
Scientific Research and Essay Vol. 4 (4), pp. 328-345, April, 2009 
Available online at http://www.academicjournals.org/SRE 
ISSN 1992-2248 © 2009 Academic Journals 
 
 
 
 
 
Full Length Research Paper 
 

Non-planar coupled shear walls with stiffening beams 
 

E. Emsen1*, C. D. Turkozer2, O. Aksogan2, R. Resatoglu3 and M. Bikçe4 
 

1Department of Civil Engineering, Akdeniz University, 07058, Antalya, Turkey. 
2Department of Civil Engineering, University of Cukurova, 01330, Adana, Turkey. 

3Department of Civil Engineering, Near East University, Nicosia, North Cyprus, Turkey. 
4Department of Civil Engineering, Mustafa Kemal University, 31024 Hatay, Turkey. 

 
Accepted 17 February, 2009 

 
This paper concerns itself with the static analysis of non-planar coupled shear walls with any number of 
stiffening beams. Furthermore, the change of the heights of the stories and connecting beams from 
region to region along the height are taken into consideration. The stiffening of coupled shear walls is 
realized by placing high connecting beams at the levels of whole or partial stories used as storage or 
service areas. The analysis is based on Vlasov’s theory of thin-walled beams and Continuous 
Connection Method (CCM). In the analysis, the compatibility equation has been written at the midpoints 
of the connecting and stiffening beams. The method of analysis presented was compared with the 
SAP2000 structural analysis program. The results obtained showed good agreement, verifying the 
accuracy of the proposed method, which can efficiently be used for the pre-design computations of tall 
buildings. 
 
Key words: Static analysis, continuous connection method, coupled shear wall, stiffening beam, non-planar, 
warping deformation. 

 
 
INTRODUCTION 
 
In multi-storey buildings made of reinforced concrete, 
lateral loads are often resisted by specially arranged 
shear walls. Shear wall components may be planar, are 
usually located at the sides of the building or in the form 
of a core which houses staircases or elevator shafts. 
Weakening of shear walls in tall buildings by doors, win-
dows and corridor openings is one of the most frequently 
encountered problems of structural engineering. When 
the coupling action between the piers separated by open-
ings becomes important, some of the external moment is 
resisted by the couple formed by the axial forces in the 
walls due to the increase in the stiffness of the coupled 
system by the connecting beams. Actually, the defor-
mation of a coupled shear wall subjected to lateral load-
ing is not confined to its plane. Studies considering in-
plane, out-of-plane and torsional deformations in the 
investigation of coupled shear walls are called non-planar 
coupled shear wall analyses. In non-planar coupled shear 
walls, both the  flexural  and  torsional  behaviours  under 
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external loading have to be taken into account in the 
analysis. When thin-walled structures are twisted, there is 
a so-called warping of the cross-section and the 
Bernoulli-Navier hypothesis is violated. The warping of 
shear walls is greatly restrained by the floor slabs and the 
foundations. A classical analysis of warping torsion re-
quires the prior evaluation of the shear centre location, 
the principal sectorial area diagram, the warping moment 
of inertia and the torsion constant (Zbirohowski, 1967).  

When the height restrictions prevent connecting beams 
from fulfilling their tasks of reducing the maximum total 
shear wall bending moments at the bottom and the maxi-
mum lateral displacements at the top, beams with high 
moments of inertia, called “stiffening beams”, are placed 
at certain heights to make up for this deficiency. Stif-
fening of coupled shear walls decreases the lateral dis-
placements, thus, rendering an increase in the height of 
the building possible. Hence, assigning some stories of 
the building as storages, service areas and the like and 
placing high beams on those floors seems to be a logical 
solution. Such coupled shear walls are called “stiffened 
coupled shear walls”. Such beams can be steel trusses 
or reinforced concrete beams of very  high  bending  stiff- 
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Figure 1. Non-planar coupled shear wall and equivalent structure. 

 
 
 
ness.  

All of the analyses in the literature on stiffened coupled 
shear walls concern themselves with planar coupled 
shear walls (Aksogan et al., 1993; Arslan et al., 2004; 
Aksogan et al., 2007). No study has been made, to the 
knowledge of the authors, concerning the static analysis 
of stiffened non-planar coupled shear walls, so far. 

In the present work, the static analysis of non-planar 
coupled shear walls with any number of stiffening beams, 
is carried out which is applicable for asymmetric struc-
tural systems as well as symmetric ones on rigid founda-
tion. The analysis is based on the Continuous Connection 
Method (CCM), in conjunction with Vlasov’s theory (1961) 
of thin-walled beams, following an approach similar to the 
one used by Tso and Biswas (1973). In the CCM, the 
connecting beams are assumed to have the same pro-
perties and spacing along the entire height of the wall. 
The discrete system of connecting beams is replaced by 
continuous laminae of equivalent stiffness (Rosman, 
1964). CCM has been employed in the analysis and the 
compatibility equation has been written at the mid-points 
of the connecting beams. For this purpose, the con-
necting beams have been replaced by an equivalent la-
yered medium. The axial force in the piers is determined 
from the differential equation which is obtained by using 
the compatibility and equilibrium equations. Then, all rele-
vant quantities of the problem are determined employing 
their expressions in terms of the axial force.  

The present formulation is implemented with a Fortran 
Computer program. Using this computer program an 
asymmetrical example has been solved and compared 
with the solutions found by the SAP2000 (MacLeod et al., 

1977; Wilson, 1997) structural analysis program and a 
perfect match has been observed.  
 
 
ANALYSIS 
 
In this study, based on Vlasov’s theory of thin walled 
beams and the CCM, an approximate method is pre-
sented for the analysis of non-planar coupled shear wall 
structures. The deformation of a coupled shear wall sub-
jected to a lateral loading is not always confined to its 
plane. For this reason, the present analysis is a three 
dimensional analysis of coupled shear walls (Figure 1a). 
The CCM was developed by assuming that the discrete 
system of connections, in the form of individual coupling 
beams or floor slabs, could be replaced by continuous 
laminae as shown in Figure 1b.  

The basic assumptions of the CCM for non-planar cou-
pled shear walls can be summarized as follows: 
 
• The geometric and material properties are constant 
throughout each region i along the height. 
• Vlasov’s theory for thin-walled beams of open section is 
valid for each pier.  
• The walls and beams are assumed to be linearly ela-
stic. 
• The outline of a transverse section of the coupled shear 
wall at a floor level remains unchanged in plan (due to 
the rigid diaphragm assumption for floors). Moreover, the 
parts of the shear wall between floor levels are also as-
sumed to satisfy this condition. Depending on the fore-
going assumption, the axis of each  connecting beam  re- 
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Figure 2. Plan of non-planar coupled shear wall in region i. 

 
 
 
mains straight in plan and does not change its length. 
Furthermore, the slope and curvature at the ends of a 
connecting beam in the vertical plane are also assumed 
to be equal. Consequently, it can be proved in a straight 
forward manner that, depending on the fact that there are 
no vertical external forces on the connecting beams, their 
mid-points are points of contraflexure. 
• The discrete set of connecting beams with bending 
stiffness EIci in region i are replaced by an equivalent 
continuous connecting medium of flexural rigidity EIci/hi 
per unit length in the vertical direction. 
• The discrete shear forces in the connecting beams in 
region i are replaced by an equivalent continuous shear 
flow function qi, per unit length in the vertical direction 
along the mid-points of the connecting laminae. 
• The torsional stiffness of the connecting beams is 
neglected. 
• Bernoulli-Navier hypothesis is assumed to be valid for 
the connecting and stiffening beams. 
 
A non-planar coupled shear wall and its plan for one 
region are given in Figures 2-3 with global axes OX, OY 
and OZ, the origin being at the mid-point of the clear 
span in the base plane. The X axis is parallel to the 
longitudinal direction of the connecting beams. The Z axis 
is the vertical axis and the Y axis is such that it completes 
an orthogonal right-handed system of axes. During the 
deformation, the outline of a transverse section of the 
shear wall remains unchanged (Figure 2). 

Referring to the axes OX and OY, the coordinates of 
the centroids of the piers are taken to be ( )

11 gg y,x  

and ( )
22 gg y,x , respectively. Throughout this study, the sub-

scripts 1 and 2 express the left and the right piers, res-
pectively. The subscript i ( )n1,2,...,i = , refers to the 

number of a region. Similarly, the shear centers of the 
piers are located at ( )

11 ss y,x  and ( )
22 ss y,x , respectively. 

The coordinates referred to the principal axes of pier j 
( )1,2j =  which are represented by ( )jj Y,X , making an 
angle jφ  with the respective global axes are shown in 

Figure 2. The jZ  axis is parallel to the global Z axis. 
The axial force in each pier is found by writing down the 
vertical force equilibrium equation for the part of one pier 
above any horizontal cross-section as 
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where iV  is the shear force in ith stiffening beam. A cut 
through the points of contra-flexure of laminae exposes 
the shear flow qi. The vertical force equilibrium of a dz 
element of one pier yields the relation  
 

ii Tq ′−=     ( )n1,2,...,i =        (2) 
 
Where a prime denotes differentiation with respect to z.  
 
 

Compatibility equations 
 

While obtaining the compatibility equations in a non-pla-
nar coupled shear wall analysis, it is assumed that all 
rows of connecting laminae will be cut through the mid-
points, which are the points of zero moment.  

The vertical displacement due to bending can be obtain-
edas the product of the slope at the section considered 
and the perpendicular distance of the point on Z axis from 
the respective neutral axis. In addition, vertical displace-
ment arises, also, due to the twisting of the  piers,  and  is 
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Figure 3. Non-planar stiffened coupled shear wall. 

 
 
 
and is equal to the value of the twist at the section consi-
dered, times the sectorial area, ω , at the point on Z axis. 
Therefore, the total relative vertical displacement due to 
the deflections and rotations of the piers, can be written 
as 
 

( ) ( ) ( )1i12i2gi1gi2gi1gi2i1 1212 yvyvxuxu ωθ′−ωθ′−′−′+′−′=δ       (3) 
 
The first two terms in equation (3) represent the contribu-
tions of the bending of the piers about the principal axes 
and the last represents the contribution of the twisting of 
the piers. 1ω  and 2ω  are the sectorial areas at points just 
to the left and the right of the cut for piers 1 and 2, res-
pectively.  

The   local   displacements   jiu ,  jiv   and   jiθ   ( 2,1j = , 

n1,2,...,i = ) and 2 may be expressed in terms of the glo-
bal displacements iu , iv  and iθ  by substituting expres-
sions (4) into (3) and rearranging, yields 

)d(bvau iiii1 +ωθ′+′+′=δ           (5) 
 
in which 
 

21 ω−ω=ω             (6) 

12 gg xxa −=                             
12 gg yyb −=  

 

11112222 gsgsgsgs yxxyxyyxd −+−=                                 (7) 
 
(7)For the compatibility of displacements, the relative 
vertical displacements of the cut ends must be equal to 
zero. Hence,                  
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Figure 4. Relative vertical displacements at the mid-point of a lamina. 
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Differentiating this equation with respect to z and letting 
 

iji θ=θ        isiji j
yuu θ−=            isiji j

xvv θ+=     (4) 
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the following equation is obtained: 
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                                                       ( )n1,2,...,i =           (10) 
 

The successive terms in (8) represent the relative vertical 
displacements due to: (a) the bending about  1X  and  2X  

axes, (b) the bending about 1Y and 2Y  axes, (c) the rota- 

tions of the piers, (d) the axial deformation of the piers, 
(e) the bending deformation in the laminae, and (f) the 
shearing deformation in the piers, respectively, as seen 
in Figure 4.  

In Figure 4, δ expresses the displacements pertaining 
to the left side with superscript (*) and to the right side 
with superscript (**) and the relative vertical displacement  
is found by adding the contributions from both sides.  
 
 
Equilibrium equations 
 

The coordinate system and positive directions of internal  
bending moments acting on the different components of 
the coupled shear wall are adapted as shown vectorially 
in Figure 5.  

These internal moments, along with the couple pro-
duced by the axial force, Ti, balance the external bending 
moments 

iEXM  and 
iEYM . For the equilibrium of the mo-

ments about X and Y axes, the following relationships 
can be derived using Vlasov’s theory of thin walled 
beams: 
 

( ) 0MbTcosvIsinuIcosvIsinuIE
i2211 EXi2i2x2i2y1i1x1i1y =−+φ′′+φ′′+φ′′+φ′′

                              (11) 
 

( ) 0MaTsinvIcosuIsinvIcosuIE
i2211 EYi2i2x2i2y1i1x1i1y =−+φ′′−φ′′+φ′′−φ′′

                                                                                     (12) 
 
In these equations, 

jxI  and 
jyI  are the second moments 

of area of the cross-sections, and 
jxyI  is the product of 

inertia transformation equations  for  moments  of  inertia,   
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Figure 6. Internal bimoments and bending moments. 

 
 
 
the  moment components are  found,  in  terms  of  the  
global of pier j (j=1, 2) about axes parallel to the global 
axes and passing  through the centroids. 

jxI  and 
jyI  are 

the second moments of area of pier j ( 2,1j = ) about its 
respective principal axes. On substituting the local dis-
placement expressions given before in (4) into expres-
sions (11-12) and applying the well-known displacements 
at the point on Z axis, as 
 

bTIEvIEuIEM iiXiXiXYEXi
+θ′′+′′+′′= θ         ( )n1,2,...,i =     (13) 

 
aTIEvIEuIEM iiYiXYiYEYi

+θ′′−′′+′′= θ  ( )n1,2,...,i =     (14) 
 
where 
 

21 xxX III +=  
21 yyY III +=  

21 xyxyXY III +=       (15) 
 

22112211 xysxysxsxsX IyIyIxIxI −−+=θ        (16) 
 

22112211 xysxysysysY IxIxIyIyI −−+=θ        (17) 
 

When non-planar coupled shear walls are rigidly con-
strained at the base, the cross-sections of the piers do 
not warp uniformly along the height and internal stresses 
evoke in the wall due to the bimoments. The internal 
force resultants shown in Figure 6 are caused by biaxial 
bending. These bending moments form bimoments with 
the resisting moments at the bottom of the wall and show 
up in the bimoment equilibrium equation.  

In order to obtain the bimoment equilibrium equation, 
the coupled shear wall will be cut through by a horizontal 
plane such that an upper part is isolated from the lower 
part of the structure. The internal bimoments in the struc-
ture consist of two parts; one contributed by the individual 
piers (Figure 6) and the other due to the resistance of the 
connecting laminae and stiffening baems (Figure 7).  

In Figure 6, the internal bimoment expressions jiji
IE θ′′− ω  

(j=1,2, i=1,2,…,n), are caused by the non-uniform warp-
ing of the cross-sections of the piers. It must be men-
tioned that the computation of the internal bimoments 
created at the point on Z axis by the bending moments of 
the wall, are carried out after transferring the bending 
moments to the shear centers of the piers. 

Let iB  be the resultant bimoment about Z axis, which 
is due to the resistance offered by the piers. It can be 
written as (Figure 6): 
 

 ( )
1121 si1yi2i1i yuIEIEIEB ′′+θ ′′−θ ′′−= ωω  

( ) ( ) ( )221122
si2xsi1xsi2y xvIExvIEyuIE ′′−−′′+′′+     (18) 

 

Using the geometric relationship, the resultant resisting 
bimoment of the piers for all regions in the structure are 
found as: 
 

iiXiYi IEvIEuIEB θ′′−′′−′′= ωθθ   ( )n1,2,...,i =      (19)  
 

in which 
 

2221112211221121 xyssxyssy
2
sy

2
sx

2
sx

2
s Iyx2Iyx2IyIyIxIxIII −−+++++= ωωω

                                      (20) 
 

In addition, there are bending moments
i1xqM , 

i1yqM , 

i2xqM , and 
i2yqM  and bimoments 

i1qB  and 
i2qB , due to the 

summation of the shear forces in the laminae, as shown 
in Figures 7-8. All quantities are related to the shear 
centers of the piers, S1 and S2. In order to determine the 
bimoment due to the shear forces in the laminae, the 
relationship between the force components in the piers, 
may be determined from the free body diagram in Figure 7. 

Let iB  be the resultant  bimoment  due  to  the  additional 
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bending moments and bimoments about Z axis, as  
shown in Figure 8.  

The shear forces in the laminae produce bimoments  
on the piers. For each pier, the bimoment 

jiqB  is caused 

by Ti (instead of the summation of the shear flow in the 
connecting medium, see equation (1)), and is equal to the 

product of this force and the principal sectorial area jω of 
the point of its application. Therefore, for the two piers, 
 

1iq TB
i1

ω−=   2iq TB
i2

ω=    (21) 

The   resultant   bimoment,  iB ,  due  to  these  additional
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bending moments and bimoments about Z axis, then, 
found as: 
 

( ) ( ) ( ) ( )
2i22i21i11i1i2i1 syqsxqsyqsxqqqi yMxMyMxMBBB +−+−++=       (22) 

These additional bending moments and bimoments 
acting on an element are shown in Figure 8. From the 
consideration of equilibrium of the moments about 1X  

and 1Y  axes for pier 1, the following relations can be 
obtained, respectively: 
 

( ) 0yTM
1i1

gixq
=+  ( ) 0xTM 1

i1
giyq

=−−       (23) 
 

1i1
gixq

yTM −=  1
i1

giyq
xTM −=                 (24) 

 
Similar consideration for the other pier gives 

2i2
gixq

yTM =      2
i2

giyq
xTM =                           (25) 

 
Substituting (21,24-25) in (22), using (7) and simplifying, 
the resultant bimoment, about the vertical axis through 
point O, due to the component bending moments and 
bimoments is found as: 
 

( ) ii TdB +ω−=  ( )n1,2,...,i =                  (26) 
 
Equating the external bimoment, 

iEB , to the internal resis-
ting bimoments, the bimoment equilibrium equation of the 
isolated part of the coupled shear wall above an arbitrary 
horizontal plane is established. Finally, the foregoing 
equilibrium equations for all regions of the structure can 
be written as follows: 
 

iiE BBB
i

+=           (27) 
 

( ) iiiXiYE TdIEvIEuIEB
i

+ω−θ′′−′′−′′= ωθθ  ( )n1,2,...,i =     (28) 
 

In order to obtain the twisting moment equilibrium 
equation, the coupled shear wall will be cut through by a 
horizontal plane such that an upper free body diagram is 
isolated from the rest of the structure. 

The internal twisting moments (torque) in the structure 
consist of two parts; one contributed by the individual 
piers as shown in Figure 9 and the other due to the 
resistance of the connecting laminae, in other words, the 
differential effect of the shear flow iq  in the connecting 
medium as shown in Figure 10. 

In Figure 9, expressions jijJG θ′  (j=1,2, i=1,2,…,n) are 

the St. Venant twisting moments. Expressions jij
IE θ ′′′− ω  

(j=1,2, i=1,2,…,n) are additional twisting moments due to 
the non-uniform warping (Zbirohowski, 1967) of the piers 
along the height. Furthermore, the total twisting moment  
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due to the shear forces in the cross-sections of the piers 
about Z axis must also be considered.  

Let 
it

M  be the resultant torque about Z axis, which is 
due to the resistance offered by the piers. It can be 
written as (Figure 9): 
 

( )
1121i si1yi2i1i22i11t yuIEIEIEGJGJM ′′′+θ ′′′−θ ′′′−θ′+θ′= ωω

( ) ( ) ( )221122
si2xsi1xsi2y xvIExvIEyuIE ′′′−−′′′+′′′+  (29) 

 
structure are found as: 
 

iiiXiYt IEJGvIEuIEM
i

θ ′′′−θ′+′′′−′′′= ωθθ  ( )n1,2,...,i =     (30) 
 
in which 
 

21 JJJ +=           (31) 
 
In addition, there are shear forces 

i1xQ , 
i1yQ , 

i2xQ , and 

i2yQ , and twisting moments 
i1tqM  and 

i2tqM , developed in 

the section due to the shear flow, iq , in the laminae, as 
shown in Figures 10-11. 

The bimoments, due to iq  in the two piers, are: 
 

1iz dzqdB
i1

ω=  2iz dzqdB
i2

ω−=       (32) 
 
These bimoments produce the flexural twisting mo-
ments

i1tqM  and 
i2tqM , related to the shear centers S1 and 

S2, respectively. Based on Vlasov’s theory of thin-walled 
beams: 
 

1i
z

tq q
dz

dB
M i1

i1
ω==      2i

z
tq q

dz

dB
M i2

i2
ω−==      (33) 

The resultant twisting moment,  
it

M ,  due  to  these  addi- 

tional torques and shear forces about Z axis is, then, 
found as: 
 

( ) ( ) ( ) ( )2i22i21i11i1i2i1i
sysxsysxtqtqt xQyQxQyQMMM +−−−−+=

                              (34) 
 
From the consideration of equilibrium of the moments 
about 1X  and 1Y  axes for pier 1, the following relations 
can be obtained, respectively: 
 

0xdzqdzQ 1i1
gix =+  0ydzqdzQ

1i1 giy =+     (35) 
 

1i1
gix xqQ −=  

1i1 giy yqQ −=       (36) 
 
Similar consideration for the other pier gives 
 

2i2
gix xqQ =     

2i2 giy yqQ =        (37) 
 
Substituting (33,36-37) in (34), using (7) and simplifying, 
the resultant twisting moment, about the vertical axis 
through point O, due to the component shears and 
torques, yield 
 

( ) it qdM
i

+ω=  ( )n1,2,...,i =        (38) 
 

Equating the external twisting moment, 
iEtM , to the inter-

nal resisting moments, with opposite sense, the equili-
brium equation of the isolated part of the coupled shear 
wall above an arbitrary horizontal plane is established. 
Finally, the foregoing equilibrium equation for all regions 
of the structure can be written as follows: 
 

iii ttEt MMM +=          (39) 

( ) iiiiiXiYEt TdIEJGvIEuIEM
i

′+ω−θ ′′′−θ′+′′′−′′′= ωθθ  

( )n1,2,...,i =                                                                   (40) 



 
 
 
 
General solution for axial force 
 
Using the compatibility equation (8) and the four equili-
brium equations (13), (14), (28), and (40), the 4n un-
knowns of the problem, namely iu , iv , iθ , and iT , can be 
found under the applied loadings 

iEXM , 
iEYM , 

iEB , and 

iEtM . The elimination of iu , iv , and iθ  from equations 
(10,13-14,28,40) yields the following differential equation 
for iT : 
 

( ) ( ) ( ) ( )rKKIMTTT 13EYii3ii2ii1 i
+′′−=β+′′β−′′′′β ω

( ) ( ) rMKMKM
E

GJrKKIM
iiii Et4EX3EY24EX ′+++−′′− ω  (41)                                   

 
where 
 

ωγ=β Iii1  2i
i2 r

E
JG

A
I

+
γ

+=β ω        
AE
JG

i3 =β               (42) 

 
The geometrical quantities used in equation (41) are 
defined as follows:  
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21 KbKadr −++ω=   1Y2X KIKIII θθωω −−=
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A
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A
1

A
1 ++�
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�
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XYYX III −=∆
 

 
In equation (41), 

iEXM  and 
iEYM  are the external bending 

moments and 
iEtM  is the external twisting moment about 

the respective global axes and can be written as: 
 

( ) ( )
2

zHW
zHPM Y

YEXi

−+−=
     

( ) ( )
2

zHW
zHPM X

XEYi

−+−=
 

          (44) 
 

( ) ( ) ( )( ) ( )( )WXYWYXPXYPYXEt dzHWdzHWdPdPM
i

−+−−++−=
 
where, XP  and YP  are the concentrated forces, XW  and 

YW  are the uniform loads in X and Y directions, PXd  and 

PYd  are the moment arms of the components of the con-
centrated force, WXd  and WYd  are the moment arms of 
the distributed force components from the point on Z axis, 
respectively. Substituting expressions (44) in (41) and 
solving the resulting differential equation, Ti is found as 
follows: 
 

[ ] [ ]zCoshDzSinhDT i1i2i1i1i α+α=  
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[ ] [ ]zCoshDzSinhD i2i4i2i3 α+α+  
 

( ){ Y4X3i22
i3

WKWKGJ2
E2

1 +β
β

+  

 

( )([ X3Y4X3i3 WKHPK2PK2zHJG ++−β+  
 

( ) )zWKWKWKH Y4X3Y4 +−+  
 

( X1XWYX3 WrKWrdWKIE2 +−− ω  
 

)] }Y2YWXY4 WrKWrdWKI −++ ω ( )n1,2,...,i =  (45)                
                                                                                   
in which 
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Employing the boundary conditions to determine the inte-
gration constants, Ti can be obtained in a straightforward 
manner. 
 
 
Determination of the Shear Forces in the Stiffening 
Beams 
 
Before writing down the boundary conditions, the shear 
forces in the stiffening beams must be determined. For 
this purpose, compatibility equation (8) must be written 
both for section i at level iz  and the stiffening beam i and 
solved simultaneously. Thus, employing the definition 
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the shear force in the ith stiffening beam is found as 
follows: 
 

izziii TSV
=

′−=              ( )n1,2,...,i =    (48) 

 
 
Boundary Conditions 
 
To determine the integration constants in the single fourth 
order differential equation (41) the following 4n boundary 
conditions are employed:  
 
1- The structure being rigidly fixed at the base ( 0z = ) 
 

0vu
0zn0zn0zn =θ==

===
 0vu

0zn0zn0zn =θ′=′=′
===

    (49) 
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Applying equation (8) at ( 0z = ) and using (49), the first 
boundary condition is: 
 

0T
0zn =′

=
          (50) 

 
2- From equation (40), substituting nθ′′ , nθ ′′′ , nu ′′′ and nv ′′′  in 

terms of nT  and putting 0
0zn =θ′

=
, the second boundary 

condition at the bottom ( 0z = ) is found as: 
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3- From the equilibrium of the vertical forces in each pier 
in the uppermost region of the shear wall 
 

1

H

z
11 VdzqT += �           (52) 

 
Applying this equation for the uppermost position 

( Hz = ), the first term on the right dropping out, 
considering expression (48), the third boundary condition 
is found as follows: 
 

Hz11Hz1 TST
== ′−=          (53) 

 
4- Substituting 1u ′′ , 1v ′′  and 1θ′′ in the bimoment expression 
(28) and applying it at the top ( Hz = ) the fourth boundary 
condition is obtained as: 
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( ) 0Td 1 =+ω+                                                          (54) 
 
5- From the vertical force equilibrium of one piece of the 
stiffening beam in either of the piers at height izz =  
 

ii zziizz)1i( TVT ==− =+          (55) 

 
Substituting (48) in (55), the fifth type boundary condition  

 
 
 
 
is obtained as follows: 
 

iii zzizziizz)1i( TTST
===− =′−   ( )n1,2,...,i =    (56) 

 
6- Applying the compatibility equation (8) for two 
neighbouring regions (i) and (i−1) at height izz = , the 
following equation is obtained as the sixth type boundary 
condition: 
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( )n2,3,...,i =                                                                 (57)  
 
7- Since the total twisting moments of the two 
neighbouring regions (i) and (i−1), at height izz =  balance 
each other 
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Expressing all unknown functions in terms of Ti and its 
derivatives, after some rearrangements, the seventh type 
boundary condition is found as: 
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8- Since the total bimoments of the two neighbouring 
regions (i) and (i−1), at height izz =   balance each  other 
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( )[ ] ( ) ( ) ( )[ ] 0TdTdIEIE i1ii1i =+ω−+ω+θ′′−θ′′+ −ω−ω     (61) 
 
Expressing the other unknown functions in terms of Ti 
and its derivatives, after some necessary rearrange-
ments, the eighth type boundary condition is obtained as: 
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To determine the integration constants D1i to D4i, the 
boundary conditions at the top, bottom and between each 
pair of consecutive regions are used. Substituting them in 
expression (45), the general solution for Ti ( )n,1,2,i …=  
can be found. 
 
 
Determination of lateral displacements and rotation 
functions 
 
The lateral displacement and rotation functions ( iu , iv , 
and iθ ) can be found using (13-14,40) as follows: 
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where boundary conditions (49) and the equivalence of 
the horizontal displacements and the respective slopes 
for every pair of neighbouring regions at their common 
boundary (z = zi) are used to determine the integration 
constants.  
 
 
Numerical results 
 
In the example, the behaviour of the coupled shear wall 
with four stiffening beams in Figures 12-13 is examined. 
Stiffening beams of 3.0 m height are placed at the levels 
of ninth, thirteenth and seventeenth stories and a last one 
with 2.0 m height at the top, as seen in Figure 12. 

The sectorial area diagram of the cross-section of the 
structure is given in  Figure  14. The   structure  is  solved  
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both by the present method using the CCM and by the 
SAP2000 structural analysis program (Wilson, 1997) 
using the frame method (MacLeod, 1977), for which the 
model and its 3-D view are given in Figure 15.  

The geometrical properties and the cross-sectional 
view of the structure are given in Figures 12-13. The 
total height of the shear wall is 72 m, the storey height is 
3 m and the thicknesses of the piers and the connecting 
beams are shown in Figure 13. The height of the con- 
necting beams is 0.4m and the elasticity and shear-
moduli are E=2.85×106 kN/m2 and G=1055556 kN/m2, 
respectively. The external loads act at the top of the 
structure as shown in Figures 12-13. The lateral dis-
placements at points on Z axis and the rotations, found 
by the present program and the SAP2000 structural ana-
lysis program, are compared, for the unstiffened and 
stiffened cases, in Figures 16-17. 
 
 
Conclusions 
 
In this study, non-planar shear walls coupled with connec- 
ting and stiffening beams are analyzed under lateral load-
ing. The analysis is performed using Vlasov’s thin-walled 
beam theory in conjunction with the CCM.  

 In the example, the behaviour of a coupled shear wall 
with four stiffening beams is examined. The results 
obtained have been compared with those of SAP2000 
and a good agreement has been observed. 

As seen in Figures 16-17, the stiffening of coupled 
shear walls cause a decrease in the maximum displace- 
ment at the top and the maximum bending moment at the 
bottom of a building. Thus, by using such stiffening 
beams the heights of buildings can be increased more. 
The stiffening of coupled shear walls is realized by plac-
ing high connecting beams at the levels of whole or 
partial stories used as storage or service areas. The 
number and levels of these high beams, to improve the 
structural behaviour of the buildings, is up to the design 
engineer. 

The method proposed in this study, has two main advan- 
tages, which are that the data preparation is much easier 
compared to the equivalent frame method for non-planar 
coupled shear walls and the computation time needed is 
much shorter compared to other methods. Hence, the 
method presented in this study is very useful for pre-
design purposes while determining the dimensions of non- 
planar coupled shear wall structures. 
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Figure 12. Non-planar asymmetrical example structure. 
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Figure 13. Cross-sectional view of the example structure. 
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Figure 14. The principal sectorial area diagram of the cross-section. 

 
 
 

 
 

 
Figure 15. Frame model of the example structure and its 3-D view. 
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Figure 16. Comparison of the lateral displacements and rotations. 
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Figure 17. The axial forces, the total bimoments and the total shear wall bending moments along the height.
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iEB , external bimoment value; iB , resultant bimoment, about Z 

axis, due to the resistance offered by the piers in region i; iB  
resultant bimoment, about Z axis, due to the component 
bending moments and bimoments in region i; d, a geometric 
property; dPX  , dPY, moment arms of the components of the 
concentrated force; dWX , dWY, moment arms of the distributed 
force components; E, elasticity modulus; G, shear modulus; 

jj gg y,x ,  coordinates  of  the  centroid  of  jth  pier,  referring  to 

global axes, X and Y, respectively; 
jj gg y,x , coordinates of cen-

troid of the jth pier, referring to principal axes, X and Y , res-
pectively; H , total height of shear wall; hi, storey height in 
region i; i, region number; 

icI , moment of inertia of connecting 

beams in region i; 
jj yx I , I ,  moments  of  inertia  of  pier j w.r.t. 

global X and Y axes, respectively; 
jxyI , product of inertia of pier 

j w.r.t. global X and Y axes in region i; 
jj yx I , I , moments of 

inertia of pier j w.r.t. principal X  and Y  axes, respectively; 
jxyI , 

product of inertia of pier j w.r.t. principal X  and Y  axes; 
j

Iω , 

sectorial moment of  inertia  of  pier j; ωI ,  sum  of  the  sectorial 

moments of inertia of the two piers at the point on Z axis; ωI , a 

geometrical constant; XIθ , YIθ , sectional properties; j, pier num-
ber; Jj, St. Venant torsional constant (moment of inertia) of pier 
j; j, sum of the St. Venant torsional constants of the two piers; 
K1, K2, K3, K4, geometrical quantities related to moments of 
inertia; 

ii EYEX M,M , external bending moments in region i about 

the respective axes due to the loading above the cross-section 
considered; 

iEtM , external twisting moment in region i due to 

the loading above the cross-section considered; 
it

M , resultant 

torque, about Z axis, due to resistance offered by piersin region 

i; 
it

M , resultant torque, about Z  axis,  due  to component 

shears and torques in region i; N, number of regions in vertical 
direction; O(X,Y,Z), orthogonal system of global axes; PX  , PY, 
concentrated forces in X and Y directions, respectively; 

jiji y x Q , Q , shear forces developed in a region due to shear 

flow, qi, in the laminae; qi, shear flow in laminae per unit length 
in region i; R, a geometrical constant; jS , shear center of jth 

pier; 
jj ss y,x , coordinates of the shear center of the jth pier, 

referring to global axes, X and Y, respectively; Ti, axial force in 
region i; T, thickness of a thin-walled beam; ux  , uy , uz ,   
displacement components in the directions of orthogonal global 
system of axes O(X,Y,Z); ui,  horizontal  global  displacement  of 
the point on Z axis in X direction in region i; jiu , horizontal 

principal displacement of the center of jth pier in jiX direction in 

region i; vi, horizontal global displacement of the point on Z axis 

global X and Y axes, respectively; 
jxyI , product of inertia of pier j 

w.r.t. global X and Y axes in region i; 
jj yx I , I , moments of  inertia  

 
 
 
 
of pier j w.r.t. principal X  and Y  axes, respectively; 

jxyI , product 

of inertia of pier j w.r.t. principal X  and Y  axes; 
j

Iω , sectorial mo-

ment of  inertia  of  pier j; ωI ,  sum  of  the  sectorial moments 

of inertia of the two piers at the point on Z axis; ωI , a geo-

metrical constant; XIθ , YIθ , sectional properties; j, pier number; Jj, 
St. Venant torsional constant (moment of inertia) of pier j; j, sum 
of the St. Venant torsional constants of the two piers; K1, K2, K3, 
K4, geometrical quantities related to moments of inertia; 

ii EYEX M,M , external bending moments in region i about the 

respective axes due to the loading above the cross-section 
considered; 

iEtM , external twisting moment in region i due to 

the loading above the cross-section considered; 
it

M , resultant  

torque,  about Z  axis,  due  to  resistance  offered  by piersin 

region i; 
it

M , resultant torque, about Z  axis,  due  to 

component shears and torques in region i; N, number of regions 
in vertical direction; O(X,Y,Z), orthogonal system of global axes; 
PX  , PY, concentrated forces in X and Y directions, respectively; 

jiji y x Q , Q , shear forces developed in a region due to shear 

flow, qi, in the laminae; qi, shear flow in laminae per unit length 
in region i; R, a geometrical constant; jS , shear center of jth 

pier; 
jj ss y,x , coordinates of the shear center of the jth pier, 

refering to global axes, X and Y, respectively; Ti, axial force in 
region i; T, thickness of a thin-walled beam; ux  , uy , uz ,   
displacement components in the directions of orthogonal global 
system of axes O(X,Y,Z); ui,  horizontal  global  displacement  of 
the point on Z axis in X direction in region i; jiu , horizontal 

principal displacement of the center of jth pier in jiX direction in 

region i; vi, horizontal global displacement of the point on Z 
axisin Y direction in region i; jiv , horizontal principal displace-

ment of the center of jth pier in jiY direction in region i; Vi, shear 

force in ith stiffening beam; Z, spatial coordinate measured 
along the height of the structure; WX, uniform load in X direction; 
WY, uniform load in Y direction; β1i , β2i , β3i, geometrical 
constants; δ1i, the relative vertical displacement due to the bend-

ing of the piers  in X  and Y  directions  and  due  to  the  warp-
ing  of  the piers; δ2i, the relative vertical displacement due to the 
axial deformation of the piers caused by the induced axial 
forces arising from the shear flow qi in the connecting medium; 
δ3i, the relative vertical displacement due to the bending of the 
connecting beams; δ4i, the relative vertical displacement due to 
the shear deformations in the laminae; θI, rotational global dis-
placement of the rigid diaphragm in region i; θji, rotational 

principal displacement of jth pier about jiZ direction in region i; 

zθ′ , angle of twist per unit length; ωj, sectorial area of pier j at 

the point on Z axis; jφ  , angle between the global axes and the 

principal axes of jth pier; iγ , a constant property of connecting 
beams; �, a geometrical constant. 
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