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This paper concerns itself with the static analysis of non-planar coupled shear walls with any number of
stiffening beams. Furthermore, the change of the heights of the stories and connecting beams from
region to region along the height are taken into consideration. The stiffening of coupled shear walls is
realized by placing high connecting beams at the levels of whole or partial stories used as storage or
service areas. The analysis is based on Vlasov’s theory of thin-walled beams and Continuous
Connection Method (CCM). In the analysis, the compatibility equation has been written at the midpoints
of the connecting and stiffening beams. The method of analysis presented was compared with the
SAP2000 structural analysis program. The results obtained showed good agreement, verifying the
accuracy of the proposed method, which can efficiently be used for the pre-design computations of tall

buildings.
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warping deformation.

INTRODUCTION

In multi-storey buildings made of reinforced concrete,
lateral loads are often resisted by specially arranged
shear walls. Shear wall components may be planar, are
usually located at the sides of the building or in the form
of a core which houses staircases or elevator shafts.
Weakening of shear walls in tall buildings by doors, win-
dows and corridor openings is one of the most frequently
encountered problems of structural engineering. When
the coupling action between the piers separated by open-
ings becomes important, some of the external moment is
resisted by the couple formed by the axial forces in the
walls due to the increase in the stiffness of the coupled
system by the connecting beams. Actually, the defor-
mation of a coupled shear wall subjected to lateral load-
ing is not confined to its plane. Studies considering in-
plane, out-of-plane and torsional deformations in the
investigation of coupled shear walls are called non-planar
coupled shear wall analyses. In non-planar coupled shear
walls, both the flexural and torsional behaviours under
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external loading have to be taken into account in the
analysis. When thin-walled structures are twisted, there is
a so-called warping of the cross-section and the
Bernoulli-Navier hypothesis is violated. The warping of
shear walls is greatly restrained by the floor slabs and the
foundations. A classical analysis of warping torsion re-
quires the prior evaluation of the shear centre location,
the principal sectorial area diagram, the warping moment
of inertia and the torsion constant (Zbirohowski, 1967).
When the height restrictions prevent connecting beams
from fulfilling their tasks of reducing the maximum total
shear wall bending moments at the bottom and the maxi-
mum lateral displacements at the top, beams with high
moments of inertia, called “stiffening beams”, are placed
at certain heights to make up for this deficiency. Stif-
fening of coupled shear walls decreases the lateral dis-
placements, thus, rendering an increase in the height of
the building possible. Hence, assigning some stories of
the building as storages, service areas and the like and
placing high beams on those floors seems to be a logical
solution. Such coupled shear walls are called “stiffened
coupled shear walls”. Such beams can be steel trusses
or reinforced concrete beams of very high bending stiff-
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Figure 1. Non-planar coupled shear wall and equivalent structure.

ness.

All of the analyses in the literature on stiffened coupled
shear walls concern themselves with planar coupled
shear walls (Aksogan et al., 1993; Arslan et al., 2004;
Aksogan et al., 2007). No study has been made, to the
knowledge of the authors, concerning the static analysis
of stiffened non-planar coupled shear walls, so far.

In the present work, the static analysis of non-planar
coupled shear walls with any number of stiffening beams,
is carried out which is applicable for asymmetric struc-
tural systems as well as symmetric ones on rigid founda-
tion. The analysis is based on the Continuous Connection
Method (CCM), in conjunction with Vlasov’s theory (1961)
of thin-walled beams, following an approach similar to the
one used by Tso and Biswas (1973). In the CCM, the
connecting beams are assumed to have the same pro-
perties and spacing along the entire height of the wall.
The discrete system of connecting beams is replaced by
continuous laminae of equivalent stiffness (Rosman,
1964). CCM has been employed in the analysis and the
compatibility equation has been written at the mid-points
of the connecting beams. For this purpose, the con-
necting beams have been replaced by an equivalent la-
yered medium. The axial force in the piers is determined
from the differential equation which is obtained by using
the compatibility and equilibrium equations. Then, all rele-
vant quantities of the problem are determined employing
their expressions in terms of the axial force.

The present formulation is implemented with a Fortran
Computer program. Using this computer program an
asymmetrical example has been solved and compared
with the solutions found by the SAP2000 (MacLeod et al.,

1977; Wilson, 1997) structural analysis program and a
perfect match has been observed.

ANALYSIS

In this study, based on Vlasov’s theory of thin walled
beams and the CCM, an approximate method is pre-
sented for the analysis of non-planar coupled shear wall
structures. The deformation of a coupled shear wall sub-
jected to a lateral loading is not always confined to its
plane. For this reason, the present analysis is a three
dimensional analysis of coupled shear walls (Figure 1a).
The CCM was developed by assuming that the discrete
system of connections, in the form of individual coupling
beams or floor slabs, could be replaced by continuous
laminae as shown in Figure 1b.

The basic assumptions of the CCM for non-planar cou-
pled shear walls can be summarized as follows:

e The geometric and material properties are constant
throughout each region i along the height.

e Vlasov’s theory for thin-walled beams of open section is
valid for each pier.

e The walls and beams are assumed to be linearly ela-
stic.

e The outline of a transverse section of the coupled shear
wall at a floor level remains unchanged in plan (due to
the rigid diaphragm assumption for floors). Moreover, the
parts of the shear wall between floor levels are also as-
sumed to satisfy this condition. Depending on the fore-
going assumption, the axis of each connecting beam re-
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Figure 2. Plan of non-planar coupled shear wall in region i.

mains straight in plan and does not change its length.
Furthermore, the slope and curvature at the ends of a
connecting beam in the vertical plane are also assumed
to be equal. Consequently, it can be proved in a straight
forward manner that, depending on the fact that there are
no vertical external forces on the connecting beams, their
mid-points are points of contraflexure.

eThe discrete set of connecting beams with bending
stiffness Elg in region i are replaced by an equivalent
continuous connecting medium of flexural rigidity Elg/h;
per unit length in the vertical direction.

e The discrete shear forces in the connecting beams in
region i are replaced by an equivalent continuous shear
flow function q;, per unit length in the vertical direction
along the mid-points of the connecting laminae.

e The torsional stiffness of the connecting beams is
neglected.

¢ Bernoulli-Navier hypothesis is assumed to be valid for
the connecting and stiffening beams.

A non-planar coupled shear wall and its plan for one
region are given in Figures 2-3 with global axes OX, OY
and OZ, the origin being at the mid-point of the clear
span in the base plane. The X axis is parallel to the
longitudinal direction of the connecting beams. The Z axis
is the vertical axis and the Y axis is such that it completes
an orthogonal right-handed system of axes. During the
deformation, the outline of a transverse section of the
shear wall remains unchanged (Figure 2).

Referring to the axes OX and OY, the coordinates of
the centroids of the piers are taken to be (xg‘,ygw)

and (xgz,ygz ) respectively. Throughout this study, the sub-

scripts 1 and 2 express the left and the right piers, res-
pectively. The subscript i (i=1,2,...,n), refers to the

number of a region. Similarly, the shear centers of the
piers are located at (xs‘,ys‘) and(xsZ,ySZ), respectively.

The coordinates referred to the principal axes of pier j
(j=1,2) which are represented by (X;, Y;), making an
angle ¢, with the respective global axes are shown in

Figure 2. The Z; axis is parallel to the global Z axis.

The axial force in each pier is found by writing down the
vertical force equilibrium equation for the part of one pier
above any horizontal cross-section as

T :j[iqideri(thdzHZi:vl (i=1,2,..n) (1)

=2

where V, is the shear force in i stiffening beam. A cut

through the points of contra-flexure of laminae exposes
the shear flow qi. The vertical force equilibrium of a dz
element of one pier yields the relation

q=-T (i=1,2,..,n) (2)

Where a prime denotes differentiation with respect to z.

Compatibility equations

While obtaining the compatibility equations in a non-pla-
nar coupled shear wall analysis, it is assumed that all
rows of connecting laminae will be cut through the mid-
points, which are the points of zero moment.

The vertical displacement due to bending can be obtain-
edas the product of the slope at the section considered
and the perpendicular distance of the point on Z axis from
the respective neutral axis. In addition, vertical displace-
ment arises, also, due to the twisting of the piers, and is
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Figure 3. Non-planar stiffened coupled shear wall.

and is equal to the value of the twist at the section consi-
dered, times the sectorial area, w, at the point on Z axis.
Therefore, the total relative vertical displacement due to
the deflections and rotations of the piers, can be written
as
61i = (u/zi;% - u:i;g‘ )+ (V;i ggz - V:i §g1 )_ (e;imz - e:im1) (3)
The first two terms in equation (3) represent the contribu-
tions of the bending of the piers about the principal axes
and the last represents the contribution of the twisting of
the piers. o, and o, are the sectorial areas at points just
to the left and the right of the cut for piers 1 and 2, res-
pectively.

The local displacements u;, v, and 6, (j=12,
i=1,2,...,n) and 2 may be expressed in terms of the glo-
bal displacements u,, v, and 6, by substituting expres-

sions (4) into (3) and rearranging, yields

d,=ua+vb+6(w+d)

in which
0=0 -0, (6)
a:ng_Xm b:ygg_ygw

(7)

d = stygz - yszxgz + yswxgw - XS|yQ|

(7)For the compatibility of displacements, the relative
vertical displacements of the cut ends must be equal to

zero. Hence,
11 1)}
-— —+— || T dz
EZ(AH Ae]zJ:J
1.2h,c

j=i+1
J J. T,dz + T—{ } =0
» E GA

(8)

ua+vb+6/(o+d)

hc?
12 El

1( 1 1
- —| —+
E(A, A,
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Figure 4. Relative vertical displacements at the mid-point of a lamina.
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Figure 5. Internal bending moments.

Differentiating this equation with respect to z and letting

eji = 9i u,=u,— ysJ 9i V=V, + ij ei (4)

hc® 1.2hc
Y = +
12EI,  GA,

the following equation is obtained:

1 1 1 7
ua+vb+0(®0+d)- —| —+ T 4+ - =0
. . (0 + d) E[A J Y,

1

(i=1,2,..,n) (10)

The successive terms in (8) represent the relative vertical
displacements due to: (a) the bending about X, and X,

axes, (b) the bending about Y, and Y, axes, (c) the rota-

tions of the piers, (d) the axial deformation of the piers,
(e) the bending deformation in the laminae, and (f) the
shearing deformation in the piers, respectively, as seen
in Figure 4.

In Figure 4, & expresses the displacements pertaining
to the left side with superscript (*) and to the right side
with superscript (**) and the relative vertical displacement
is found by adding the contributions from both sides.

Equilibrium equations

The coordinate system and positive directions of internal
bending moments acting on the different components of
the coupled shear wall are adapted as shown vectorially
in Figure 5.

These internal moments, along with the couple pro-
duced by the axial force, T;, balance the external bending
moments M, and M., . For the equilibrium of the mo-
ments about X and Y axes, the following relationships
can be derived using Vlasov’s theory of thin walled
beams:

E(Euﬁ sing, +EV: coso, +Eu§i sino, +Ev§i cosq>2)+'l'i b-M, =0
(11)

E(Eu; coso, —Ev; sing, +Eu; coso, —Ev; sing, )+Ti a-M,, =0
(12)

In these equations, Ixj and ij are the second moments
of area of the cross-sections, and |,, is the product of

inertia transformation equations for moments of inertia,
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Figure 6. Internal bimoments and bending moments.

the moment components are found, in terms of the
global of pier j (j=1, 2) about axes parallel to the global

axes and passing through the centroids. I, and E are

the second moments of area of pier j (j=1,2) about its
respective principal axes. On substituting the local dis-
placement expressions given before in (4) into expres-
sions (11-12) and applying the well-known displacements
at the point on Z axis, as

Mg, =El u'+ElV/+El,6/+Tb (i=1,2,..,n) (13)

M., =ELU+El v/ -El,0/+Ta (i=1,2,...,n) (14)

where

=1, +, L=+, L,=1, +I, (15)
lw =X 1, X0, =Y by, =Y, b, (16)
ly =Y |, Y, =Xy = XL, (17)

When non-planar coupled shear walls are rigidly con-
strained at the base, the cross-sections of the piers do
not warp uniformly along the height and internal stresses
evoke in the wall due to the bimoments. The internal
force resultants shown in Figure 6 are caused by biaxial
bending. These bending moments form bimoments with
the resisting moments at the bottom of the wall and show
up in the bimoment equilibrium equation.

In order to obtain the bimoment equilibrium equation,
the coupled shear wall will be cut through by a horizontal
plane such that an upper part is isolated from the lower
part of the structure. The internal bimoments in the struc-
ture consist of two parts; one contributed by the individual
piers (Figure 6) and the other due to the resistance of the
connecting laminae and stiffening baems (Figure 7).

In Figure 6, the internal bimoment expressions —Elwﬁe;

(j=1,2, i=1,2,...,n), are caused by the non-uniform warp-
ing of the cross-sections of the piers. It must be men-
tioned that the computation of the internal bimoments
created at the point on Z axis by the bending moments of
the wall, are carried out after transferring the bending
moments to the shear centers of the piers.

Let §| be the resultant bimoment about Z axis, which

is due to the resistance offered by the piers. It can be
written as (Figure 6):

B =-EI 07 —El 6, +El uy. )

+ELuz [y, )+ EL v, (% )BTV (x.) (18)

Using the geometric relationship, the resultant resisting
bimoment of the piers for all regions in the structure are
found as:

B, =El, u'—El,v/—E| 6 (i=1,2,...,n) (19)

in which

=1, +1, +XEL +x2L +yil +yil —2x y |, —2x.y. |,
(20)

In addition, there are bending momentsM,, , M
M, »and M~ and bimoments B, and B_ , due to the

XQ2i
summation of the shear forces in the laminae, as shown
in Figures 7-8. All quantities are related to the shear
centers of the piers, S; and S,. In order to determine the
bimoment due to the shear forces in the laminae, the
relationship between the force components in the piers,
may be determined from the free body diagram in Figure 7.

yai

Let B_ be the resultant bimoment due to the additional
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Figure 7. 3-D view of the additional internal bending moments and bimoments
due to the shear forces in the connecting medium.

bending moments and bimoments about Z axis, as
shown in Figure 8.

The shear forces in the laminae produce bimoments
on the piers. For each pier, the bimoment B, is caused

by T; (instead of the summation of the shear flow in the
connecting medium, see equation (1)), and is equal to the

/Xs1 st

Figure 8. Cross-sectional view of the additional internal bending moments and bimoments
due to the shear flow in the connecting medium.

product of this force and the principal sectorial area o, of
the point of its application. Therefore, for the two piers,

B% = _Ti (01 Bin :Ti @, (21)

The resultant bimoment, B= due to these additional



Figure 10. 3-D view of the additional internal shear forces and
twisting moments due to the shear flow in the connecting medium.

bending moments and bimoments about Z axis, then,
found as:

E = Ban + qu. + qu‘. (_ ;s* )+ Mva‘. (ys, )_ qua (;52 )+ quz. (yy ) (22)

These additional bending moments and bimoments
acting on an element are shown in Figure 8. From the

consideration of equilibrium of the moments about z

andV1 axes for pier 1, the following relations can be
obtained, respectively:

M, +T(v,)=0 M_-T(-x)=0 (23)

¥ay;

M_=-Ty, M

XG;

=-T Xq (24)

Yoy '

Similar consideration for the other pier gives
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“EI, 67 + G0,

Xy yq, !

M =Ty, M =T X (25)

Substituting (21,24-25) in (22), using (7) and simplifying,
the resultant bimoment, about the vertical axis through
point O, due to the component bending moments and
bimoments is found as:

B.=—(0+dT  (=1,2...,n) (26)

Equating the external bimoment, B , to the internal resis-

ting bimoments, the bimoment equilibrium equation of the
isolated part of the coupled shear wall above an arbitrary
horizontal plane is established. Finally, the foregoing
equilibrium equations for all regions of the structure can
be written as follows:

B, =B,+B, (27)
B, =El U —El,v/~EL®/—(0+d)T, (i=12,.,n) (28)

In order to obtain the twisting moment equilibrium
equation, the coupled shear wall will be cut through by a
horizontal plane such that an upper free body diagram is
isolated from the rest of the structure.

The internal twisting moments (torque) in the structure
consist of two parts; one contributed by the individual
piers as shown in Figure 9 and the other due to the
resistance of the connecting laminae, in other words, the
differential effect of the shear flow g, in the connecting

medium as shown in Figure 10.

In Figure 9, expressions G|Jje;i (j=1,2, i=1,2,...,n) are
the St. Venant twisting moments. Expressions —Elwle;’
(j=1,2, i=1,2,...,n) are additional twisting moments due to

the non-uniform warping (Zbirohowski, 1967) of the piers
along the height. Furthermore, the total twisting moment
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Figure 11. Cross-sectional view with the additional internal twisting moments and

shear forces due to the shear flow ¢, .

due to the shear forces in the cross-sections of the piers
about Z axis must also be considered.

Let W be the resultant torque about Z axis, which is

due to the resistance offered by the piers. It can be
written as (Figure 9):

M, = GJ6, +GJ0, ~E1,67—EL 67 +Ei u7(y, )
+EL (. fELVI(x - EL VI () o

structure are found as:

M, =El u"~Elv/+GJo —El6”

in which

J=J,+J, (31)

In addition, there are shear forces Q, , Q, , Q, , and
QYE\ ’
the section due to the shear flow, q,, in the laminae, as

shown in Figures 10-11.
The bimoments, due to g, in the two piers, are:

and twisting moments M, and M, , developed in

tapi ?

dB, =q,dzo, dB, =-qdzo, (32)

These bimoments produce the flexural twisting mo-
mentsM,, and M, related to the shear centers S; and

S,, respectively. Based on Vlasov’s theory of thin-walled
beams:

2= —-q », (33)

The resultant twisting moment, M_t due to these addi-

tional torques and shear forces about Z axis is, then,
found as:

M=h = Miqh + Mk@ - me (951 )_ QYn (_;51 )_ me (§52 )+ ng‘ (;52 )
(34)

From the consideration of equilibrium of the moments
about X, and Y, axes for pier 1, the following relations

can be obtained, respectively:

Q, dz+qdzx, =0  Q, dz+qgdzy, =0 (35)

QX“ =4 ;g‘ QYﬂ =-q ;91 (36)

Similar consideration for the other pier gives

Q, =a v, (37)
Substituting (33,36-37) in (34), using (7) and simplifying,
the resultant twisting moment, about the vertical axis

through point O, due to the component shears and
torques, yield

Q,, = g ;92

X2i

M, =(0+d)q, (i=1,2,..,n) (38)

Equating the external twisting moment, M, , to the inter-

nal resisting moments, with opposite sense, the equili-
brium equation of the isolated part of the coupled shear
wall above an arbitrary horizontal plane is established.
Finally, the foregoing equilibrium equation for all regions
of the structure can be written as follows:

M, =M, +M, (39)
My, =El u"—El, v"+GJ6 —EIl 87— (0+d)T’
(i=1,2,..,n) (40)



General solution for axial force

Using the compatibility equation (8) and the four equili-
brium equations (13), (14), (28), and (40), the 4n un-
knowns of the problem, namely u,v,,6,, and T, can be

found under the applied loadings M, , M., B, and
M, . The elimination of u,, v,, and 6, from equations

(10,13-14,28,40) yields the following differential equation
for T,:

(Bﬁ )-I_i””_ (Bzi )-I_i”+ (BSi )Ti = _M,E,Y, (EKs + K1 I’)

r [ GJ ’
_MEXi (lmK4 _Kz r)+f(MEY‘K3 + MEX‘K4)+ MEn r (41)
where
= I,  GJy, GJ
=l =y T4 y? == 42
Bh Y| 0] BZl A + E +r Bs. EA ( )

The geometrical quantities used in equation (41) are
defined as follows:

k= (bl +ho 1) k= Ul 1y l)

1 A ? A

K3: (alx_blxv) KAZ_(aIXY_bIY) (43)
A A

r=w+d+ak, -bK, I, =1, — 1K, -1, K,

1 1 1 _ 2
K=|:A_1+A_2i|+aK3+bK4 A_(IXIY _lxy)
In equation (41), M, and M., are the external bending
moments and M, is the external twisting moment about
the respective global axes and can be written as:

o Wbz) g p og)s WaHo2)
> ' 2
(44)

M, =P,(H-z

MEL = Px (_ de)+ Pv(dpx )+ W>< (H -Z )(_ dwv)+ Wv (H -Z )(dwx)

where, P, and P, are the concentrated forces, W, and
W, are the uniform loads in X and Y directions, d,, and
d., are the moment arms of the components of the con-
centrated force, d,, and d,, are the moment arms of

the distributed force components from the point on Z axis,
respectively. Substituting expressions (44) in (41) and
solving the resulting differential equation, T; is found as
follows:

T =D, Sinh[a, z]+ D, Coshla, 2]
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+D,, Sinh[a, z]+ D, Coshla,, z]

L
2BiE

{ 28,GUK, W, +K, W,)

+B, [GIH-z)(2K,P, +2K,P, + HK,W,
+HK,W, - (KW, +K,W,)z)

—2E( K, W, —d,, rW, +K,rW,

FLKW, +dy, rW, K, rW, )]} G=1.2,00)  (45)

in which
o :\/[Bz'_\/m] o :\/[B2+MJ (46)
' 2B, ? 28,

Employing the boundary conditions to determine the inte-
gration constants, T; can be obtained in a straightforward
manner.

Determination of the Shear Forces in the Stiffening
Beams

Before writing down the boundary conditions, the shear
forces in the stiffening beams must be determined. For
this purpose, compatibility equation (8) must be written
both for section i at level z, and the stiffening beam i and

solved simultaneously. Thus, employing the definition

{1.2hc+ hc? }
g LG 12 ] (47)
12¢ ¢t
+
GA, 12El

the shear force in the i stiffening beam is found as
follows:

V=-ST (i=1,2,.,n) (48)

Boundary Conditions

To determine the integration constants in the single fourth
order differential equation (41) the following 4n boundary
conditions are employed:

1- The structure being rigidly fixed at the base (z=0)

’ ’ 7

z=0 N

z=0 0

=0 u =0 (49

z=0 n

\"
z=0 Nlz=0 n z=0
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Applying equation (8) at (z =
boundary condition is:

0) and using (49), the first

Tl =0 (50)

Nlz=0

”
n >’

2-From equation (40), substituting 6 , 87, u”and v” in

", =0, the second boundary

condition at the bottom (z =0) is found as:

M, 1, =M, | i’
ME(,\ _Iev|:(EYXAEXXY) %(_M’EY,,KS _M,EX,,K4 +E_ynT:]_T|:K3:|

n

M 1, =M, | i’
+|ex|:( EanA EY, XY) |<r2[ MEYK MEXK +T 'YnTj T/K4:|

’

R AR P L ST I L)

3-From the equilibrium of the vertical forces in each pier
in the uppermost region of the shear wall

T = j:qu LV, (52)

Applying this equation for the uppermost position
(z=H), the first term on the right dropping out,
considering expression (48), the third boundary condition
is found as follows:

S, T,

s

T1

. (53)
4-Substituting u;, v; and 6in the bimoment expression

(28) and applying it at the top (z =H) the fourth boundary
condition is obtained as:

M. I, — M, |
_Iev|:( = A = XY)+§[—ME\(|K3—MEX|K4+%—’Y1T1”j

B

E4

Mg, |, =My, |
—T1K3]+|e{—( EX‘VA o) Kr[ M, K, =M, K +;

EY,

» I T,
_Y1T1)_T1K4]+r|: M K MEX‘K + Y1T1:|

+(0+d)T,=0 (54)

5- From the vertical force equilibrium of one piece of the
stiffening beam in either of the piers at height z =z,

Tl Vi =T,

(55)

z=z;

Substituting (48) in (55), the fifth type boundary condition

is obtained as follows:

T

(i-1) | ;=2

(i=1.2,..,n) (56)

i I, 7=z = T z=2
6-Applying the compatibility equation (8) for two
neighbouring regions (i) and (i-1) at height z=z, the
following equation is obtained as the sixth type boundary

condition:
1.2h, h.,c® , c®

T, (""C+ 1) T 1'2h'c+ hc

= GA,, 12El =u( GA,  12El
(i=23,...,n) (57)
7- Since the total twisting moments of the two
neighbouring regions (i) and (i-1), at height z =z, balance
each other
e, , M Je BT, +E1LUT

+[El V7, —El v+ [-GJe, +GUe |

+[E167, —El67+[0+d) T/, —(@+d)T] =0 (58)

Expressing all unknown functions in terms of T; and its
derivatives, after some rearrangements, the seventh type
boundary condition is found as:

CynTiy—-C,T+C, T, -C,T'+C,, -C, =0
(i=2,3,..,n) (59)
where
C, - 3(,K1IeY lezleX _L,i

r r r
C, =1,K; - 1,K, —%—%+%+m+d

(lieyM %, T IylocMey j (IXYIGXM v Ll M, ]
Cy=
K

(I IYK —lyg ZJ(KM +K M, ]+M
Et;

(60)

8-Since the total bimoments of the two neighbouring
regions (i) and (i-1), at height z =z, balance each other



[BE N BEi ]+ [_ EIeYugfﬂ + EIeYui”] + [Elexvz:q) - Elexvi”]

+[E167, —ELE)+[0+d)T,, - (@+d)T] =0 (61)

(i~

Expressing the other unknown functions in terms of T,
and its derivatives, after some necessary rearrange-
ments, the eighth type boundary condition is obtained as:

C,,T/y-C,T+C,,T,,-C,T+C,,,~C, =0 (62
Where
C, = (lXYleyMEXi + 1 1xMey, j_(IXYlexMEY + Lo Mey, ]
A A
_('m —leYK; "SXKZ](K‘*MEXi :’KSME“ ]+BE (63)

To determine the integration constants Dy; to Dy, the
boundary conditions at the top, bottom and between each
pair of consecutive regions are used. Substituting them in
expression (45), the general solution for T, (i =1,2,...,n)

can be found.

Determination of lateral displacements and rotation
functions

The lateral displacement and rotation functions (u,, v,,
and 6,) can be found using (13-14,40) as follows:

-1 I U[— M, K, ~M_K, +1—Ti”y}dzj dz+G,z +G, (64)
Er ' ' A

M, L, M|
ui:;J.[J[Eei’KW—TKa—Ezw+zxi|dzjdz+R1,z,+R2
(65)
M, L, M|
v:;J.[I{—Eei’Kz—IK4—EYAXY+Ezv}dz}dz+Nz+N2i

(66)
where boundary conditions (49) and the equivalence of
the horizontal displacements and the respective slopes
for every pair of neighbouring regions at their common
boundary (z = z) are used to determine the integration
constants.

Numerical results

In the example, the behaviour of the coupled shear wall
with four stiffening beams in Figures 12-13 is examined.
Stiffening beams of 3.0 m height are placed at the levels
of ninth, thirteenth and seventeenth stories and a last one
with 2.0 m height at the top, as seen in Figure 12.

The sectorial area diagram of the cross-section of the
structure is given in Figure 14. The structure is solved
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both by the present method using the CCM and by the
SAP2000 structural analysis program (Wilson, 1997)
using the frame method (MacLeod, 1977), for which the
model and its 3-D view are given in Figure 15.

The geometrical properties and the cross-sectional
view of the structure are given in Figures 12-13. The
total height of the shear wall is 72 m, the storey height is
3 m and the thicknesses of the piers and the connecting
beams are shown in Figure 13. The height of the con-
necting beams is 0.4m and the elasticity and shear-
moduli are E=2.85x10° kN/m? and G=1055556 kN/m?,
respectively. The external loads act at the top of the
structure as shown in Figures 12-13. The lateral dis-
placements at points on Z axis and the rotations, found
by the present program and the SAP2000 structural ana-
lysis program, are compared, for the unstiffened and
stiffened cases, in Figures 16-17.

Conclusions

In this study, non-planar shear walls coupled with connec-
ting and stiffening beams are analyzed under lateral load-
ing. The analysis is performed using Vlasov’s thin-walled
beam theory in conjunction with the CCM.

In the example, the behaviour of a coupled shear wall
with four stiffening beams is examined. The results
obtained have been compared with those of SAP2000
and a good agreement has been observed.

As seen in Figures 16-17, the stiffening of coupled
shear walls cause a decrease in the maximum displace-
ment at the top and the maximum bending moment at the
bottom of a building. Thus, by using such stiffening
beams the heights of buildings can be increased more.
The stiffening of coupled shear walls is realized by plac-
ing high connecting beams at the levels of whole or
partial stories used as storage or service areas. The
number and levels of these high beams, to improve the
structural behaviour of the buildings, is up to the design
engineer.

The method proposed in this study, has two main advan-
tages, which are that the data preparation is much easier
compared to the equivalent frame method for non-planar
coupled shear walls and the computation time needed is
much shorter compared to other methods. Hence, the
method presented in this study is very useful for pre-
design purposes while determining the dimensions of non-
planar coupled shear wall structures.
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Nomenclature: a, distance between the centroids of the piers
in X direction; Aj cross sectional area of the jth pier; Ac‘ , Cross

sectional area of connecting beams in region i; b, distance
between the centroids of the piers in Y direction; B, Bimoment;



340 Sci. Res. Essays

H=z;=72m

AE
¢t 31500 kN-m
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BEi , external bimoment value; B_i, resultant bimoment, about Z

axis, due to the resistance offered by the piers in region i; B,

resultant bimoment, about Z axis, due to the component
bending moments and bimoments in region i; d, a geometric
property; dex , dpy, moment arms of the components of the
concentrated force; dwx , dwy, moment arms of the distributed
force components; E, elasticity modulus; G, shear modulus;

Xg1Yq coordinates of the centroid of jth pier, referring to

global axes, X and Y, respectively; Xg1Yq coordinates of cen-

troid of the jth pier, referring to principal axes, Yandv, res-
pectively; H, total height of shear wall; hi storey height in
region i; i, region number; IC‘, moment of inertia of connecting

beams in region i; | _,I

NI
]

moments of inertia of pierj w.r.t.

global X and Y axes, respectively; IXy_ , product of inertia of pier

j w.rt. global X and Y axes in region i; I, , 1, moments of
J J

inertia of pier j w.r.t. principal X and Y axes, respectively; |

xyj ?

product of inertia of pier j w.r.t. principal X and Y axes; |

o) ?

sectorial moment of inertia of pierj; |, , sum of the sectorial

moments of inertia of the two piers at the point on Z axis; E ,a

geometrical constant; I, ,l,, , sectional properties; j, pier num-

ber; J; St. Venant torsional constant (moment of inertia) of pier
j; J, sum of the St. Venant torsional constants of the two piers;
Ki, Kz, Ks, K4 geometrical quantities related to moments of

inertia; M_, ,M_, , external bending moments in region i about
the respective axes due to the loading above the cross-section
considered; M, , external twisting moment in region i due to

ex; 2 VIEY;

Et; ?
the loading above the cross-section considered; W resultant
torque, about Z axis, due to resistance offered by piersin region

i; Mti, resultant torque, about Z axis, due to component
shears and torques in region i; N, number of regions in vertical
direction; O(X,Y,Z), orthogonal system of global axes; Px , Py,
concentrated forces in X and Y directions, respectively;
Qxi‘ ,Q, , shear forces developed in a region due to shear

flow, q;, in the laminae; q;, shear flow in laminae per unit length
in region i; R, a geometrical constant; Si, shear center of |"

Vi ?

pier; XY s coordinates of the shear center of the | pier,

referring to global axes, X and Y, respectively; T; axial force in
region i; T, thickness of a thin-walled beam; ux , uy , Uz,
displacement components in the directions of orthogonal global
system of axes O(X,Y,Z); ui, horizontal global displacement of
the point on Z axis in X direction in region i; u,, horizontal
principal displacement of the center of jth pier in Z direction in
region i; vi, horizontal global displacement of the point on Z axis

global X and Y axes, respectively; IxyA , product of inertia of pier j
J

1., moments of inertia

w.r.t. global X and Y axes in region i; Ix_ i
] ]

of pier j w.r.t. principal X and Y axes, respectively; |ny , product

of inertia of pier j w.r.t. principal X and Y axes; Im; , sectorial mo-

ment of inertia of pierj; |, , sum of the sectorial moments

of inertia of the two piers at the point on Z axis; | , a geo-

metrical constant; I, l,, , sectional properties; j, pier number; J;,
St. Venant torsional constant (moment of inertia) of pier j; j, sum

of the St. Venant torsional constants of the two piers; K1, Kz, Ks,
Ks, geometrical quantities related to moments of inertia;

M., ;M , external bending moments in region i about the

respective axes due to the loading above the cross-section

considered; M, , external twisting moment in region i due to

the loading above the cross-section considered; W resultant
torque, about Z axis, due to resistance offered by piersin

region i; M, , resultant torque, about Z axis, due to

t
component shears and torques in region i; N, number of regions
in vertical direction; O(X,Y,Z), orthogonal system of global axes;
Px , Py, concentrated forces in X and Y directions, respectively;

Qxi‘ ,Q, , shear forces developed in a region due to shear

flow, @i, in the laminae; g;, shear flow in laminae per unit length
in region i; R, a geometrical constant; Si, shear center of jth

Vi ?

pier; Xy Y o coordinates of the shear center of the jth pier,

refering to global axes, X and Y, respectively; T axial force in
region i; T, thickness of a thin-walled beam; ux , uy , Uy,
displacement components in the directions of orthogonal global
system of axes O(X,Y,2); u;, horizontal global displacement of

the point on Z axis in X direction in region i; uj, horizontal

principal displacement of the center of | pier in Z direction in

region i; v;, horizontal global displacement of the point on Z
axisin Y direction in region i; v, , horizontal principal displace-

ment of the center of | pier in 7“ direction in region i; Vi shear

force in i" stiffening beam; Z, spatial coordinate measured
along the height of the structure; Wx, uniform load in X direction;
Wy, uniform load in Y direction; B+ , Pai , Psi, geometrical
constants; d+;, the relative vertical displacement due to the bend-
ing of the piers in X and Y directions and due to the warp-
ing of the piers; 82, the relative vertical displacement due to the
axial deformation of the piers caused by the induced axial
forces arising from the shear flow q; in the connecting medium;
dsi, the relative vertical displacement due to the bending of the
connecting beams; 34, the relative vertical displacement due to
the shear deformations in the laminae; 6, rotational global dis-
placement of the rigid diaphragm in region i; 6; rotational

principal displacement of jth pier about Z_jidirection in region i;
0’ , angle of twist per unit length; o, sectorial area of pier j at
the point on Z axis; 0. angle between the global axes and the

principal axes of jth pier; v,, a constant property of connecting
beams; A, a geometrical constant.
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