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Several worldwide pandemics, such as influenza, human immunodeficiency virus, and coronavirus, are 
caused by viral quasispecies. Characterization of quasispecies harboring in a host is essential to unveil 
the mechanisms that are at the base of the pathogen evolution, infection and spread at the epidemic 
level. Next generation sequencing (NGS) produces many thousands of sequence fragments from a 
single sample, allowing the full genome sequencing at high resolution. In this work, an original 
approach for the de novo assembly (reconstruction of a full genome without the need of a reference 
genome) of NGS reads into the quasispecies present in the sample is introduced, using biased random 
walks over an overlap graph construction. The proposed framework is shown to be successful in 
reconstructing viral quasispecies at different diversities, using both simulated and empirical data. In 
addition, a broad set of measures describing topological properties of the overlap graphs is examined, 
in order to highlight differences in the data sets and therefore in the population structures. 
 
Key words: Next-generation sequencing, genome assembly, quasispecies, complex network, random walk, de 
novo assembly. 

 
 
INTRODUCTION 
 
Several worldwide pandemics and chronic diseases are 
caused by viral quasispecies, such as influenza, human 
immunodeficiency virus (HIV), hepatitis C virus (HCV), 
and coronavirus. Quasispecies are characterized by a 
high genetic variability and can exhibit recombination, 
both due to error-prone viral replication mechanisms and 
host-virus interactions (Domingo et al., 1998). Knowledge 
and characterization of quasispecies harboring a host 
can be of dramatic importance, in order to unveil the 
mechanisms  that  are  at   the   base   of   the   pathogen  
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evolution, infection and spread at the epidemic level. 
Standard molecular sequencing, that is, Sanger’s 

method (Sanger et al., 1977), coupled with shotgun 
techniques (Roach at al., 1995), produces random 
fragments of 500 to 1,000 base pairs from a 
deoxyribonucleic acid cloning. Shotgun Sanger’s 
sequencing has a low overall base and base coverage 
throughput, although at high costs can be massively 
parallelized. Several whole genomes, including the first 
human genome, have been sequenced using this 
technique (Myers et al., 2000; Levy et al., 2007). Shotgun 
sequencing produces a set of sequence fragments that 
have to be merged together, or assembled, in order to 
reconstruct the original complete genome. During the 
past decade, a  plethora  of  methodologies  for  de  novo  
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whole-genome assembly, that is, reconstruction of a full 
genome without the need of any reference genome, have 
been introduced and implemented as software suites 
(Huang and Madan, 1999; Myers et al., 2000; Pevzner et 
al., 2001; Batzoglou et al., 2002; Mullikin and Ning, 
2003). 

Recent advancements on molecular sequencing 
(Nyrén, 2007) now allow to produce from thousands to 
billions of sequence fragments from a single sample, of 
variable length (from dozens to hundreds of bases) 
depending on the machinery (http://www.454.com/; 
http://www.illumina.com/; 
http://www.appliedbiosystems.com/absite/us/en/home/ap
plications-technologies/solid-next-generation-
sequencing.html; http://www.helicosbio.com/; 
http://www.polonator.org/; 
http://www.pacificbiosciences.com/; 
http://www.iontorrent.com/), and have been denominated 
by ultra-deep or next-generation sequencing (NGS). The 
times and costs required to sequence a human genome 
have been reduced radically, increasing also by several 
folds of the single base coverage (Wheeler et al., 2008; 
Wang et al., 2008; Kim et al., 2009). However, NGS 
techniques are usually more error-prone than Sanger 
sequencing. An issue with the NGS data analysis is the 
re-calibration of existing genome assembly algorithms, in 
order to deal with shorter sequence fragments, higher 
coverage, higher fragment number, and higher error rates 
(Dohm et al., 2007; Butler et al., 2008; Chaisson and 
Pevzner, 2008; Zerbino and Birney, 2008; Miller et al., 
2008; Medvedev and Brudno, 2009). 

Although the principal application of NGS is the (re-) 
sequencing of large and very-large genomes in short time 
(now approximately one month for a human genome), 
another important application is the sequencing of viral 
quasispecies for clinical and epidemiological purposes. 
For instance, recent applications of NGS produced the 
whole-genome assembly of H1N1 influenza A strain 
(Kuroda et al., 2010) and multiple type-1 HIV (HIV-1) 
strains (Henn et al., 2012). The case of HIV is of 
particular interest because the virus is characterized by a 
fast replication and a high mutation rate (≈3·10-5 per 
nucleotide base per cycle of replication, producing ≈1010 
virions per day), with a large number of different immune-
escape and drug-resistance mutational pathways induced 
by host genetics and treatment experience (Wang et al., 
2007; Archer et al., 2009). It has been shown that the HIV 
minority variants carrying drug resistance mutations 
(detectable by NGS, but not usually with Sanger 
sequencing) can impact the patient’s response to 
antiretroviral therapy (Simen et al., 2009). 

The current software for de novo NGS assembly is not 
specifically designed to reconstruct all the coexisting 
variants within a quasispecies, but rather to infer a unique 
consensus genome and to map its allelic variations.  

The de novo assemblers originally developed for 
Sanger’s shotgun sequencing are  based  on  an  overlap  

 
 
 
 
graph construction (Myers et al., 2000): each node of the 
graph represents a sequence fragment (read) and all 
pairwise alignments between them can be computed. An 
edge between two sequence fragments is then created 
when there is a consistent (under some criteria) overlap 
between the two reads (Figure 1). The edges can be bi-
directed in order to account for forward- or reverse-strand 
sequenced deoxyribonucleic acid. Via some graph visit 
policies, such as maximum flow, a genome is 
progressively reconstructed, or in case of 
inconsistencies, a set of contigs (substrings of the 
genome to be reconstructed that could not be merged 
together) is reported. Some algorithms (Dohm et al., 
2007) discard fragments to be added to a contig when 
they have same prefix and different suffixes. This might 
be a good way to handle repeats, but makes no sense 
when assembling a quasispecies. Other methods (Miller 
et al., 2008) account for base mismatches, but always 
output a consensus genome. 

Other assemblers, especially those built for NGS, break 
the reads into smaller fragments of k length (k-mers) and 
compute a De Bruijn graph, reducing computational 
complexity (Medvedev and Brudno, 2009). The De Bruijn 
graph considers overlaps of length k-1 between the k-
mers; usually the value of k is optimized by testing some 
ranges in relation to the average read length and 
sequencing error rates. The De Brujin graph approach 
can be more efficient when the NGS technology has a 
very large overall throughput but short read length (like 
the Illumina technology, producing ~40 million reads, 
each of ~75 bases), and it is ideal for reconstructing long 
genomes. Since a viral quasispecies has usually a short- 
or medium-size genome (thousands of bases), but a high 
internal variability, it is preferable to use an NGS 
technique that gives less overall throughput but longer 
read length (like Roche 454, generating ~1 million reads, 
each of ~450 bases). The overlap graph paradigm can 
have some advantages, since the aim is to reconstruct a 
set of paths, explaining the coexisting variants. 

Given this scenario, there is a need to develop and test 
de novo assemblers specifically tailored to quasispecies 
characterization. There are several studies that 
investigate the quasispecies reconstruction by means of 
re-sequencing using NGS data, but they are limited by 
the availability of an already sequenced genome 
(Westbrooks et al., 2008; Jojic et al., 2008; Eriksson et 
al., 2008; Zagordi et al., 2010a; Prosperi et al., 2011; 
Zagordi et al., 2011; Beerenwinkel and Zagordi, 2011). 
Along with reconstruction algorithms, procedures for error 
correction of NGS data outputs have been also 
introduced (Wang et al., 2007; Eriksson et al., 2008; Qu 
et al., 2009; Zagordi et al., 2010a, b; Skums et al., 2012). 
In this work, an original approach for the de novo 
assembly of a quasispecies from NGS data is introduced. 
The approach relies on the overlap graph paradigm, but 
revises the edge construction policy, adopting a statistical 
criterion based on pairwise local alignment scores.  
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Figure 1. Overlap graph example. Sequence fragments (reads) are nodes 
and edges represent a consistent overlap (perfect local alignment match) 
between two reads. Identical reads or sub-strings of longer reads are 
merged into unique nodes. Directions are consistent with the ordering of 
the non-overlapping heads/tails of two aligned reads. The dashed edge 
represents a consistent overlap which might not be significant when 
comparing it against the null hypothesis of seeing a consistent overlap 
due to chance. Note that the local alignment algorithm automatically 
selects the longest substring match between two sequences, allowing a 
certain number of gaps/mismatches (given as input parameter). 

 
 
 
Leveraging the theory of random walks on complex 
networks (Redner, 2001; Barrat et al., 2008; Boccaletti et 
al., 2006) a new algorithm is proposed here to produce a 
set of paths which are aimed at reconstructing the 
genomes of different variants in a quasispecies. This 
framework is applied to simulated viral quasispecies with 
different diversity, prevalence, repeats, super-infections 
and recombination. Also, empirical data publicly available 
are analyzed (Zagordi et al., 2010b). Finally, a broad set 
of topological indicators from graph theory is screened 
(Wasserman and Faust, 2004; Newman et al., 2006; 
Newman, 2010) in order to unveil differences among 
different experimental set ups and to characterize a 
quasispecies independently from the reconstruction 
phase. 
 
 
MATERIALS AND METHODS 
 
Overlap graph construction 
 
Given a NGS data sample N composed by n reads, we assume that 
all reads are forward-stranded. A heuristic to induce a consistent 
orientation for all reads is given as supplementary material and can 
be computed at the same time with the overlap graph construction 
procedure, given as follows.  

All collapse duplicate reads are stored in their relative frequency. 
If some reads appear as substring of one or more other different 
reads, it collapses them randomly into one of the superstrings. 

Substrings can contribute to the relative frequency of their 
superstring by a factor proportional to their length as compared to 
the superstring length. At this point, it is assumed that extremely 
short reads (± 2 standard deviations from the average read length) 
and reads with poor base quality (such as ambiguous base callings) 
have been filtered out. This is a pre-processing step that is often 
provided by the proprietary companion software of the NGS 
machine.  

Computes all pairwise local alignments (Smith and Waterman, 
1981; Gotoh, 1982) between reads and store them along with the 
corresponding alignment scores s. Estimate an a priori distribution 
of quasi-random local pairwise alignment scores SR by drawing 
randomly with replacement m (m≈n) reads from N, shuffling the 
characters of each drawn sequence, each pairwise alignment, 
perform a statistical test by comparing each score s against the SR 
distribution (Bacro and Comet, 2000), adjusting p-values for 
multiple comparisons (Benjamini and Hochberg, 1995).  

Retain all alignments with a consistent overlap. A consistent 
overlap is defined as (1) a perfect match in the local alignment and 
(2) a significant p-value (<0.01). Condition (1) is a strong 
assumption and is efficient only when the overall sequencing error 
rates are negligible. Indeed, error rates and types vary across 
different NGS technologies. For the Roche 454 technology, base 
insertions/deletions are more frequent than mismatches, and they 
depend on the neighboring region: in presence of homopolymers, 
that is, more than three consecutive bases of the same type, the 
error probability increases (Gilles et al., 2011). The Illumina 
technology instead is more prone to mismatches. By supposing an 
uniform error rate of 0.5% for any error type and any neighboring 
region, given an average read length of 250 bases, then ~29% of 
the reads are expected to contain at least one error. This can  be  a  
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considerable problem when looking for a perfect local alignment 
match. However, either the local alignment can allow for a certain 
number of mismatches, insertions or deletions, or the reads can be 
pre-processed to correct errors, using k-mers-based algorithms that 
do not require any reference genome (Skums et al., 2012). 
Constraint (2), meaning an alignment p-value <0.01, allows 
dropping overlaps that might be obtained by chance.  

The overlap graph is then constructed by setting a node for each 
read and an edge between two reads with a consistent and 
statistically significant overlap (Figure 1). The arc direction is 
induced by the local alignment; the edge direction goes from the 
read whose tail overlaps with the head of the other read. 

Of note, cycles in the overlap graph should be virtually 
impossible, except for some degenerate cases such as for the two 
sequences AAAA...AAAAAAACCCCCC...CCCCC, and 
CCCCC...CCCCCAAAAAAA...AAAA. 

The computational complexity for the overlap graph construction 
is O(n2), where n is the number of reads, since n·(n-1)/2 pairwise 
comparisons are required. However, the complexity of a local 
pairwise alignment is O(m1·m2), where m1 and m2 are the lengths of 
the two sequences to be aligned. 
 
 
Topological analysis of overlap graph 
 
Different topological indicators from graph theory and complex 
network analysis (Newman et al., 2006, Newman, 2010) have been 
evaluated as follows. A first insight on the possible number of 
quasispecies present in each experiment can be obtained studying 
the ratio vertices/edges, along with the percentage of sources, 
sinks, isolated, and normal nodes. The number, diameter and size 
of connected components (excluding isolated vertices) of the 
corresponding overlap graph were also evaluated. Then, for each 
component the relative density (ratio between the real number of 
edges and the maximum possible number of connections between 
the vertices) and the mean number of in-going and out-going 
connections can give a rough estimate of the number of possible 
different paths present in the network. Other structural measures 
examined were the maximum degree and transitivity (fraction of 
directed cliques, i→j, k→j, i→k, in the graph). A force-based 
algorithm (Fruchterman and Reingold, 1991) was employed for 
visualising the network and its structure, implemented in the 
“igraph” package of the R suite (http://www.R-project.org). 
 
 
Biased random walk and quasispecies reconstruction 
 
Given the directed overlap graph and considering all its connected 
components, it is possible to determine sources (nodes with only 
incoming arcs) and sinks (nodes with only outgoing arcs). Some 
sources or sinks produced will be due to uncorrected sequencing 
errors, and others will correspond to the beginning or end of the 
genome(s) to be reconstructed. Except in the extreme case of a 
circular genome and no sequencing errors, there will always be 
sources and sinks. 

In order to reconstruct a single genome or a quasispecies, we 
define a biased random walk (BRW) on the overlap graph as 
follows. Select at random a source node, weighting the selection 
probability by the relative frequency and number of outgoing arcs, 
wherein sources with higher frequency and a high number of 
connections are more likely to be selected. Move randomly from 
that node to another by giving higher probability to step into a node 
that also has higher frequency and higher number of outgoing 
nodes. Intuitively, nodes at low frequency with a low number of 
connections are likely to be reads with uncorrected sequencing 
error, or representatives of minority variants. The BRW stops when 
a sink is found or if the same node is visited. Since all connected 
nodes  have  a  consistent  overlap,  it  is   possible   to   reconstruct  

 
 
 
 
uniquely a contig for each BRW. In the case where a consistent 
overlap was defined as a non-perfect match, with a fixed number of 
mismatches, insertions or deletions, then the reconstructed contig 
will contain the base from the node with the highest weight. 

The BRW is executed for a large number of times and all 
different paths are counted along with their relative frequencies and 
their lengths. Paths with a length below the 25th percentile of the 
overall path length distribution are discarded. From the retained 
paths, all the different contigs are selected and counted. 
 
 
Next-generation sequencing data simulation 
 
A simulator of NGS was set up by considering the Roche 454 
technology. The simulator takes as input one or more genomes 
(with associated prevalence) and draws a shotgun sample where 
the probability to generate a read from a genome is proportional to 
the genome prevalence. Average (st.dev.) length of reads was 250 
(25) bases. Insertion and deletion error rate in homopolymeric 
regions (that is, more than three consecutive bases of the same 
type) was fixed to 0.005, while base mismatch rate was 0.001. 
Sequencing error probability in the head and tail of reads (10 
bases) was higher, set to 0.005. The probability to generate a 
reverse-stranded read was set to 0.5. 

Several data sets were generated, according to the following 
genome sets: (i) HIV-1, group M, subtype B polymerase gene (pol, 
n=2,844 bases considered); (ii) HIV-1, group M, subtypes A1, B, C, 
F1, and H pol, with an overall mean diversity of 11%; (iii) HIV-1, 
group M, subtypes B, F1, and one-point subtype B/J recombinant 
pol, with the form B/J/B; (iv) swarm of 10 variants of HIV-1, group 
M, subtype B pol genome at 4% diversity, mixing them at different 
prevalence increasing linearly from 2 to 18%; (v) modified HIV-1, 
group M, subtype B pol with two repeated regions according to the 
motif X/repeat/Y/repeat/Z. 

According to Eriksson et al. (2008), the minimum number of 
reads n needed to detect a variant at frequency f, with probability p, 
is n=-g·loge (1-p1/n)/(f·r), where g is the genome length and r is the 
read length. Therefore, at p=90%, given the HIV-1 pol, the minimum 
number of reads needed to detect a variant at 10% prevalence is 
n=1,160, while to detect a variant at 1% prevalence is n=11,607. 
For this reason, the number of reads simulated was 3,000, except 
for simulation (iv) for which 10,000 reads were used. 
 
 
Empirical next-generation sequencing data set 
 
The overlap graph construction and the BRW were applied to 
empirical HIV NGS data publicly available (Zagordi et al., 2010b), in 
which 10 HIV-1, group M, subtype B clones from different patients, 
encompassing a portion of the pol gene (1,245 base pairs, 
previously sequenced using Sanger technology), were pooled in a 
mixed sample, in different proportions, and re-sequenced using the 
Roche 454. The experiment was designed such that the variant 
proportions were halved progressively starting from 30%, to a 
minimum of 0.1%. The average population diversity was ~7%, with 
an estimated rate of heterogeneity of 0.35. 
 
 
Model evaluation 
 
The reconstructed genome(s) of each experiment were evaluated 
against the original strains, with some control sequences and 
outgroups, in terms of phylogenetic and recombination analyses, 
using the SplitsTree software suite (Huson and Bryant, 2006). For 
each experiment, reconstructed sequences, plus originals, controls 
and outgroups were fed to the MUSCLE multiple alignment 
software (Edgar, 2004). A thousand of bootstrap samples of each 
multiple  alignment  was  used  to  assess  node  reliability  for  both  
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Figure 2. Three-dimensional visualization (Fruchterman-Reingold force-based algorithm) of 
overlap graphs for different NGS simulations of HIV-1 pol. Graph (i) represents a unique strain 
genome; (ii) five distinct strains at high diversity (11%); (iii) a super-infection of two pure strains  
and a recombinant form; (iv) a swarm of 10 variants at a low (4%) diversity; (v) a unique strain 
with a repeated region motif of the form X/repeat/Y/repeat/Z. 

 
 
 
neighbor-joining and neighbor-net algorithms of phylogenetic 
inference, using the LogDet distance. 
 
 
RESULTS 
 
Simulations 
 
For each of the generated data sets (n=3,000 reads, 
except for simulation (iv), with 10,000 shotgun read 
samples) an overlap graph was constructed. Figure 2 
shows a three-dimensional plot of estimated networks by 
using a force-based layout algorithm. The visual 

inspection itself gives a good description of the different 
genome types: the unique variant (i) of HIV-1 induces a 
network with one (almost) fully connected component; for 
the set (ii) of five distinct HIV-1 subtypes (11% diversity) 
the network exhibits 5 independently connected 
components; the super-infection (iii) of two different viral 
subtypes that recombine within a host shows two single 
components (variants B and J) and the possibility to 
move from one to another (creating the actual 
recombinant B/J/B, but virtually also fake B/B/J and 
J/J/B); experiment (iv) has a similar graph layout as that 
of simulation (ii), but the components  are  more  close  to  
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Table 1. Topological measures and indices for overlap graphs inferred from the NGS HIV quasispecies simulations and empirical data. 
 

Data set (HIV-1 
group M pol) 

Vertices / 
edges 

Density 
Connected 

components 

Size of the biggest 

connected component 

Diameter of the 
biggest connected 

component 
Transitivity 

Mean degree 

(in/out) 

Max degree 

(in/out) 

% of 

sources 

% of 

sinks 

Unique genome 663/4354 0.00992 1 591 82 0.334 6.6/6.5 22/23 29.1 26.9 

Different subtypes 
at high diversity 

1046/2449 0.0024 5 225 35 0.389 2.3/3.0 11/9 18.0 14.3 

           

Super-infection of 
two variants with 
evidence of 
recombination 

903/4266 0.00524 1 717 70 0.321 4.7/4.0 21/19 22.4 19.2 

           

Quasispecies of 10 
variants at low 
diversity (4%) 

4828/22683 0.00097 10 1455 54 0.345 5.0/4.8 24/23 23.5 20.0 

           

Unique variant with 
a repeated region 

663/5623 0.0121 1 592 81 0.379 8.5/8.2 37/36 28.6 25.6 

Empirical data 8671/26027 0.00035 14 1179 15 0.123 3.1/3.0 94/139 10.9 27.3 
           

Empirical data 
(error-corrected) 

527/2560 0.00924 5 18 10 0.4105 4.8/4.6 31/24 14.8 12.5 

 
 
 
each other and there is the possibility to move 
from one to another at a certain point, since the 
diversity among variants is lower (4%) and in 
some regions one or more variants can be 
indistinguishable; finally, the genome with a 
repeated motif X/repeat/Y/repeat/Z is 
characterized by a main loop from the source to 
the sink, with the possibility to reconstruct both the 
genome X/repeat/Z and X/repeat/Y/repeat/Z, and 
eventually any other 
X/repeat/Y/repeat/Y/.../Y/repeat/Z. 

Results of the topological analysis for the 
aforementioned graphs are given in Table 1. In all 
the cases, the networks show a peculiar structure 
characterized by a low number of edges with 
respect to the number of vertices, small 

differences between the average and the 
maximum degree, and also a small deviation 
between in- and out-degree. These indices 
suggest that vertices in the graphs are all 
characterized by almost the same number of 
connections and only few deviations are present. 
All the networks show a very low density denoting 
that the number of possible paths to be 
considered in the reconstruction is limited. More 
importantly, the number of connected components 
indicates the number of quasispecies present in 
the original genome. 
 
 

Phylogenetic and recombination analysis 
 

By applying the BRW described in the methods  at 

each data set, we were able to reconstruct exactly 
the genomes of simulation (i) and (ii), with no 
errors. Concerning simulation (iii), both the pure B 
and J subtypes were reconstructed exactly, along 
with the recombinant form B/J/B. However, two in 
silico recombinants were also reported, namely 
the B/B/J and J/J/B variants. Nonetheless, it 
would be topologically impossible, due to the arc 
direction constraints, to reconstruct a J/B/J 
recombinant. For simulation (iv), the quasispecies 
at low diversity (4%), the BRW was able to 
reconstruct only 30% of the original population, 
capturing the variants with highest frequencies 
(>10%). The sample size (10.000) was allowing 
for a reconstruction up to 1% prevalence, but the 
induced error most likely caused the  performance
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Figure 3. Phylogenetic analysis of reconstructed genome variants (and prevalence) for 
selected simulation experiments and comparison with original genomes and other control 
genomes, plus some outgroup species. Upper panel is for a unique variant (case i), middle 
panel for recombinant superinfection (case iii), and lower panel for a quasispecies at a 4% 
diversity (case iv). Labels on network branches represent reliability (% of bootstrap replicates). 

 
 
 
decrease. Finally, for BRW on simulation (v), that is, a 
genome with the large repeated motif, yielded genomes 
of considerable different lengths, with a  variable  number 

of repeats.  
Figure 3 depicts bootstrapped phylogenetic Trees and 

recombination   networks   inferred    after    aligning    the 
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reconstructed genomes with the original strains, four 
control sequences (different isolates of the same subtype 
B) and two outgroup sequences (HIV-1 subtypes C and 
A1). 
 
 
Empirical data analysis 
 
The HIV-1 data set from Zagordi et al. (2010b) consisted 
of 16.540 reads. The average (st.dev.) read length was 
305 (117) bases. The read set was preliminarily filtered 
by mapping and trimming all the reads against an HIV-1 
group M subtype B pol gene reference sequence 
(Genbank identifier HXB2CG), in order to eliminate 
contaminants. This step was not necessary for the de 
novo assembly, but yielded a more compact data set 
(14.654 reads retained) and a less skewed distribution of 
quasi-random scores; in addition, we were able to 
calculate in advance the average (st.dev.) base 
coverage, which was 3.091 (1.405). The number of 
distinct reads was 8.672 and the network was created on 
this set. Over the total number of nodes, there were 948 
(11%) sources, 2371 (27%) sinks, 4829 (56%) isolated, 
and 524 (6%) regular. The isolated nodes accounted for 
a high percentage of the overall number of connected 
components (4829/4903). Only 35 connected 
components had a size >3, and the first 10 had a size 
>10. By applying the read error correction method 
proposed by Zagordi et al. (2010a), before constructing 
the network, the number of distinct reads decreased to 
527, yielding a network of 78 (15%) sources, 66 (12%) 
sinks, 104 (20%) isolated, and 279 (53%) regular nodes. 
Topological indices for the two overlap graphs 
constructed on the non-error-corrected and error-
corrected set of reads are listed in Table 1, while Figure 4 
depicts the two networks and phylogenetic trees including 
the variants estimated by the BRW plus the original 
Sanger clones. The BRW applied to both networks was 
able to reconstruct 5/6 variants (over a total of 10) 
unequivocally clustering with the original sequence 
clones, but the BRW on the error-corrected network 
yielded reconstructions much closer to the originals in 
terms of nucleotide differences. Of note, the 4 missed 
variants were those at the lowest frequency (<0.5%). 
 
 
DISCUSSION 
 
This study addresses the problem of de novo assembly 
of a quasispecies from NGS data outputs, investigating 
the properties of an overlap graph inferred from 
sequence fragments, and introducing an original method 
for full-genome reconstruction based on biased random 
walks. Different from previous de novo approaches (Miller 
et al., 2008), the presented method is able to reconstruct 
a whole population of genomes, that is, a viral 
quasispecies  harboring  a  host,   rather   than   a   single 

 
 
 
 
genome, while at the moment only reference-based 
methods have been proposed (Beerenwinkel and 
Zagordi, 2011). The original overlap graph construction 
algorithm and the biased random walk permit also to 
partly correct for sequencing errors. With a set of 
simulated NGS experiments, and by means of 
phylogenetic analysis, we showed that the proposed 
framework can be successful in reconstructing viral 
quasispecies at different diversities, although 
performance can be affected by decreasing the variant 
prevalence and the overall diversity. It is also capable, to 
some extent, to function in the presence of super-
infections, recombination, and problematic genomes with 
repeats. When applying our framework to empirical data 
(Zagordi et al., 2010b), it successfully reconstructed all 
the variants at a prevalence >0.5%, although a 
preliminary step of error correction becomes necessary. 

The analysis of the topological properties of the overlap 
graph can provide interesting insights on the population 
structure of the sequenced quasispecies, independently 
from the reconstruction algorithm used. The number of 
connected components and the network density, for 
instance, give a direct indication of the number of 
coexisting variants. 
 
 
Conclusions 
 
The current available software for de novo NGS 
assembly is not specifically designed to reconstruct a 
quasispecies, but rather to infer a unique consensus 
genome and to map its allelic variations. In addition, all 
the quasispecies assembly methods developed so far are 
all based on re-sequencing, that is, reference alignment, 
thus the investigation of new pathogens is limited by the 
availability of a previously sequenced genome. 
Therefore, there is a need to develop and test de novo 
assemblers tailored to quasispecies characterization, 
given the potential impact in the translational science, 
especially in terms of clinical relevance, for chronic and 
life-threatening diseases such as HIV or HCV. This study 
was limited to the analysis of a few particular examples of 
a viral quasispecies, as a proof-of-concept, but the 
reported findings are promising in a broader perspective 
of NGS experiments for the characterization of any 
quasispecies. 
 
 
LIMITATIONS 
 
This work has some limitations. The first problem centers 
on the handling of errors. With high error rates (~0.5%) 
and long reads (>250 bases), a considerable proportion 
of the reads is expected to present errors (Gilles et al., 
2011), affecting the whole overlap graph, therefore either 
a pre-processing step for error reduction is required 
(Skums  et  al.,   2012),   or   a   less   strict   definition   of 
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Figure 4. Overlap graph and phylogenetic analysis of reconstructed genome variants on the empirical HIV-1 NGS 
data set (Zagordi et al., 2010b), considering non-error-corrected (upper panel) and error-corrected (lower panel) 
reads. Green dots represent original (real) variants, whilst red diamonds represent inferred variants. Labels on tree 
branches represent reliability (% of bootstrap replicates). 

 
 
 
consistent overlap, as explained in the methods. The 
second problem is the variant prevalence distribution and 
quasispecies diversity; as they decrease an increase in 
read number (to catch minority variants) and read length 
(to minimize the overlap ambiguities in conserved 
regions) is needed. The rate of heterogeneity also plays a 
role. However, this second problem is common to most 
existing methodologies. The problem of recombination 
and repeat handling deserves more investigation, 
especially when selecting paths from the BRW runs, 
along with other scenarios in which this approach should 

be tested. For instance, in the case of a circular genome, 
since the random walk usually starts usually from a 
source, the walk would start from fake sources probably 
caused by sequencing errors. However, additional rules 
can be introduced in these particular cases.  

From an implementation point of view, probably this 
approach needs a software design tailored to multi-core 
parallel computation, given the complexity of the overlap 
graph inference and the huge data throughput of NGS. 
De Bruijn graph construction seems to be preferred to the 
overlap graph for NGS assembly as the core  of  software  
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implementations, but in the case of long reads (as for 
Roche 454), possibly a hybrid approach based on long k-
mers could be investigated. 
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Supplementary material 
 
Induction of a whole forward-stranding given a 
sample of forward- and reverse-stranded reads 
 
A NGS data output sample is usually formed both by 
forward- and reverse-stranded deoxyribonucleic acid 
sequence fragments. The overlap graph construction 
presented in the methods section requires a set of 
reads that are all forward-stranded. This can be 
achieved with a heuristic procedure, embeddable in the  
 

 
 
 
 
overlap graph construction. First, the local alignment 
score distribution or quasi-random reads RS accounts 
implicitly of read orientations, since it is calculated from 
character-shuffled original reads (that can be both 
forward and reverse-stranded). If the overlap graph 
construction is done in a depth-first fashion, given an 
arbitrary reference for the forward-strand, then it is 
possible to achieve an almost fully consistent 
transformation of reverse-stranded reads into forward-
stranded ones, as follows. 

0. Initialization) 
INPUT: a set of forward- and reverse-stranded reads R, and a local alignment score distribution RS obtained from quasi-
random reads. 
Define an empty list C of “connected” reads (reads that have both a consistent and statistically significant overlap among 
each other), that is, C=Ø 
Define a list V of “not yet connected and still to be visited” reads, that initially contains all the reads of R, that is, V=R. 
 
1. Core algorithm 
WHILE ( C≠Ø or V≠Ø ) 
IF the list of connected reads is empty, that is, C=Ø 
THEN get and remove a read from V and put it into C, that is, C = {pop(V)} 
 ELSE 
Get and remove the first read f from C, that is, f=pop(C) 
FOR EACH cєC, compute all forward/forward local pairwise alignments between f and all the other reads cєC.  
IF the overlap between f and c is consistent and statistically significant 
THEN set a link between f and c in the overlap graph (by setting the direction consistently with the heads and tails of the 
reads out of the local alignment) 
 FOR EACH vєV, compute all forward/forward and forward/reverse local pairwise alignments between f and all the reads 
vєV 
IF the forward/forward alignment overlap between f and v is consistent and statistically significant 
THEN  
Remove v from V and add v to C, that is, remove (v,V) and push(v,C) 
Set a link between f and v in the overlap graph (by setting the direction consistently with the heads and tails of the reads 
out of the local alignment) 
ELSE 
IF the forward/reverse alignment overlap between f and v is consistent and statistically significant 
THEN  
Remove v from V, reverse permanently v and add v to C, that is, remove(v,V), v=reverse(v) and push(v,C) 
Set a link between f and v (now v is reversed) in the overlap graph (by setting the direction consistently with the heads 
and tails of the reads out of the local alignment) 
 
2. Finalization 
All the elements of C and V have been analyzed, that is, C=Ø and V=Ø. 
OUTPUT: the directed overlap graph of reads. 
 
This algorithm can fail in some degenerate scenarios: 
for instance, when there is a read r1 that has a 
consistent and significant overlap with another read ra 
under a forward/forward alignment and with another 
read rb under a forward/reverse alignment, and at the 
same time ra and rb have a consistent and significant 

overlap under a forward/forward alignment. However, 
such cases are likely to be rare, especially under NGS 
samples obtained by Roche 454 technology, which are 
characterized by a read length up to 450 bases.  

In order to test the performance of this algorithm, a 
NGS  sample  of  all  forward-stranded  reads,  with  the  



 
 
 
 
same settings as for simulation (i) described in the 
manuscript, was generated. By varying the initial RS 
distribution estimation via a selection of quasi-random 
sequences with different random seeds, we estimated 
for ten independent times the directed overlap graph. 
Then, 50% of the original reads was reverted and ten 
other overlap graphs were constructed by varying the 
initial conditions of the RS calculation and applying the 
above procedure whole forward-strand induction. 
Differences in the network edges were less than 5% 
across different runs, and  probably  more  imputable  to  
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the RS distribution variation rather than to an 
algorithmic failure. In addition, no “clashes” were ever 
found when comparing two reads already put in the C 
list, that is, reads that had a consistent and significant 
overlap under a forward/reverse alignment, when 
instead both were supposed to be forward-stranded. 
 


