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In this paper, Rucklidge attractor’s chaotic oscillator, synchronization and masking communication 
circuits were designed and simulated. The electronic circuit oscilloscope outputs of the realized 
Rucklidge system is also presented. Simulation and oscilloscope outputs are used to illustrate the 
accuracy of the designed and realized Rucklidge chaotic oscillator circuits. The Rucklidge system is 
addressed suitable for chaotic synchronization circuits and chaotic masking communication circuits 
using Matlab-Simulink® and Orcad-PSpice® programmes. Simulation results are used to visualize and 
illustrate the effectiveness of Rucklidge chaotic system in synchronization and masking 
communication. All simulations results performed on Rucklidge chaotic system are to verify the 
application of secure communication. 
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INTRODUCTION 
 
Over the last three decades, chaos has been extensively 
studied within the scientific, engineering and 
mathematical communities. Chaos behavior can occur 
every where, even in very simple and low-dimensional 
nonlinear systems. The well known Poincare’-Bendixon 
theorem (Nayfeh and Balanchandran, 1994) requires an 
autonomous continuous time state space model to be at 
least three-dimensional in order to have bounded chaotic 
solutions. On the other hand, for non-autonomous 
systems, chaos can appear in two-dimensional models. 
There are many examples, such as Lorenz (Lorenz, 
1963), and Rossler (Rossler, 1976, 1979) systems that 
have been widely studied. Electronic circuits that consist 
of two nonlinear elements can be used to verify 
theoretical predictions. As an example, the nonlinear 
duffing forced oscillators have been experimentally 
studied (Hayashi, 1964). Another popular example is the 
nonlinear Chua’s circuit, built and experimentally examined 
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(Madan, 1993). Up till now, various chaotic systems and 
their electronic circuits are introduced (Rucklidge, 1992; 
Sprott, 1994; Ashwin and Rucklidge, 1998; Lü et al., 
2004; Chen et al., 1999; Soliman and Elwakil, 1999; 
Madhekar, 2006; Chandra et al., 2001; Pehlivan and 
Uyaroglu, 2010).  

Chaos and chaotic systems have many fields of 
applications. One of the popular practical applications is 
secure communication. Synchronization of chaotic 
systems and chaos based secure communication has 
become an area of active research in recent years 
(Pecora and Carroll, 1990, 1991; Pehlivan and Uyaroglu, 
2007a; Bai et al., 2002; Kocarev et al., 1992; Cuomo et 
al., 1993; Hayes et al., 1993; Cuomo and Oppenheim, 
1993; Wu and Chua, 1993; Itoh, 1999; Pehlivan and 
Uyaroglu, 2007b; Uyaroglu and Pehlivan, 2010 In Press; 
Li et al., 2003; Miliou et al., 2007).  

Different approaches are proposed and being 
pursued. Among themes the technique of Pecora-Carroll 
who show that, when a state variable from a chaotically 
evolving system is transmitted as an input to a replica of 
part of the original system, the replica subsystem 
(receiver) sometimes synchronizes to the original system  



 
 

 
 
 
 
(sender). Thus, they suggest that this phenomenon of 
chaos synchronism may serve as the basis for new ways 
to achieve secure communication (Pecora and Carroll, 
1990, 1991). Chaotic signals depend very sensitively on 
initial conditions, have unpredictable features and noise 
like wideband spread spectrum. So, it can be used in 
various communication applications because of their 
features of masking and immunizing information against 
noise.  

Chaos-based secure communication systems have 
been alternative of the standard spread-spectrum 
systems, since they are able to spread the spectrum of 
the information signals and simultaneously encrypt the 
information signals with chaotic circuitry which is simple 
and inexpensive. Many researchers have investigated the 
implications of chaotic signals in communication systems. 
For example, Kocarev et al. (1992) and Cuomo et al. 
(1993) have used chaotic signals in communication 
security, and spread spectrum communication.  

This paper focuses on the identical synchronization and 
its applications in signal masking communications. The 
brief is organized as follows. In Section II, Simulink, 
PSpice simulations and electronic circuit realization 
oscilloscope outputs of the chaotic Rucklidge system are 
obtained. In Section III the Pecora-Carroll method is 
applied to synchronize Rucklidge system. In Section IV, 
the chaotic masking communication method of Rucklidge 
system is realized also using Simulink and PSpice. 
Section V contains a discussion and conclusions. 
 
 
SIMULINK, PSPICE SIMULATIONS AND ELECTRONIC 
CIRCUIT REALIZATION OF THE RUCKLIDGE 
ATTRACTOR 
 
The following nonlinear autonomous ordinary differential 
equations comprise the Rucklidge chaotic system: 
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The Lyapunov exponents (LE) of the Rucklidge Attractor 
are 0.193, 0 and -3.193. Namely, only one positive LE is 
present. 

Figure 2 shows the circuit schematic for implementing 
the Rucklidge Attractor. We use TL081 opamps, the 
Analog Devices AD633JN multipliers, appropriate valued 
resistors and capacitors for PSpice simulations. The 
circuit is supplied ±15 V power supplies. Acceptable 
inputs to the AD633 multiplier IC are -10 to +10 V. The 
resistors R1-R12, are all shown with nominal values in 
Figure 2.  Figure 2 also shows the PSpice simulation re-
sults of this circuit. Matlab-Simulink and PSpice simulation 
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results of the Rucklidge attractor (Figures 1 - 2) give the 
same conclusions. 

The experimental electronic circuit realization of the 
Rucklidge system is implemented for K = 2, L = 6.7 
parameters and initial conditions   

0x  = 1, 0 0  y  = 0,  z  = 4.5 . Oscilloscope outputs of 
the Rucklidge oscillator are shown in Figure 3 (a), (b) and 
(c) for xy, xz, and yz attractors, respectively. 
 
 
SYNCHRONIZATION OF THE RUCKLIDGE 
ATTRACTOR 
 
Synchronization between chaotic systems has received 
considerable attention and led to communication applica-
tions. There are two major methods for coupling and 
synchronizing identical chaotic systems, the cascading 
method and the one-way coupling method. With these 
methods, a message signal sent by a transmitter system 
can be reproduced at a receiver under the influence of a 
single chaotic signal through synchronization.  

This paper presents the study of numerical simulation 
of chaos synchronization for chaotic Rucklidge attractor. 
The method of synchronization is Pecora-Carroll (P-C) 
method; drive subsystem and response subsystem were 
constructed. Figure 4 shows block diagram of a cascaded 
synchronization system, pointed out simulation modelling 
and outputs of P-C Synchronization of Rucklidge 
attractor. 

Synchronization of chaotic motions among coupled 
dynamical systems is an important generalization ion 
from the phenomenon of the synchronization of linear 
system, which is useful and indispensable in communi-
cations. There are two major methods in chaos synchro-
nization of coupled identical systems; The cascading 
method and the one way coupling method. The idea of 
the methods is to reproduce all the signals at the receiver 
under the influence of a single chaotic signal from the 
driver.  

Therefore, chaos synchronization provides potential 
applications to communications and signal processing. 
However, to build secure communications system, some 
other important factors, need to be considered. 
Simulations of synchronization of Rucklidge system are 
presented as shown in Figure 4. 

The initial values of the two subsystem are different, 
the initial value of the drive system is (1, 0, 4.5), the initial 
value of the response subsystem1 is (0, 4.5) and 
subsystem 2 is (-2, 4.5). Simulation results show that the 
two subsystems synchronize well. Figure 5 shows the 
circuit schematic for implementing the P-C Synchroni-
zation of Rucklidge system. We use TL081 opamps, the 
AD633JN multipliers, appropriate valued resistors and 
capacitors for PSpice simulations. The circuits are 
supplied ±12 V power supplies. Figure 5 also shows 
PSpice simulation results of  this  circuit.  Matlab-Simulink 
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Figure 1. Matlab-simulink model and phase portraits of Rucklidge attractor when K = 2, L = 6.7 and 
 

0 0 0x  = 1,  y  = 0,  z  = 4.5
 

 
 
 
and PSpice simulations of Rucklidge system (Figures 4 
and 5) give the same conclusions. 
 
 
CHAOTIC MASKING COMMUNICATION OF THE 
RUCKLIDGE SYSTEM 
 
Due to the fact that output signal can recover input signal, 
it indicates that it is possible to implement secure 
communication for a chaotic system. Figure 6 which 
contains the principle and Simulink scheme of the 
Rucklidge attractor showed a general secure communi-
cation system that employs the masking technique 
pointed out as follows. 

The presence of the chaotic signal between the 
transmitter and receiver has proposed the use of chaos in 
secure communication systems. The design of these 

systems depends as we explained earlier on the self-
synchronization property of the Rucklidge attractor. 
Transmitter and receiver systems are identical except for 
their initial values, in which the transmitter system is 1, 0, 
4.5 and the receiver system is -2, 0, and 4.5 as shown in 
Figure 6.  

It is necessary to make sure the parameters of 
transmitter and receiver are identical for implementing the 
chaotic masking communication. In this masking scheme, 
a low-level message signal is added to the synchronizing 
driving chaotic signal in order to regenerate a clean 
driving signal at the receiver. Thus, the message has 
been perfectly recovered by using the signal masking 
approach through cascading synchronization in the 
Rucklidge attractor. Computer simulation results have 
shown that the performance of Rucklidge attractor in 
chaotic masking and message recovery. One disadvantage  
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Figure 2. PSpice Circuit and PSpice simulation results of the Rucklidge attractor. (a)x-y  phase portrait, (b) x-z  phase portrait, (c) y-z  phase 
portrait.  
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                   (a)              (b)                  (c)  
 
Figure 3. Oscilloscope outputs of circuitry of the Rucklidge attractor, (a) x-y phase portrait, (b) x-z phase portrait, (c) y-z phase portrait 
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Figure 4. Block diagram (a) Simulink modeling (b) Simulation outputs of P-C synchronization of Rucklidge system. (c) Drive and response 
system chaotic signals before synchronization (d) Unsynchronized case (e) Drive and response system chaotic signals after synchronization 
(f) Synchronization between X and Xr.  
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Figure 5. PSpice Circuit and simulations of P-C Synchronization of Rucklidge attractor Circuit      (a) 
Drive and response system chaotic signals before synchronization (b) The phase portrait of 
unsynchronized case (c) Drive and response system chaotic signals after synchronization  
(d) X-Xr Synchronization. 
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Figure 7. Simulink outputs of Masking Communication scheme of Rucklidge attractor (a) Drive (X) and response 
(Xr) system chaotic signals vs. time (b) Transmitted signal S(t) = x(t) + i(t) (c) Information i(t) and retrieved ir(t) 
signals (sinus signal) has 0.4V amplitude and frequency 10 KHz.  
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Figure 8. Rucklidge attractor chaotic masking communication circuit. 

 
 
of using one-way coupling method is that compared to 
this cascading method, it takes longer to synchronize the 
coupled systems, especially when the coupling 
parameter is small. This may cause problems in practical 
applications such as secure communications since 
information may be delayed or lost during the first period 
of matching time. The transmitted signal is a sinus wave 
of amplitude 0.4 V and of 10 KHz frequency. The sinus 

wave signal is added to the generated chaotic x signal, 
and the S(t) = x + i(t) is feed into the receiver. The chaotic 
x signal is regenerated allowing a single subtraction to 
retrieve the transmitted signal, [x+i(t)]-x r = i(t), If x = xr. 
This is a result of synchronization as in Figure 7(a). 
Figure 7 (c) shows the information signal-sinus wave and 
the retrieved signal output of scope. Figure 8 shows the 
circuit schematic for implementing the Rucklidge attractor’s  
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Figure 9. PSpice outputs of Rucklidge attractor Masking Communication Circuit (a) Drive system x signal and 
Response system xr signal vs. time (b) Information and retrieved signal (0.4 V, 10 KHz). 

 
 
 
Chaotic Masking Communication. Figure 9 shows PSpice 
simulation results of this Chaotic Masking Circuit. The 
transmitted signal is a sinus wave of amplitude 0.4 V and 
frequency 10 KHz. Transmitter and receiver circuits are 
identical except for their initial values, in which the 
transmitter circuit are 1, 0, 4.5 and the receiver circuit are 
-2, 0, and 4.5 as shown in Figure 8. Simulink and PSpice 
simulations (Figures 7 and 9) of Chaotic masking circuit 
give the same conclusions. 
 
 
CONCLUSION 
 
This paper focuses on the chaotic oscillator circuit and 
the identical synchronization of the Rucklidge attractor 
and its applications in signal masking communications. 
Rucklidge attractor’s chaotic oscillator circuits were 
designed and simulated using Matlab-Simulink and 
PSpice programmes. The real electronically experimental 
circuit of the Rucklidge attractor was realized. Simulation 
and oscilloscope outputs illustrate the accuracy of the 
designed and realized Rucklidge chaotic oscillator 
circuits. Applied synchronization method is the Pecora-
Carroll identical cascading synchronization method. The 
behaviour of the response system depends on the 
behaviour of the drive system but not invertible. We have 
demonstrated in simulations that chaos can be 
synchronized and applied to secure communications. We 
suggest that this phenomenon of chaos synchronism may 
serve as the basis for little known Rucklidge attractor to 
achieve secure communication. Chaos synchronization 
and chaos masking were realized using Matlab-Simulink 
and PSpice programs. Related figures in Figures 4 - 5 for 
synchronization and Figures 7 - 9 for masking communi-
cation, point out that Matlab-Simulink and PSpice outputs 
prove the same conclusions. 
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