" id="OGCContext" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <General> 
    <Window width="500" height="400" /> 
    <BoundingBox srs="EPSG:4326" minx="-180.00" miny="-90.00" maxx="180.00" 
maxy="83.62" /> 
    <Title>Maps for Pattern Informatics Application</Title> 
    <Abstract /> 
  </General> 
   …. 
  <LayerList> 
    <Layer queryable="1" hidden="0">                                 WFS Binding 
      <Extension infoFormat="text/xml" ID="4e4b-83e" editable="0" local="1" /> 
      <Server service="WFS" version="1.1.0" title="CGL_WFS"> 
        <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" /> 
      </Server> 
      <Name> Earthquake-Seismic-Data </Name> 
      <Title>Earthquake Seismic Data</Title> 
      <Abstract>Sample WMS to WFS layer cascading</Abstract> 
      <DataURL format="text/xml"> 
        <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" /> 
      </DataURL> 
      <SRS>EPSG:4326</SRS> 
      <FormatList> 
        <Format current="1">image/png</Format> 
      </FormatList> 
      ….. 
    </Layer> 
    <Layer hidden="0">                                  WMS Binding 
      <Extension infoFormat="text/html" ID="1fc-4e4b-83e" editable="0" local="1" /> 
      <Server service="WMS" version="1.1.1" title="CGL_WMS"> 
        <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" /> 
      </Server> 
      <Name> Nasa Satellite Earth Images </Name> 
      <Title>Nasa Satellite Data</Title> 
      <Abstract>Sample WMS to WMS layer cascading</Abstract> 
      <DataURL format="text/xml"> 
        <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" /> 
      </DataURL> 
      <SRS>EPSG:4326</SRS> 
    </Layer> 
    ….. 
  </LayerList> 
  … 
</ViewContext> 
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<ViewContext version="1.0.0" id="OGCContext" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <General> 
    <Window width="500" height="400" /> 
    <BoundingBox srs="EPSG:4326" minx="-180.00" miny="-90.00" maxx="180.00" 
maxy="83.62" /> 
    <Title>Maps for Pattern Informatics Application</Title> 
    <Abstract /> 
  </General> 
   …. 
  <LayerList> 
    <Layer queryable="1" hidden="0">                                 WFS Binding 
      <Extension infoFormat="text/xml" ID="4e4b-83e" editable="0" local="1" /> 
      <Server service="WFS" version="1.1.0" title="CGL_WFS"> 
        <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" /> 
      </Server> 
      <Name> Earthquake-Seismic-Data </Name> 
      <Title>Earthquake Seismic Data</Title> 
      <Abstract>Sample WMS to WFS layer cascading</Abstract> 
      <DataURL format="text/xml"> 
        <OnlineResource xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" /> 
      </DataURL> 
      <SRS>EPSG:4326</SRS> 
      <FormatList> 
        <Format current="1">image/png</Format> 
      </FormatList> 
      ….. 
    </Layer> 
    <Layer hidden="0">                                  WMS Binding 
      <Extension infoFormat="text/html" ID="1fc-4e4b-83e" editable="0" local="1" /> 
      <Server service="WMS" version="1.1.1" title="CGL_WMS"> 
        <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" /> 
      </Server> 
      <Name> Nasa Satellite Earth Images </Name> 
      <Title>Nasa Satellite Data</Title> 
      <Abstract>Sample WMS to WMS layer cascading</Abstract> 
      <DataURL format="text/xml"> 
        <OnlineResource xlink:href=" http://wms.jpl.nasa.gov/wms.cgi" /> 
      </DataURL> 
      <SRS>EPSG:4326</SRS> 
    </Layer> 
    ….. 
  </LayerList> 
  … 
</ViewContext> 

 

 

 
 
In the second approach, WMS are extended with the 
federator capabilities. Data providing in the WMS are 
called “layers” and defined in layer tags in the capability 
metadata with attributes and features according to the 
standard WMS capability schema (Beaujardiere, 2004). 
Service binding is accomplished through the cascaded 
layer definition. A layer is regarded to have been 
“cascaded” if it was obtained from an originating server 
and then included in the capabilities XML of a different 
server. The second server may simply offer an additional 
access point for the layer, or may add value by offering 
additional output formats or spatial reference systems. If 
a WMS cascades the content of another WMS, then it 
must increment the value of the cascaded attribute for the 
affected layers by 1 (see the example below). If that 

attribute is missing from the originating WMS’s 
capabilities XML (that is, the layer has not been 
cascaded before), then the cascading WMS inserts the 
“cascade” attribute to the layer tag and sets it to 1. The 
default value of cascading is 0 (Kolodziej, 2004). 
Federator is not supposed to provide any layer by itself, it 
is a uniform access point for the registered data services. 
Therefore each layer in its capability metadata needs to 
be defined with the attribute cascaded and set to 1. A 
small part of the federator’s capability metadata is 
displayed below, unnecessary details are truncated. It is 
developed for the sample case illustrated in Figures 2 
and 3. WMS’s standard capability metadata schema is 
available at OGC (2012). 
 

 

<?xml version="1.0" encoding="UTF-8"?> 
<WMS_Capabilities xmlns="http://www.opengis.net/wms" 
xmlns:xlink="http://www.w3.org/1999/xlink" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.opengis.net/wms> 
…… 
…. 
<Layer cascaded="1"> 

<Name> Earthquake-Seismic-Data </Name> 
<Title> Earthquake-Seismic-Data layer</Title> 

            <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" /> 
… 
<DataURL> 

  <Format>image/gif</Format> 
  <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"  
                        xlink:type="simple" xlink:href=" http://toro.ucs.indiana.edu/cgi-
bin/wms0.cgi?" /> 

</DataURL> 
</Layer> 
….. 
<Layer cascaded="1"> 

<Name>NASA Satellite</Name> 
<Title> NASA Satellite </Title> 

              <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" /> 
<SRS>EPSG:4326</SRS> 
… 
<DataURL> 

  <Format>image/gif</Format> 
  <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"  
                        xlink:type="simple" xlink:href=" http://wms.jpl.nasa.gov/wms.cgi?" /> 

</DataURL> 
</Layer> 
….. 

</Capability> 
</WMS_Capabilities> 
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<?xml version="1.0" encoding="UTF-8"?> 
<WMS_Capabilities xmlns="http://www.opengis.net/wms" 
xmlns:xlink="http://www.w3.org/1999/xlink" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.opengis.net/wms> 
…… 
…. 
<Layer cascaded="1"> 

<Name> Earthquake-Seismic-Data </Name> 
<Title> Earthquake-Seismic-Data layer</Title> 

            <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" /> 
… 
<DataURL> 

  <Format>image/gif</Format> 
  <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"  
                        xlink:type="simple" xlink:href=" http://toro.ucs.indiana.edu/cgi-
bin/wms0.cgi?" /> 

</DataURL> 
</Layer> 
….. 
<Layer cascaded="1"> 

<Name>NASA Satellite</Name> 
<Title> NASA Satellite </Title> 

              <LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90" /> 
<SRS>EPSG:4326</SRS> 
… 
<DataURL> 

  <Format>image/gif</Format> 
  <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"  
                        xlink:type="simple" xlink:href=" http://wms.jpl.nasa.gov/wms.cgi?" /> 

</DataURL> 
</Layer> 
….. 

</Capability> 
</WMS_Capabilities> 
 

 
 
 
FEDERATOR-ORIENTED DISTRIBUTED QUERY 
OPTIMIZATION 
 

Distributed GIS systems typically handle large volume of 
datasets. Therefore, transmission, processing, and 
visualization/rendering techniques need to be responsive 
to provide quick, interactive feedback. Some 
characteristics of GIS services and data make it difficult 
to design the distributed GIS with a satisfactory 
performance. One is that processes and analysis in GIS 
necessitate heavy CPU usage. This mostly stem from the 
complexities in underlying computational geometry. 
Another is that processes and analysis in GIS often 
require transmitting large datasets, such as annotated-
structured data (due to the interoperability requirements), 
images, or large files in tabular-matrix formats. In most 
cases, the amount of collected data reaches an amount 
in the order of gigabytes or even terabytes. Therefore, 
the GIS services must enable accessing and processing 
of these large data sets in a reasonable time period. This 
scenario is even worse when map animations and map 
movies are created (requiring many static map images to 
be created successively). Furthermore, due to the limited 
bandwidth and network speed, a GIS system faces the 
same performance problem as all the large-scale 
distributed applications do. This challenge prevents 
making large-scale geo-science applications feasible. 
In such an application framework (fine-grained federation 
architecture and Figure 2), in which you know what data 
sets need to be used and from where, you can apply 
some well-known performance improving techniques. 
Federator is a kind of central approach built over 
distributed autonomous data sources. The central 
approaches give the better performance but in most 
cases, due to the application requirements, it is inevitable 
that distributed approaches will be used. In the proposed 
framework, we take advantage of both centralized and 
distributed approaches. The following part of this work 

“Pre-fetching” presents the architecture details. 
 
 
Pre-fetching 
 
Pre-fetching is briefly defined as retrieving the data 
before it is needed and used to overcome the 
performance bottleneck of the distributed systems. The 
bottleneck is transferring large-sized data from source 
(database) to destination in the common data model, 
GML. On-demand accesses to the originating databases 
through WFS are very costly, not only because of the 
requirement of moving the large data, but also due to 
query and response conversions. To solve that 
bottleneck problem, the federator periodically fetches and 
updates whole data in databases into GML sets and 
stores it locally. The successive queries are served from 
pre-fetched data in a federator’s local disk. To reduce the 
inconsistency problem, the fetching module fetches and 
updates the data periodically. It indirectly enables getting 
over the query/response transformation overhead at 
WFS. 

Datasets to be pre-fetched are predefined by 
application developer. Developer needs to be 
experienced about the contributing servers and their 
performance. If the contributing servers’ performances 
are good enough, then their data do not need to be pre-
fetched. 

The proposed architecture has two processes. The first 
process is pre-fetching, which is independent of 
application run time, and it does not affect on-demand 
data accesses from the clients. The second process is 
users’ on-demand access, which is served from the pre-
fetched data. The federator behaves as proxy for other 
distributed data sources by collecting their data in a ready 
to use common data model (GML) at periodic intervals, 
and successive queries are responded centrally from a 
federator’s disk space in which the pre-fetched GML data
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Figure 4. Pre-fetching architecture. 

 
 
 
sets are stored. Figure 4 presents the pre-fetching 
approach. 

Data transfers between standard GIS web services are 
done over the standard HTTP protocol. In our earlier 
works, we have extended OGC’s transfer protocol in 
accordance with web service standards. Here, we go one 
step further and integrate topic based publish-subscribe 
paradigms (which is mostly used in P2P systems) into the 
communication between WFS and federator to transfer 
feature collections. NaradaBrokering Pallickara and Fox 
(2003) is one of the well-known applications of that 
approach enabling streaming data transport, reliable 
delivery, and recovery from network failures at the 
application level. In this approach, standard web service 
interfaces are used as a handshake protocol and the 
actual data is transferred over publish-subscribe based 
messaging system (NaradaBrokering, in Figure 4). This 
approach has some advantages over using pure web 
services. The system gets rid of the SOAP message 
creation overheads, and enables creation of map layers 
with partially returned data. 

As shown in Figure 4, in the pre-fetching, requests 
requests for data are done through standard SOAP 
messages. On the other hand, to retrieving the results, 
NaradaBrokering system is used in which WFS (server) 
become publishers and the federator (client) becomes 
subscriber. Through the “getFeature” interface of WFS 
web services, the pre-fetching module gets the topic 
name (publish-subscribe for a specific data), IP, and port 
on which WFS stream the  requested  data. The 

NaradaBrokering subscriber does the second request 
using the returned parameters. GML data is provided by 
streaming WFS (Vretanos, 2002). It uses standard SOAP 
messages for receiving queries from the clients; however, 
the query results are published (streamed) to a 
NaradaBrokering topic as they become available. To do 

that, we define the “task” and “timer”. Task defines the 
pre-fetching job, and timer defines the running periodicity 
of the task. Aydin et al. (2008) for more details about the 
streaming data transfer between GIS web services by 
using NaradaBrokering. 

As Figure 4 illustrates, there are two separate storage 
locations for the data: temporary storage and stable 
storage. The former is for pre-fetching, and the latter is 
for serving the clients’ on-demand queries. Even if the 
system is busy with pre-fetching, it keeps itself up and 
running for the clients by using the stable storage. When 
the data transfer to the temporary location is complete, all 
data at that location will be moved to stable location. 
Reading and writing the data files at the stable locations 
are synchronized to keep the data consistent. This cycle 
is repeated at some time intervals predefined by the 
periodicity parameter of the pre-fetching module. Since 
the data fetching is done independent of real application 
time, it does not affect the application performance. In 
order for the pre-fetching algorithm to work properly, the 
pre-fetching module fetches the data as a whole; the 
query should not define any constraints. On the other 
hand, the requests from clients contain some query 
constraints. The federator side handles these queries and 
their constraints. Queries are processed by using parser 
techniques and XPATH  (Clark and DeRose, 1999) 
queries over the pre-fetched data. 

The pre-fetching module is composed of two 
components. One is “timer”, defining the periodicity that 
pre-fetching will be running on, and the other is “task”, 
defining what to fetch. The periodicity should not be less 
than the data transfer time. The periodicity for data 
fetching is defined under the considerations of data 
characteristics and the developer’s experience on the 
domain specific application. Here is the pre-fetching task 
defined in a pseudo code: 



 

 
 
 
 

public void task() { 

  //List all the data sets to be pre-fetched 
  dataList = getDataNamesTobePrefetched(); 

 // Define the storage locations 
  String tempDatastore = applpath + "/whereDataTobePlaced"; 
  String stableDatastore = applpath + "/whereDataTobeServedFrom"; 
  //Fetching all the data in CDM format (GML) 
  fd.FetchDataWithStreaming( NBip,NBport,NBtopic, 
     wfs_address,tempDatastore,CDMdataList ); 
  // move the data to the stable storage 
  fd.moveData(tempDatastore, stableDatastore); 
 } 
 

 
 
Here is the sample timer: timer. schedule (task, 0, 
40000); 

Timer schedules the specified task for repeated fixed-
delay execution, and subsequent executions take place 
at regular intervals. 

There are three concerns in developing an efficient pre-
fetching architecture. The first one is regarding the limited 
storage capacity for a node. In other words, the 
federator’s storage capacity constrains the size of the 
pre-fetched data. In the future, we plan to use Apache 
Hadoop (distributed data storage framework) (Apache 
Hadoop Project, 2007) to overcome the storage 
limitations for the federator. The second concern is that 
system might possibly have inconsistent datasets in a 
short period of time. This is also related to the 
characteristics of data. Some archived data are updated 
so often that they look like real-time data. In that case, 
pre-fetching becomes unfeasible and cannot be 
benefited. Our criterion whether this technique is 
applicable or not depends on two measurements. One is 
the minimum time required to fetch a whole critical data 
from the source and another is the time periodicity in 
which dataset is updated in its storage. If the dataset 
changes less than a time period in which whole critical 
dataset is fetched, then the dataset is called frequently 
changing. Therefore, it can be concluded that this 
technique is not applicable for the frequently changing 
datasets. The third, and final, concern is about the 
availability of the data sources. When the originating data 
server is down and the federator cannot perform 
synchronization regularly, then the federator will have to 
serve its clients from the last pre-fetched, possibly 
outdated, data sets. When the data server comes to live, 
the federator starts performing its pre-fetching. 

 
 
Performance evaluation of pre-fetching 

 
The proposed pre-fetching technique is tested on real-
world Pattern Informatics earthquake geo-science 
application . Pattern Informatics is an earthquake 
forecasting application developed at University of  
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California at Davis and uses archived earthquake seismic 
records stored at the WFS as feature collections encoded 
in GML. 

Every machine (on which servers are deployed)  in  the 
test setup has 2 Quad-core Intel Xeon processors with 8 
GB of memory and running at 2.33 GHz. They are 
operating Red Hat Linux ES. WFS, WMS, federator and 
Map Client tools are deployed in separate machines in 
Kocaeli University’s Local Area Network (LAN). Figure 4 
illustrates the pre-fetching technique and can be 
considered as a test setup. In case of serving client 
requests from original resources (on-demand fetching 
approach), one end is the database and other end is the 
user. This is shown with the broken arrows in the Figure 
4. In case of serving client requests from pre-fetched data 
(pre-fetching approach), one end is the federator and 
other end is the user, which is shown as thick solid 
arrows in the Figure 4. Thin solid lines are pre-fetching 
module which is independent of the application runtime 
and does not affect the response times of clients’ on 
demand requests.  

The pre-fetched data size does not change as long as 
the data in the originating source remain the same. For 
the test case scenario, pre-fetching is applied on 
earthquake seismic data records. Seismic data records 
are fetched and stored in the federator’s local file system 
in GML form and periodically synchronized with the 
originating data source. Every time a request comes 
(even for 1 KB of data) from a client, federator scans 
whole GML file to extract the requested part. The size of 
GML is about 127 MB, which represents the whole data 
in its originating source (WFS). For the 127 MB of GML 
data, parsing and data extraction time is average 5.69 s. 
This value is a part of overall response time is case of 
using pre-fetched data. As the query size increases the 
ratio of this value in overall response time decreases. In 
case of serving clients from pre-fetched dataset, 
response time does not include data transfer time. This 
explains why, in, response time does not change 
considerably depending on the increasing query payload 
size as indicated in the dotted line in Figure 5. 

Figure 5 shows that the performance results for pre-
fetching and on-demand fetching seem very close until a 
specific threshold data size (around 500 KB). After that 
threshold value, performance difference increases 
significantly. For example, for 10 MB of data, the pre-
fetching is about 7 times faster than on-demand fetching.  
also shows that the larger the data size the higher the 
performance gains when the pre-fetched dataset is used 
by means of the federator. Figure 5 also shows that on-
demand fetching curve linearly increases by the 
increasing data sizes. This is because of WFS used in 
the test scenario. When the request comes; WFS parse 
the query, access the databases, get the feature data 
and convert the result sets to GML data. Since OGC 
services are stateless and WFS used in the system do 
not    use    any    performance    enhancing    techniques,  
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Figure 5. Performance comparison of pre-fetching and ordinary 
way. 

 
 
 
response time increases linearly. 
 
 
SUMMARY AND FUTURE WORKS 
 

Open GIS standards define  standard  data  services  that 
provide data in standard formats (common data models) 
with the corresponding capability metadata (about the 
data+services) and the standard service API. These 
service properties and standardization make them 
composable. We have introduced a federator, which 
federates the standard GIS web services components 
through aggregation of their capabilities’ metadata and 
presents a single database image to the user, which is 
defined in federator’s aggregated capability metadata. 

The proposed framework federates service-oriented 
GIS web services and addresses interoperability issues 
by integrating web services with Open Geographic 
Standards. The framework provides interoperability at 
data, service, and application levels, and integrates geo-
data sources into geo-science grid applications 
seamlessly. We have also outlined our research and 
implementations to build a distributed geophysical SOA 
enabling fine-grained information/knowledge 
presentations in multilayered map images through a 
novel federator architecture. The proposed architecture is 
based on a XML-encoded common data model, standard 
GIS web service components, and a federator service. 
We have addressed several issues related to archival 
data access and processing from a single access point, 
and investigated novel techniques to federate distributed 
GIS web services.  

Federator approach is a kind of centralized approaches  

 
 
 
 
over distributed web services. It has some advantages in 
terms of performance through the applications of caching, 
load balancing, sessionful service policies, etc. However, 
it might cause data inconsistencies due to having 
centralized characteristics and keeping data at multiple 
geographically distributed places simultaneously. Another 
drawback of the federated systems is single point of 
failure issue. However, this risk is present in most of the 
"ultimate" and successful platforms, including: 
GoogleMap/Earth; Cloud Computing platforms, etc. The 
system reliability will be enhanced by adopting backup 
servers and modular software components. 

Even though it has some performance and easy to use 
advantages for the users, federated approach is not 
going in the direction of an efficient and distributed 
environment. Brokering approach on the other hand can 
be considered for further developments of the project. It 
offers a greater level of flexibility than other architectural 
solutions. A broker can implement added-value 
functionalities related to data discovery, access and 
semantic expansions. 

In the proposed system, we use a static approach to 
create application-specific hierarchical data layers in the 
federator’s aggregated capability metadata. That is, the 
federated capabilities file defining the data and 
corresponding data sources are not allowed to be 
changed or updated after the application runs. It would be 
useful for the system to automatically create, deploy, and 
update the required layers and to add the corresponding 
services dynamically. To enable such quality of services, 
we plan to enhance the system through data registry and 
discovery services. Federator automatically looks up the 
registry service and finds out the required data layers and 
updates its aggregated metadata automatically. To do 
that registry services need to keep metadata for the data 
sets, as well as service API. In addition, we plan to 
enhance the system with Web 2.0 (Shuen, 2008) 
standards. The concept of services has been changing in 
recent years. The new generation service concept is 
letting people collaborate and share information online. 
This concept is represented with the term Web 2.0. It 
would be useful to see if the proposed framework can be 
extended with Web 2.0 and what kind of outcomes can 
be obtained. 

The pre-fetching technique gives the best performance 
outcomes for archived data, but may cause inconsistency 
depending on the fetching and data updating periodicity 
in their originating sources. It is not easy to apply the pre-
fetching approach on dynamically changing data sets 
used in some applications, such as early warning 
systems. The criterion for selecting the technique to apply 
depends on two measurements. One is the minimum 
time required to fetch a whole data from the source and 
another is the time periodicity in which the data are 
updated in its storage. If the former is smaller than the 
latter, it is not feasible to apply the proposed pre-fetching 
technique. Another concern with the pre-fetching is the  



 

 
 
 
 
limited storage capacity of the federator. In the future, this 
problem can be solved by using a distributed file system 
such as Apache Hadoop. The work presented in this 
paper was aimed towards problems in geo-science, and 
we believe it can be adopted for other scientific domains, 
if the data in those domains can be spatially defined. The 
data space may be real space (such as astronomy), or 
takes a part in a parameter space (e.g. chemical spaces). 
However, the effects of domain-specific requirements are 
not well understood. We think that it is important to 
explore how the common data standards, such as GML, 
and service standards, such as WFS or WMS, can be 
adapted to these different domains. 
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Glossary 
 
API: Application Programming Interface 
Bbox: (Bounding box) (OGC-defined) A geo-data 
attribute to define 2-dimensional ranges in rectangular 
shapes (minx, miny maxx, maxy).  
Capability metadata: A metadata about the data and 
services together. It includes information about the data 
and corresponding operations with the attribute-based 
constraints and acceptable request/response formats. 
Context document: A context document is an XML-
encoded description of map layer compositions. It is 
defined as a part of WMC specifications. It includes 
information about layer descriptions in terms of server 
bindings and URLs, projection system, available 
bounding boxes etc. 
Fine-grained: Smaller components of which the larger 
ones are composed. It can also be described as dense or 
compact in structure or texture. 
Geographic features: Earth-related data definitions, 
such as rivers, lakes, earthquake seismic records, and so 
on 
GIS: (Geographic Information Systems) represent the 
main technology motivating interest in developing 
spatially enabled system. GIS also provide convenient 
mechanisms for analyzing and visualizing geographic 
data. 
GML: (Geographic Markup Language) (OGC-defined) An 
XML grammar defined by OGC to model geo-data in 
commonly accepted widely used standard. It enables 
datasets to be easily accessed, integrated and analyzed 
across the heterogeneous and autonomous 
organizations. 
HTTP: (Hyper Text Transport Protocol) A stateless 
internet protocol for transferring hyper text data between 
server and client. 
ISO/TC211: A standard technical committee formed 
within ISO for geographic information.  
Metadata: Simply described as data about data. 
Metadata describes other data. 
NaradaBrokering: A P2P overlay network developed at 
Indiana University, Community Grids Labs. It consists of 
broker nodes and based on topic-based publish 
subscribe paradigm developed as an overlay network.  
OGC: (Open Geospatial Consortium) is an international 
standards (not-for-profit) development consortium. It has 
365+ industry, government, and university member. It’s 
standards are publicly available and widely-used in GIS 
domain. 
PI: (Pattern Informatics) An earthquake Geo-science 
application developed at UC-Davis. It defines method 
using observational data to identify the existence of 
correlated regions of seismicity. 
Raster data: The raster data model is used to model 
spatial phenomena that vary continuously over a surface 
and that do not have discrete dimension. Examples of 
this are elevation, temperature, rainfall and noise levels. 

 
 
 
 
Rendering: Rendering is a process for creating an image 
from raw datasets having geometric attributes. Rendering 
is done by using computer programs. 
Service Oriented Architecture: SOA  
SOA: (Service Oriented Architecture) SOA is basically a 
collection of communicating services, and organized as 
distributed systems. The communication is accomplished 
through message passing or some other means. 
SOAP: (Simple Object Access Protocol) A simple 
protocol specification for exchanging messages between 
clients and servers in web services. It consists of three 
parts: an envelope, encoding rules and principles for 
representing calls and responses. 
Vector data: Vector data uses points and their (X,Y) 
coordinates to represent spatial features. Point sets come 
together in a mathematical model and form lines, line-
strings and polygons to represent spatial data. 
Web Services: Web services are basically services 
available on the web. They are identified with URI and 
their binding information and interfaces (such as types 
and numbers of request and response parameters) are 
defined by using XML. It also uses XML-encoded 
protocol called SOAP for client-server communications. 
WFS: (Web Feature Service) (OGC-defined) provides 
standards for creating a service to serve any data in an 
XML-encoded standard data format (GML) with standard 
service interfaces. Geo-data is described with its various 
attributes in GML and WFS allows attribute-based 
queries with standard. 
WSDL: (Description Language for web service) is s a 
language to define web services. It is XML-based, and 
service descriptions can be accessed through HTML. 
WMC: (Web Map Context) (OGC-defined) One of OGC 
specifications for describing how a particular overlaying 
(combination) of map images from distributed Web Map 
Servers can be described in a portable, platform-
independent format to store or transmit between clients. 
This description is known as a "Web Map Context 
Document," or simply a "Context." Presently, context 
documents are primarily designed for WMS bindings. 
WMS: (Web Map Service) (OGC-defined) Creates digital 
maps from abstract datasets retrieved from Web Feature 
Services (WFS). Abstract datasets carry some geometric 
attributes to be drawn as digital images. 

XML: (Extensible Markup Language): XML is a W3C-
proposed standard, and enables interoperable way to 
represent documents for flexible processing. It is based 
on SGML (ISO 2008), which is a standardization for 
markup languages. 


