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This paper presents effects of curvature on free vibration characteristics of cross-ply laminated 
composite cylindrical shallow shells. Shallow shells have been considered for different lamination 
thickness, radius of curvature and elasticity ratio. First, kinematic relations of strains and deformation 
have been shown. Then, using Hamilton’s principle, governing differential equations have been 
obtained for a general curved shell. In the next step, stress-strain relation for laminated, cross-ply 
composite shells has been given. By using some simplifications and assuming Fourier series as a 
displacement field, differential equations are solved by matrix algebra for shallow shells. The results 
obtained by this solution have been given in tables and graphs. The comparisons made with the 
literature and finite element program (ANSYS). 
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INTRODUCTION 
 
A composite is a structural material, which consists of 
combining two or more constituents on a macroscopic 
scale to form a useful material. The goal of this three 
dimensional composition is to obtain a property which 
none of the constituents possesses. In other words, the 
target is to produce a material that possesses higher 
performance properties than its constituent parts for a 
particular purpose. Some of these properties are mecha-
nical strength, corrosion resistance, high tempera-ture 
resistance, heat conductibility, stiffness, lightness and 
appearance. In accordance with this definition, the fol-
lowing conditions must be satisfied by the composite 
material. It must be man-made and not natural. It must 
comprise at least two different materials with different 
chemical components separated by distinct interfaces. 
Different materials must be put together in a three dimen-
sional unity. It must possess properties, which none of 
the constituents possesses alone and that must be the 
aim of its production. The material must behave as a 
whole, that is, the  fiber  and  the  matrix  material  (mate-
rial surrounding the fibers) must be perfectly  bonded.  As 
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a structural material, composites offer lower weight and 
higher strength 

Shells are common structural elements in many engi-
neering structures, including concrete roofs, exteriors of 
rockets, ship hulls, automobile tires, containers of liquids, 
oil tanks, pipes, aerospace etc.  A shell can be defined as 
a curved, thin-walled structure. It can be made from a sin-
gle layer or multilayer of isotropic or anisotropic materials. 
Shells can be classified according to their curvatures. 
Shallow shells are defined as shells that have rise of not 
more than one fifth the smallest planform dimension of 
the shell (Qatu, 2004). 

Shells are three-dimensional (3D) bodies bounded by 
two relatively close, curved surfaces. The 3D equations 
of elasticity are complicated that is why all shell theories 
(thin, thick, shallow and deep, etc.) reduce the 3D elas-
ticity problem into a 2D one. This is done usually by 
Classical Lamination Theory-CLT and Kirchhoff hypo-
thesis. 

A number of theories exist for layered shells. Many of 
these theories were developed originally for thin shells 
and based on the Kirchhoff–Love kinematic hypothesis 
that straight lines normal to the under formed mid-surface 
remain straight and normal to the middle surface after 
deformation.   Among  these  theories  Qatu  (2004)  uses 



 
 
 
 
energy functional to develop equation of motion. Many 
studies have been performed on characteristics of shal-
low shells (Qatu, 1991; Qatu, 1992; Qatu, 1993). Re-
cently, Latifa and Sinha (2005) have used an improved 
finite element model for the bending and free vibration 
analysis of doubly curved, laminated composite shells 
having spherical and ellipsoidal shapes. Large-amplitude 
vibrations of circular cylindrical shells subjected to radial 
harmonic excitation in the spectral neighborhood of the 
lowest resonance are investigated by Amabili (2003). 
Gautham and Ganesan (1997) deal with the free vibration 
characteristics of isotropic and laminated orthotropic 
spherical caps. Liew et al. (2002) have presented the 
elasticity solutions for free vibration analysis of doubly 
curved shell panels of rectangular planform. Grigorenko 
and Yaremchenko (2007) have analyzed the stress-strain 
state of a shallow shell with rectangular planform and 
varying thickness. Djoudi and Bahai (2003) have pre-
sented a cylindrical strain based on shallow shell finite 
element which is developed for linear and geometrically 
non-linear analysis of cylindrical shells. 

In this paper parameters affecting free vibration charac-
teristic of symmetric, cross-ply, composite, shallow shells 
have been examined. The shells have square planform. 
The a/R (ratio of shell length to radius of shell) ratio has 
been considered as a parameter. For various a/R values 
solutions are obtained from computer program written 
using the following theory. Furthermore, for the same 
ratios, problem is modeled by finite element method also 
(Reddy, 1993). For the solution of problem by finite 
element method a commercial program, named ANSYS 
(ANSYS Inc), has been used. Starting from a/R=0 to 0.1 
various values are examined by both computer program 
and ANSYS. Various a/h (ratio of shell length to thickness 
of shell) values are used as another parameter. The 
results obtained from analysis have been compared with 
literature and ANSYS by using tables and graphs. 
 
 
Theories 
 
 A lamina is made of isotropic homogeneous reinforcing 
fibers and an isotropic homogeneous material surround-
ing the fibers, called matrix material (Figure 1). Therefore, 
the stiffness of the lamina varies from point to point 
depending on whether the point is in the fiber, the matrix 
or the fiber and matrix interface. Because of these varia-
tions, macro-mechanical analysis of a lamina is based on 
average properties.  

There are many theories of shells. Classical shell 
theory, also known as Kirchhoff-Love kinematic hypo-the-
sis, assumes that “The normals to the middle surface 
remain straight and normal to the mid-surface when the 
shell undergoes deformation”. However, according to first 
order shear deformation theory “The transverse normals 
do not remain perpendicular to the mid-surface after 
deformation” (Reddy, 2003). In addition, classical lami-
nation   theory   says   “laminas   are   perfectly    bonded”  
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Figure 1. Fiber and matrix materials in laminated composite 
shallow shell. 
 
 
 
(Gurdal and Haftka, 1998; Hyer, 1997; Reddy, 1995; 
Jones, 1984). The theory of shallow shells can be 
obtained by making the following additional assumptions 
to thin (or classical) and thick (or shear deformation) shell 
theories. It will be assumed that the deformation of the 
shells is completely determined by the displacement of its 
middle surface. The derivation of equations of motion is 
based on two assumptions. The first assumption is that 
the shallow shell has small deflections. The second 
assumption is that the shallow shell thickness is small 
compared to its radii of curvature. Also, the radii of curva-
ture are very large compared to the in-plane displace-
ment. Curvature changes caused by the tangential dis-
placement component u and v are very small in a shallow 
shell, in comparison with changes caused by the normal 
component w. 
 
 
Geometric properties 
 
The vectorial equation of the undeformed surface could 
be written by the x and y cartesian coordinates as, 
 

)y,x(rr =                            (1) 
 

a small increment in r  vector is given as,  
 

dyrdxrrd y,x, +=                           (2) 
 

where x,r is the small increment in x direction and y,r  
is the small increment in y direction (Figure 2). The diffe-
rential length of the shell surface could be found by dot 

product of rd  by itself 
 

22222 dyBdxArd.rdds +==                         (3) 
 
where A and B are referred as Lame parameters and 
defined as 

xx
2 ,r.,rA =    , yy

2 ,r.,rB =                          (4) 
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Figure 2. Coordinates of shell mid-surface. 

 
 
 
Equation (3) is called first fundamental form of the sur-
face. Tangent vector to the surface could be obtained by 
taking derivative of Equation (1) with respect to surface 
length. Then, applying Frenet’s formula to the derivative 
of tangent vector and multiplying both sides by unit nor-
mal vector gives second quadratic form. 
 
 
Kinematics of displacement 
 
Let the position of a point, on a middle surface, be shown 

by )y,x(r . If this point undergoes the displacement by 

the amount of U  then, final position of that point could 
be given as,  
 

U)y,x(r)y,x(r +=′                                             (5) 
 

where U  is the displacement field of the point and 
defined as 
 

zyx iwiviuU ++=                           (6) 

 

Where zyx iandi,i  are the unit vectors in the direction 
of x, y and z. u, v, and w are the displacements in the 
direction of x, y and z respectively. Using Equations (5) 
and (6) strains are calculated as, 
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Where Rx, Ry, and Rxy are curvatures in x-plane, y-plane 
and xy- plane, respectively. 
 
 
Stress-strain relation 
 
For an orthotropic media there are 9 stiffness coefficients 
written in local coordinates. 
 

][]Q[][ ε=σ                            (8) 
 

where ][σ  is the stress matrices, ]Q[ is the stiffness 

matrices and ][ε  strain matrices. Equation (8) could be 
written in open form as, 
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Where: 
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44 23Q G= , 55 13Q G= , 66 12Q G=

12 21 23 32 31 13 21 32 131 2∆ = − υ υ − υ υ − υ υ − υ υ υ  
 
In Equation (10) subscribe 1 indicates fiber direction, 
subscribe 2 indicates matrix direction, subscribe 2 
indicates direction that perpendicular to 1-2 plane. G is 
the shear modulus, E is the elasticity modulus and υ  is 
the Poisson’s ratio. The stresses in global coordinates 
are calculated by applying transformation rules. Then, the 
stresses over the shell thickness are integrated to obtain 
the force and moment resultants. Due to curvatures of 
the structure, extra terms must be taken into account 
during the integration. This difficulty could be overcome 
by expanding the term [1/(1+z/Rn)] in a geometric series. 
 
 
Governing equations 
 
Equation of motion for shell structures could be obtained 
by Hamilton’s principle 
 

 =−+δ
2t

1t

0dt)UWT(                         (11) 

where T is the kinetic energy of the structure  
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W is the work of the external forces 
 

ABdxdy)mmwqvquq(W
x y

yyxxzyx  ψ+ψ+++=    (13) 

in which xq , yq , zq  are the external forces u, v, w are 

displacements in x, y, z direction respectively. xm , ym , 

are the external moments and xψ , yψ  are rotations in 

x, y directions respectively. U is the strain energy defined  
 
as, 
 

( ) εσ+εσ+εσ+εσ+εσ+εσ= dxdydz
2
1

U yzyzxzxzxyxyzzyyxx
    (14) 

 
Solving Equation (11) gives set of equations called 
equations of motion for shell structures. 
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 When the shell has small curvature it is referred to as a 
shallow shell. Shallow shells are defined as shells that 
have a rise of not more than 1/5th the smallest planform 
dimension of the shell (Qatu, 2004). It has been widely 
accepted that shallow shell equations should not be used 
for maximum span to minimum radius ratio of 0.5 or 
more. For shallow shells, Lame parameters are assumed 
to equal to one (A=B=1). This gives Equation (15) in 
simplified form as, 
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Equation (16) is defined as equation of motion for thick 
shallow shell. For thin shallow shells this equation 
reduces to, 
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Figure 3. Cylindrical shallow shell. 
 
 
 

 
 
Figure 4. Cylindrical shells modeled by using 
ANSYS.  

 
 
 
The Navier type solution can be applied to thick and thin 
shallow shells. This type solution assumes that the dis-
placement field of the shallow shells could be repre-
sented as sine and cosine trigonometric functions. 
 
 
Numerical examples 
 
As an example a simply supported cylindrical shell which 
has a radius of curvature in one plane and  infinite  radius  
of curvature in other plane, is considered (Figure 3). The 
shell, in hand, has a square planform where length and 
width are equal to unity (a=b=1). As a material, a lami-
nated composite has been used with a [0°/90°/90°/0°] 
symmetrical cross-ply stacking sequence. To determine 
the effect of shell thickness and radius of curvature on 
free vibration characteristics of cylindrical shallow shell, 
problem has been solved for various values. The ratio of 
modulus of elasticity (E1/E2) which is the ratio of modulus 
of elasticity in fiber direction to matrix direction has been 
taken as a variable from 1 to 50. Then, effect of shell 
thickness ratio that is ratio of shell width to shell thick-
ness, a/h=100, 50, 20, 10 and 5, has been examined. 
Furthermore, radius of  curvature  has  been  considered.  

 
 
 
 
For different shell width/shell radius ratios which vary 
from infinity (plate) to 0.1, graphs have been obtained. 

 For each case, the shell has been solved with three 
theories. First theory is the classical laminated shallow 
shell theory (CLSST) which assumes “normals to the 
middle surface remain straight and normal after defor-
mation”. Second theory used in the solution of composite 
laminated shallow shell is shear deformation shallow 
shell theory (SDSST). SDSST is similar to CLSST except 
about transverse normals i.e., the trans-verse normals do 
not remain perpendicular to the mid-surface after defor-
mation. The last theory is the Finite element model 
(FEM). Entire structure is meshed by finite elements in 
this theory. Then assuming a suitable displacement fields 
for each meshing element, the behavior of the structure 
has been obtained. In this paper, a finite element pac-
kage program ANSYS has been used. The structure is 
meshed by 25×25 elements. A 8-noded quadratic ele-
ment is considered as a meshing element named as 
SHELL99 (ANSYS Inc). The element has 100 layers to 
model the composite materials used in the structure. For 
each layer geometric and material properties is entered 
to program. Furthermore, thick-nesses of each layer, fiber 
orientations and stacking sequence must be entered 
carefully. During solution process, subspace and block 
Lanczos mode extracting methods are used separately to 
calculate first 30 frequencies. 
Before proceeding further, the modeling of the shell 
structure in ANSYS package program has been checked to 
avoid getting wrong results. A cylindrical shell structure 
which is solved by Qatu (2004) as an example problem in 
section 7.3.1.1 has been chosen (Figure 4). The studies 
were made for isotropic steel. The thickness of the shell 
is h=0.02 in, the length of the shell is a=11.74 in, Radius 
of the cylindrical shell is R=5.836 in, unit mass is 734x10-

6 lb s2/in4, modulus of elasticity is 29.5×106 lb/in2 and 
Poisson’s ratio is 0.285. The same cylindrical shell has 
been solved by Bert et al. (1993) using Love’s shell 
theory, by Rat and Das who included shear deformation and 
rotary inertia; by Bray and Eagle using experimental proce-
dure and finally by Qatu (2004) using classical shell 
theory. All the results obtained by researchers have been 
given in Qatu (2004). The same problem has been solved 
again by modeling the structure with finite element me-
thod and using ANSYS package program. A 160×20 
mesh has been chosen. Each mesh element which is 
called SHELL99 has 8 degree of freedom. Results of that 
model prepared in ANSYS have been given in Table 1. 

Using results given in Table 1 and results obtained by 
using ANSYS, the graphs have been drawn (Figure 5). 
The results have been given for first three (m=1, 2, 3) 
longitudinal modes and first thirty (n=1, 2,…, 30) circum-
ferential modes. The three graphs have been drawn 
together in Figure 6. 

The correctness of the ANSYS model has been check-
ed in this example problem. The problem has been solved by 
Qatu (2004) Bert et al. (1993), Rath et al. (1973), Bray et al. 
(1970). The results obtained by  those  researchers  have 
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Table 1. Natural frequency parameters (Hertz) obtained by using CLSST and ANSYS. 
 

m n CLSST ANSYS m n CLSST ANSYS m n CLSST ANSYS 

0 5328,25 5325,99 0 5442,58  0 5458,11 5446,97 
1 3270,54 3336,81 1 4837,71 4832,71 1 5197,96 5205,68 
2 1861,97 2144,79 2 3725,02 3729,93 2 4563,85 4565,18 
3 1101,78 1469,94 3 2742,67 2799,58 3 3813,65 3817,14 
4 705,71 1061,33 4 2018,09 2142,28 4 3114,51 3139,31 
5 497,54 803,13 5 1515,06 1684,79 5 2530,39 2587,26 
6 400,18 642,65 6 1174,98 1363,45 6 2069,45 2157,05 
7 380,82 556,52 7 953,72 1139,82 7 1719,25 1829,20 
8 416,82 533,12 8 824,39 993,07 8 1464,11 1585,77 
9 488,69 561,49 9 770,52 912,16 9 1291,20 1414,21 
10 583,96 628,94 10 778,47 889,54 10 1190,96 1306,51 
11 696,30 724,51 11 834,33 917,13 11 1154,97 1256,83 
12 822,76 840,92 12 925,62 985,64 12 1174,09 1259,24 
13 961,95 973,94 13 1043,11 1086,24 13 1238,37 1306,82 
14 1113,21 1121,24 14 1180,85 1211,93 14 1338,48 1392,15 
15 1276,17 1281,56 15 1335,26 1357,80 15 1466,80 1508,31 
16 1450,68 1454,19 16 1504,23 1520,68 16 1617,78 1649,69 
17 1636,62 1638,73 17 1686,51 1698,52 17 1787,61 1812,07 
18 1833,93 1834,97 18 1881,37 1890,06 18 1973,77 1992,46 
19 2042,59 2042,76 19 2088,34 2094,50 19 2174,60 2188,81 
20 2262,58 2262,04 20 2307,14 2311,34 20 2389,01 2399,71 
21 2493,87 2492,77 21 2537,59 2540,26 21 2616,30 2624,22 
22 2736,47 2734,93 22 2779,58 2781,06 22 2855,96 2861,71 
23 2990,36 2988,52 23 3033,04 3033,61 23 3107,69 3111,75 
24 3255,54 3253,55 24 3297,90 3297,84 24 3371,26 3374,05 
25 3532,02 3529,36 25 3574,13 3573,71 25 3646,52 3648,43 
26 3819,79 3818,06 26 3861,71 3861,21 26 3933,35 3934,75 
27 4118,84 4117,60 27 4160,63 4160,34 27 4231,69 4232,96 
28 4429,18 4428,72 28 4470,86 4471,14 28 4541,48 4543,02 
29 4750,81 4751,49 29 4792,41 4793,63 29 4862,68 4864,92 

1 

30 5083,73 5085,96 

2 

30 5125,26 5127,88 

3 
 

30 5195,25 5198,69 
 
 
 
been compared by the results obtained by modeling the 
problem in ANSYS. For three cases graphs have been 
drawn and a perfect match has been observed with the 
results. This proofs the correctness of the model entered 
in ANSYS. 

The governing Equation (16) (using SDSST theory) and 
the governing Equation (17) (using CLSST theory) de-
rived in the theory section are solved by using Mathe-
matical program separately. Furthermore, ANSYS packet 
program has been used in the solution. The geometry of 
the shell structures has been created using arc-length 
method in ANSYS. Then, area element has been defined 
between the arc lines. Finally using SHELL 99 finite 
element, the area has been meshed. 

The problem defined at the beginning of this section 
has been solved by ANSYS and Mathematical program 
(Figure 3). The results obtained by ANSYS and Mathe-
matical have been compared in tables and graphs. 

Tables 2, 3, 4 and 5 give non-dimensional natural 
frequency parameters, 
 

 ( 2 2
2a E hω ρΩ = )  

 
varying with shell thickness, shell curvature and shell 
anisotropy. The planform dimensions of the shell are 
equal to unity. For each case, three solutions have been 
carried out. Cylindrical shallow shells have been solved 
by Mathematical program with the shear deformation 
shallow shell theory (SDSST) and classical shallow shell 
theory (CLSST). The results obtained by using both 
theories are the same given by Qatu (2004). However, 
ANSYS results have differed from the other results. 
Figures 7 and 8 show variation of natural frequency para-

meters ( 2 2
2a E hω ρΩ = ) versus elasticity ratio effect 
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                            (b) 
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Figure 5. Comparison of the results given by using CLSST and ANSYS. 

 
 
 
effect, shell thickness ratio effect and shell curvature 
effect for cross ply symmetrically laminated [0º/90º/90º/0º] 
cylindrical shallow shells. The graphs have been drawn 
according to results obtained by three theory; shear 
deformation shallow shell theory (SDSST), classical 
shallow shell theory (CLSST) and finite element method. 
 
 
Conclusions 
 

In this study, free vibration characteristic of symmetrically 

laminated, cylindrical, composite shallow shells have 
been investigated by using three different theories. 
Effects of shell curvatures and shell thicknesses have 
been shown with various graphs and tables for shallow 
shells which have square planform. The tables give non-
dimensional natural frequencies versus shell thickness 
and shell curvatures using three different theories. Each 
table has been prepared for different material anisotropy 
value (E1/E2). Analysis and assumptions used in the 
SDSST and CLSST is similar to that used in Qatu (2004). 
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Figure 6. The results for first three (m=1, 2, 3) longitudinal modes. 

 
 
 
Finite element analysis has been performed by using 
commercial finite element program named ANSYS. 

In the tables, the following results have been observed. 
The curvature of shallow shells has the increasing effects 
on the non-dimensional natural frequencies. As the cur-
vature value increases the non-dimensional natural fre-
quencies also increase. Furthermore, as the curvature 
value increases the non-dimensional natural frequencies 
obtained by the solutions of the three theories differ from 
each other. These differences are mainly caused by the 
different assumptions between the theories. Next, the 
thickness effect has been studied. The first important 
result gained from tables is that, as the thickness 
increases the results from CLSST (thin shell) differ from 
other two theories, as expected. For cylindrical shallow 
shells, shell thickness has the effect on the results of the 
three theories. That is, the results of the theories get 
closer as the shell thickness varies from thin to thick. For 
example, in Table 5 for a/h=100, a/R=0.01 values, the 
results are 49.8238221, 21.8869447 and 21.9651424 
from ANSYS solution, from SDSST solution and from 
CLSST solution, respectively. Similarly for a/h=50, 
a/R=0.01 values, the results are 30.6143513, 20.8100439 
and 21.1282430 from ANSYS solution, from SDSST 
solution and from CLSST solution, respectively. The last 
observation for the thickness is about the rate of change 
of the non-dimensional natural frequencies. The non-
dimensional natural frequency for a shallow shell in Table 
5, for example, varies from 20.76 to 49.82 for a shell 
thickness ratio 100, and  from 20.51 to 30.61 for a shell 
thickness ratio 50 and finally, from 19.07 to 21.13 for a 
shell thickness ratio 20. This means that for the first case 
the rate of change is 140%; for the second case the rate 
of change is 44% and for the last case the rate of change 
is 10.8%. The last observation on tables gives the aniso-
tropy effect. Different material anisotropy values have 
been considered for each table. A careful examination 
between tables shows the increase in anisotropy causes 
increase in the non-dimensional natural frequency va-

lues. In addition, this increase also causes the results of 
ANSYS differ from others. 

In Figure 7, frequency parameter versus curvature ratio 
graphs have been drawn. Solution of three methods has 
been shown on each graph. Two anisotropy cases have 
been considered E1/E2=1 on the left hand side and 15 on 
the right hand side. Furthermore, graphs in the each line 
in Figure 7 have been drawn for the same thickness ratio. 
The important point must be noticed here. As the 
curvature ratio increases, the results of ANSYS and other 
two methods differ. At the left hand side of Figure 7, this 
difference stars at where the curvature ratio is appro-
ximately 0.03 for the shallow shell E1/E2=1 and a/h=100, 
at the right hand side of Figure 7, this difference stars at 
where the curvature ratio is approximately 0.01 for  the  
shallow  shell  E1/E2=15  and  a/h=100. It  is  con- cluded 
that assumption of lame parameters equals to unity for 
shallow shells in the analysis of CLSST and SDSST gets 
fail as the curvature ratio increase. But luckily, the effect 
of this assumption decreases as the shell gets thicker. In 
Figure 8, frequency parameter versus elasticity ratio 
graphs have been drawn for different curvature ratios. 
The solutions obtained by different theories have been 
given on a separate graph. Graphs in each line of Figure 
8 have been drawn for the same thickness ratio. The 
differences in frequency parameters of ANSYS solution 
for the each case of curvature ratios have been repre-
sented better than other two theories. According to shell 
thickness whether shell is thick or thin, the frequency 
parameter values also differ in ANSYS solution vice ver-
sa the solution of other theories has not been much 
affected due to shell thickness. The last conclusion must 
be mentioned here. The results of SDSST for the thick 
shallow shell case have coincided with ANSYS solutions 
but differ with CLSST solutions as expected. 

In the literature shallow shells are defined as “shells 
that have rise of not more than one fifth the smallest plan-
form dimension of the shell”. In this study, to verify shal-
low shell definition, FEM solutions  have  been  compared  
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Table 2. Natural frequency parameters 

(
2 2

2a E hω ρΩ = ) for cross ply laminated 

[0º/90º/90º/0º] cylindrical shallow shells for shear deformation 
shallow shell theory (SDSST), classical shallow shell theory 

(CLSST) and ANSYS. ( 1a b = , 1 2 5E E = , 

12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 

2 5 6K = ). 
 

a/h a/R ANSYS SDSST CLSST 

0.000 8.3182320 8.3419561 8.3466158 

0.005 8.3554634 8.3476910 8.3523485 

0.010 8.4660912 8.3648721 8.3695228 

0.020 8.8945184 8.4332445 8.4378686 

0.025 9.2028989 8.4841601 8.4887647 

0.033 9.8354765 8.5931268 8.5976906 

0.050 11.4494426 8.8970644 8.9015209 

100 

0.100 17.7495839 10.3847602 10.3888021 

0.000 8.2824179 8.3280318 8.3466158 
0.005 8.2918191 8.3294614 8.3480430 
0.010 8.3198537 8.3337484 8.3523233 
0.020 8.4309702 8.3508743 8.3694217 
0.025 8.5132524 8.3636951 8.3822221 
0.033 8.6884797 8.3913259 8.4098092 
0.050 9.1705102 8.4697626 8.4881238 

50 

0.100 11.4231408 8.8810714 8.8988334 

0.000 8.1342034 8.2328074 8.3466158 
0.005 8.1357984 8.2330311 8.3468371 
0.010 8.1403834 8.2337022 8.3475009 
0.020 8.1586703 8.2363860 8.3501554 
0.025 8.1722922 8.2383982 8.3521457 
0.033 8.2017396 8.2427437 8.3564439 
0.050 8.2852836 8.2551448 8.3687102 

20 

0.100 8.7224188 8.3217438 8.4345926 

0.000 7.7777913 7.9214445 8.3466158 
0.005 7.7783773 7.9214963 8.3466647 
0.010 7.7795769 7.9216516 8.3468112 
0.020 7.7843752 7.9222728 8.3473973 
0.025 7.7879295 7.9227386 8.3478368 
0.033 7.7956157 7.9237449 8.3487863 
0.050 7.8176524 7.9266189 8.3514980 

10 

0.100 7.9353888 7.9421093 8.3661152 

0.000 6.8597888 6.9862196 8.3466158 
0.005 6.8603666 6.9862292 8.3466210 
0.010 6.8607220 6.9862580 8.3466364 
0.020 6.8620771 6.9863732 8.3466982 
0.025 6.8630546 6.9864596 8.3467445 
0.033 6.8652316 6.9866463 8.3468446 
0.050 6.8714516 6.9871794 8.3471304 

5 

0.100 6.9048843 6.9900556 8.3486726 
 

 
 
 
 
 

Table 3. Natural frequency parameters 

(
2 2

2a E hω ρΩ = ) for cross ply laminated 

[0º/90º/90º/0º] cylindrical shallow shells for shear deformation 
shallow shell theory (SDSST), classical shallow shell theory 

(CLSST) and ANSYS. ( 1a b = , 1 2 15E E = , 

12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 

2 5 6K = ). 
 

a/h a/R ANSYS SDSST CLSST 

0.000 12.2459182 12.2614750 12.2773269 
0.005 12.3124726 12.2660077 12.2818545 
0.010 12.5098255 12.2795957 12.2954271 
0.020 13.2687588 12.3337962 12.3495665 
0.025 13.8119456 12.3742888 12.3900138 
0.033 14.9156466 12.4613180 12.4769468 
0.050 17.6894273 12.7066474 12.7220125 

100 

0.100 28.2344322 13.9561431 13.9703189 

0.000 12.1857172 12.2143399 12.2773269 
0.005 12.2026001 12.2154667 12.2784485 
0.010 12.2526936 12.2188463 12.2818126 
0.020 12.4510017 12.2323552 12.2952591 
0.025 12.5975724 12.2424766 12.3053339 
0.033 12.9086409 12.2643138 12.3270710 
0.050 13.7583422 12.3264822 12.3889561 

50 

0.100 17.6461314 12.6566525 12.7176703 

0.000 11.8491688 11.9009970 12.2773269 
0.005 11.8520122 11.9011702 12.2774946 
0.010 11.8602760 11.9016900 12.2779976 
0.020 11.8932422 11.9037685 12.2800092 
0.025 11.9178558 11.9053271 12.2815177 
0.033 11.9709038 11.9086935 12.2847758 
0.050 12.1213398 11.9183050 12.2940783 

20 

0.100 12.9029318 11.9700316 12.3441502 

0.000 10.9214948 10.9716272 12.2773269 
0.005 10.9223390 10.9716650 12.2773581 
0.010 10.9246049 10.9717786 12.2774517 
0.020 10.9335351 10.9722330 12.2778261 
0.025 10.9401994 10.9725737 12.2781069 
0.033 10.9546387 10.9733098 12.2787134 
0.050 10.9957798 10.9754123 12.2804458 

10 

0.100 11.2153027 10.9867495 12.2897888 

0.000 8.7742495 8.7784062 12.2773269 
0.005 8.7743828 8.7784119 12.2773232 
0.010 8.7750937 8.7784288 12.2773121 
0.020 8.7778705 8.7784966 12.2772676 
0.025 8.7799142 8.7785475 12.2772343 
0.033 8.7844015 8.7786574 12.2771622 
0.050 8.7971748 8.7789713 12.2769563 

5 

0.100 8.8658173 8.7806649 12.2758456 
 



 
 
 
 

Table 4. Natural frequency parameters 

(
2 2

2a E hω ρΩ = ) for cross ply laminated 

[0º/90º/90º/0º] cylindrical shallow shells for shear deformation 
shallow shell theory (SDSST), classical shallow shell theory 

(CLSST) and ANSYS. ( 1a b = , 1 2 25E E = , 

12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 

2 5 6K = ). 
 
a/h a/R ANSYS SDSST CLSST 

0.000 15.1848853 15.1966195 15.2277943 
0.005 15.2714771 15.2004253 15.2315928 
0.010 15.5291199 15.2118367 15.2429825 
0.020 16.5179723 15.2573956 15.2884551 
0.025 17.2247461 15.2914739 15.3224693 
0.033 18.6565540 15.3648371 15.3956952 
0.050 22.2396947 15.5725053 15.6029822 

100 

0.100 35.7649855 16.6483393 16.6769989 
0.000 15.0831433 15.1043949 15.2277943 
0.005 15.1052244 15.1053385 15.2287305 
0.010 15.1708014 15.1081688 15.2315388 
0.020 15.4301547 15.1194844 15.2427663 
0.025 15.6217762 15.1279651 15.2511812 
0.033 16.0279668 15.1462701 15.2693443 
0.050 17.1349999 15.1984395 15.3211112 

50 

0.100 22.1675867 15.4768842 15.5974535 
0.000 14.4766898 14.5084431 15.2277943 
0.005 14.4808661 14.5085857 15.2279289 
0.010 14.4918844 14.5090135 15.2283327 
0.020 14.5356024 14.5107244 15.2299479 
0.025 14.5682132 14.5120074 15.2311591 
0.033 14.6385884 14.5147787 15.2337755 
0.050 14.8377184 14.5226923 15.2412468 

20 

0.100 15.8694447 14.5653161 15.2814952 
0.000 12.8759190 12.8912312 15.2277943 
0.005 12.8778295 12.8912607 15.2278141 
0.010 12.8808951 12.8913493 15.2278737 
0.020 12.8932463 12.8917036 15.2281121 
0.025 12.9023542 12.8919693 15.2282909 
0.033 12.9222139 12.8925433 15.2286771 
0.050 12.9787274 12.8941828 15.2297803 

10 

0.100 13.2795994 12.9030251 15.2357311 
0.000 9.7176957 9.6925563 15.2277943 
0.005 9.7194062 9.6925597 15.2277845 
0.010 9.7204281 9.6925699 15.2277551 
0.020 9.7244933 9.6926106 15.2277551 
0.025 9.7274923 9.6926412 15.2277551 
0.033 9.7340677 9.6927071 15.2277551 
0.050 9.7527723 9.6928956 15.2277551 

5 

0.100 9.8531592 9.6939123 15.2277551 
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Table 5. Natural frequency parameters 

(
2 2

2a E hω ρΩ = ) for cross ply laminated [0º/90º/90º/0º] 

cylindrical shallow shells for shear deformation shallow shell 
theory (SDSST), classical shallow shell theory (CLSST) and 

ANSYS. ( 1a b = , 1 2 50E E = , 

12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 

2 5 6K = ). 
 
a/h a/R ANSYS SDSST CLSST 

0.000 20.7615920 20.7697041 20.8519882 
0.005 20.8861260 20.7725750 20.8548479 
0.010 21.2546187 20.7811850 20.8634248 
0.020 22.6662115 20.8155881 20.8976956 
0.025 23.6739017 20.8413518 20.9233606 
0.033 25.7098528 20.8969019 20.9786985 
0.050 30.7856245 21.0547801 21.1359801 

100 

0.100 49.8238221 21.8869447 21.9651424 
0.000 20.5170113 20.5293619 20.8519882 
0.005 20.5487779 20.5300691 20.8526841 
0.010 20.6430781 20.5321904 20.8547715 
0.020 21.0158582 20.5406734 20.8631190 
0.025 21.2911836 20.5470330 20.8693772 
0.033 21.8740232 20.5607652 20.8828904 
0.050 23.4588662 20.5999425 20.9214446 

50 

0.100 30.6143513 20.8100439 21.1282430 
0.000 19.0690313 19.0768068 20.8519882 
0.005 19.0751625 19.0769093 20.8520780 
0.010 19.0914234 19.0772169 20.8523476 
0.020 19.1564672 19.0784473 20.8534259 
0.025 19.2048946 19.0793699 20.8542346 
0.033 19.3093024 19.0813631 20.8559814 
0.050 19.6045764 19.0870555 20.8609706 

20 

0.100 21.1261749 19.1177388 20.8878684 
0.000 15.8118649 15.7948517 20.8519882 
0.005 15.8149750 15.7948703 20.8519912 
0.010 15.8198621 15.7949262 20.8520001 
0.020 15.8394997 15.7951499 20.8520358 
0.025 15.8540723 15.7953176 20.8520625 
0.033 15.8857057 15.7956800 20.8521203 
0.050 15.9756740 15.7967152 20.8522854 

10 

0.100 16.4526620 15.8022988 20.8531763 
0.000 10.9302473 10.8910270 20.8519882 
0.005 10.9327131 10.8910274 20.8519681 
0.010 10.9344903 10.8910288 20.8519079 
0.020 10.9415767 10.8910341 20.8516669 
0.025 10.9468415 10.8910382 20.8514862 
0.033 10.9582819 10.8910469 20.8510959 
0.050 10.9908705 10.8910719 20.8499807 

5 

0.100 11.1651203 10.8912067 20.8439639 
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Figure 7. Natural frequency parameters (
2 2

2a E hω ρΩ = ) and curvature effect for cross ply laminated 

[0º/90º/90º/0º] cylindrical shallow shells for shear deformation shallow shell theory (SDSST), classical shallow shell 
theory (CLSST) and ANSYS. 
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Figure 8. Natural frequency parameters (
2 2

2a E hω ρΩ = ) and elasticity ratio effect for cross ply laminated 

[0º/90º/90º/0º] cylindrical shallow shells for shear deformation shallow shell theory (SDSST), classical shallow shell theory 
(CLSST) and ANSYS. 
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with CLSST and SDSST solutions, which assume Lame 
parameters equal to one (A=B=1), for different situations. 
As the thickness of the shallow shell increases, the 
results of FEM and other two theories get closer. This 
statement could be explained as follows. For thin shallow 
shells, FEM results starts to differ from other theories at 
the 0.03 curvature ratio whereas solutions of three coin-
cides even at the 0.1 curvature ratio. Elasticity ratio that 
is, anisotropy, also affects the results. For isotropic case 
results of three theories agree with each other. However, 
as the anisotropy increases results of the theories gets 
differ. 

As a conclusion, it could be said that, for shallow shells, 
no general definition could be done without considering 
effects of curvature ratio and thickness ratio. 
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