
Scientific Research and Essays Vol. 8(6), pp. 265 -273, 11 February, 2013
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.1020
ISSN 1992-2248 ©2013 Academic Journals

Full Length Research Paper

A new conditional invariant detection framework (CIDF)

Hamid Parvin
1
, Hamid Alinejad Rokny

2
, Sajad Parvin

1
 and Hossein Shirgahi

3
*

1
Department of Computer Engineering, Islamic Azad University, Mahdishar Branch, Semnan, Iran.

2
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3
Young Researchers Club, Jouybar Branch, Islamic Azad University, Jouybar, Iran.

Accepted 24 August, 2011

Software engineering included some different process such as designing, implementing and

modifying of software. All these processes are done to have fast developed software as well as reach a

high quality, efficient and maintainable software. Invariants help programmer and tester to do most

steps of software engineering more easily. Invariants are mostly always true but of course with a

specific confidence. Since some invariants are produced in some conditions of program execution and

not always, conditional invariants can show the behavior of program so much better. For producing

this kind of invariants, it might use some technique of data mining such as association rule mining or

using decision tree to obtain rules. So the paper will introduce a new perspective to dynamic invariant

detection. Also the feasibility of conditional invariant detection is examined and a framework to extract

them is proposed.

Key words: Daikon, invariant, association rules, variable relations, decision tree, program point, data mining,
software engineering, predicate, verification.

INTRODUCTION

In recent years, invariant plays an important role in
software engineering such as software testing and
verification. Invariants are properties of program variable
and relationships between these variables in a specific
line of code which is called program point. Generation of
invariants is a significant key in program verification.
These properties and relationships among the program
variables or constants are always true; thus programmer
or tester can estimate the behavior of program in
different program points. Invariant also is used in
generating software behavioral model (Krkay et al.,
2010), so invariant can also be useful in software
engineering in this way. With the help of software
behavioral model we can lightly perform design,
validation, verification, and maintenance. As seems, one
of the most significant contributions of invariants is in
modifying of code where properties help programmer to
verify the code. Software testing takes a considerable
time in software development life cycle. Although
software testing is done automatically in present day, but

*Corresponding author. E-mail: hossein.shirgahi@gmail.com.

traditionally the onus of software testing was human’s
obligation (Vanmali et al., 2002). Testing is divided in two
category; functional testing and structural testing.
Functional testing, which is also called black box testing,
performs testing without considering of the logic of
program but by checking the program output against the
input. This kind of testing does not take into account
programming inner workings. On the other hand,
structural testing or white box testing analyze program
according to checking the actual code and knowing about
its logic. Invariants are detected by static and dynamic
approaches (Ernst, 1999).

In static approaches, runtime behavior and syntactic
structures of program are analyzed actual running of
code (WeiB, 2007). Static analysis completely is done
automatically. One analysis which traditionally has been
used in compilers for collecting necessary information in
optimization is Data-flow. Indeed, Data-flow analysis
detects some essential invariants in each program points
and employs these invariants to find out the behavior of
program. This kind of behavior can be used in compilers
for optimization. Abstract interpretation is a theoretical
framework for static analysis (Jones and Nielson, 1995).

On the other hand, Dynamic approaches extract

266 Sci. Res. Essays

program properties and information by the help of actual
executing of the program code (Ernst et al., 2006). In the
other words, by executing the program with different
inputs, called test suits, it is possible to detect invariants
dynamically. Dynamic invariants extraction emerges to
software engineering in recent years with the advent of
Daikon (Ernst, 1999). Program properties of certain point
of program are reported by use of invariant inference
system via different test suits through different
executions. Invariant mostly is checked in the entries and
exits of each function.

This paper concentrates on the dynamic extraction of
conditional invariants. Conditional invariants are the
invariants which are revealed in specific form of
conditional proposition, throughout all this paper. These
invariants emerge dynamically and all of the steps are
fully automatic. We are going to improve the quality of
discovered invariants dramatically by using association
rule mining. In association-rule-based invariant extraction
system, invariants are represented through the variables'
condition. For inferring invariants, they are two prominent
issues (Vanmali et al., 2002): first we would be able to
determine the beneficial invariants and then to exert
inference on program context. In this paper we handle
these two parts.

RELATED WORKS

In this part of the work, we discuss some
implementations of dynamic invariant detection. Many
valuable efforts have been done in this field but we
mention here only these ones which are more relevant.

Dynamic invariant detection, as mentioned, is quoted
by Daikon (Ernst et al., 2007). Daikon is the most
prosperous software in dynamic invariant detection
developed until now, comparing with other dynamic
invariant detection methods (Ernst et al., 2007). However
this software has some problems out of which the most
serious one is being time-consuming.

DySy proposes a dynamic symbolic execution
technique to improve the quality of inferred invariant
(Csallner, 2008). It executes test cases like other
dynamic invariant inference tools but, as well,
coincidentally performs a symbolic execution. For each
test unit, DySy results in program's path conditions. At
the end, all path conditions are combined and build the
result.

Software Agitator is a commercial testing tool which is
represented by Agitar and is inspired by Daikon
(Boshernitsan et al., 2006). Software agitation is a testing
technique that joins the results of research in test-input
generation and dynamic invariant detection. The results
are called observations. Agitar won the Wall street
Journal's 2005 Software Technology Innovation Award.

The DIDUCE tool (Hangal and Lam, 2002) helps
programmer by detecting errors and determining the root
causes. Besides detecting dynamic invariant, DIDUCE

checks program behavior against extracted invariants up
to each program points and reports all detected
violations. DIDUCE checks simple invariants and does
not need up-front instrument.

While there are many related work in the dynamic
invariant detection, there is lack of any considerable
related work about dynamic invariant detection. This
makes this paper first attempt to deal with the dynamic
detection of conditional invariants.

TERMINOLOGY

In this part of the work, we discuss about notions which
we repeatedly use throughout this paper. The aim of this
part of the work is to help readers obtain a better
perception of the paper.

Definition 1. Invariants can be defined as prominent
relation among program variables. Invariants in
programs are formulas or rules that are emerged from
the source code of a program and remain unique and
unchanged with respect to the running phase of a
program with different parameters.

Definition 2. Program points are specific points in a
program, such as the Enter or Exit point of a function,
which serve as report points for variable relations and
invariants. Most frequent program points in use are the
Enter and Exit points of sub-programs and functions.

Definition 3. Pre-conditions of a program point are the
conditions, relations and invariants that hold immediately
before approaching to that program point; in the case of
sub-programs or a function Enter point of a sub-program
or a function acts as its pre-condition.

Definition 4. Post-conditions of a program point are the
conditions, relations and invariants that hold immediately
after leaving from that program point. In the case of sub-
programs, a function Exit point of a sub-program or a
function is considered as its post-condition of it.
Typically, post-condition also contains relations between
the original value of a variable and its modified one
(before and after that program point). In other words,
invariants in post-conditions contain relations between
variables in pre-condition and post-condition.

BACKGROUND

In this part of the work, we discuss about two techniques
which help us to obtain the association rules from
program code context. We go over association rule
mining and a learner tool called decision tree.

Association rule mining

Here we briefly discuss what association rule mining is.

Table 1. Transactions.

Transactions Items

T1 A, B, C

T2 B, C, D

T3 B

T4 A, B

Table 2. List of all itemsets.

Itemset Supports (%) Large/Small

A 50 Large

B 100 Large

C 50 Large

D 25 Small

A, B 50 Large

A, C 25 Small

A, D 0 Small

B, C 50 Large

B, D 25 Small

C, D 25 Small

A, B, C 25 Small

A, B, D 0 Small

A, C, D 0 Small

B, C, D 25 Small

A, B, C, D 0 Small

To expound consider following definitions:

Definition 5. Let I = {I1, I2, … ,Im} be a set of m distinct
attributes, also called literals. Let D be a database, where
each record (tuple) T has a unique identifier, and

contains a set of items such that TI. An association rule

is an implication of the form X Y, where X, YI, are

sets of items called itemsets, and XY=. Here, X is
called antecedent, and Y consequent.

Two important measures for association rules, support

(s) and confidence (), can be defined as follows.

Definition 6. The support (s) of an association rule is the

ratio (in percent) of the records that contain XY to the
total number of records in the database.

Definition 7. For a given number of records, confidence

() is the ratio (in percent) of the number of records that

contain XY to the number of records that contain X.

As definitions 6 and 7 express  (X Y) = s(XY) / s(X).
Association rules are usually required to satisfy a user-
specified minimum support and a user-specified
minimum confidence at the same time. Association rule
generation is usually split up into two separate steps:

Parvin et al. 267

Table 3. Extracted association rules

Rule Confidence (%) Rule Hold

AB 100 Yes

BA 50 No

BC 50 No

CB 100 Yes

Table 4. Boolean literal for transaction of Table 1.

Transaction A B C D Transaction

T1     T1

T2     T2

T3     T3

T4     T4

1. First, minimum support is applied to find all frequent
itemsets or large itemsets in a database.
2. Second, these frequent itemsets and the minimum
confidence constraint are used to form rules.

The second step is straight forward but the first step
needs more efforts. To clarify these definitions, consider
the following example:

Suppose there is a small database with 4 items I = {A,
B, C, D} and a database with transactions which shows in
Table 1. The thresholds for minimum support and
minimum confidence respectively are 40 and 60%.

Table 2 shows all related itemsets of Table 1 and their
support as well as if it is large or not. As seen in Table 2,
there are four large itemsets in the transaction. The first
step of association rule generation has been done. Then
it is supposed to extract rules with highest confidence for
each large itemset. In Table 3 we show some association
rules for transaction of Table 1.

As mentioned before extracting association rule from
large itemsets is a straight forward work but generating
large itemsets needs more effort and is more time
consuming. There are some different algorithms for
generating itemsets but since discussing them is out
range of this paper, we do not mention them because.

One worthwhile issue to say is that literals can be
Boolean. Boolean literal are more favorable and much
faster for generating large itemsets. To clarify consider
Table 4 As seen, we brought up the example Table 1 in
Boolean state.

In Table 4, sign  represents the existence of the item
and sign  shows absent of that. For example transaction
T1 is consist of A, B and C. The results of operating large
itemsets generation an association rule mining on Table
4 respectively are Tables 2 and 3. Since generation large

268 Sci. Res. Essays

Table 5. Our data.

Tid Refund Marital status Taxable income (K) Cheat

1 Yes Single 125 No

2 No Married 100 No

3 No Single 70 No

4 Yes Married 120 No

5 No Divorced 95 Yes

6 No Married 60 No

7 Yes Divorced 220 No

8 No Single 85 Yes

9 No Married 75 No

10 No Single 90 Yes

Figure 1. Process tendency for Table 5.

item sets on Boolean literals is faster and more efficient,
in CIDF we use this kind of literals.

DECISION TREE LEARNING

Decision tree as a decision support tool uses a tree-like
graph or model to operate deciding on a specific goal.
Decision tree learning is a data mining technique which
creates a model to predict the value of the goal or class
based on input variables. Interior nodes are
representative of input variables and the leaves are the
representative of target value.

By splitting the source set into subsets based on their
values, decision tree can be learned. Learning process is
done for each subset by recursive partitioning. This
process continues until all remaining features in subset
have the same value for our goal or until there is no
improvement in Entropy. Entropy is a measure of the
uncertainty associated with a random variable.

Data comes in records of the form: (x,Y) = (x1, x2,
x3,…, xn ,Y). The dependent variable, Y, is the target

variable that we are trying to understand, classify or
generalize. The vector x is composed of the input
variables, x1, x2, x3 etc., that are used for that task.

To clarify what decision tree learning is, consider Table
5. Table 5 has 3 attributes Refund, Marital Status and
Taxable Income and our goal is cheat status. We should
recognize if someone cheats by the help of our 3
attributes. To learn the process, attributes split into
subsets. Figure 1 shows the process tendency. First, we
split our source by the Refund and then MarSt and
TaxInc.

For making rules from a decision tree, we must go
upward from leaves as our antecedent to root as our
consequent. For example consider Figure 1. Rules such
as following are apprehensible. We can use these rules
such as what we have in Association Rule Mining.

(i) Refund=Yescheat=No
(ii) TaxInc<80, MarSt= (Single or Divorce),

Refund=Nocheat=No
(iii) TaxInc>80, MarSt= (Single or Divorce),

Refund=Nocheat=Yes

(iv) Refund=No, MarSt=Marriedcheat=No

CONDITIONAL INVARIANT

Most of invariant extraction systems concentrate on
perfect invariants and they are unable to express
invariants which are appeared in special situation. This
means, the invariants which are reported by invariant
extraction system are true with the specific confidence
but they do not figure out invariants which are true in a
special condition. To clarify the matter, consider Figure 2
(This example is artificial and illustrates several points
we are going to discuss).

In this example we assume variables x and y are
global. An appropriate unit test for this function might be
x<y and its complement. In an ordinary invariant
extraction system

http://en.wikipedia.org/wiki/Random_variable

Figure 2. Example method whose invariant we want to infer.

Figure 3. Related invariants in our method.

the post-condition invariant which could be detected in of
this function is:

(i) x>y

This invariant shows after leaving compute () the x
values are always and are greater than y values. This
invariant is adequate but it does not present a complete
behavior of this function. This means this mere invariant
cannot be useful neither in formal specification nor assert
statement.

This deficiency puts us to think of having a set of
invariants which can appropriately show the program
behavior. In other words we need a set of invariants
which tell us compute () swaps x and y values when y
value is greater. The final outcome of post-condition of
compute () invariants (or compute ()::: Exit in our
method) are shown in Figure 3.

In upon invariants, orig(var) shows var value just
before entrance of compute (). This approach removes
the weakness of previous dynamic invariant inference.
As could be seen, Figure 3 completely describes the
function behavior.

Over all our work contains following parts:

(i) We introduce the idea of using association rule mining
for invariant inference. We believe our method makes up

Parvin et al. 269

the next generation of dynamic in variant inference tools.
We believe our approach opens a new ways to perform
dynamic invariant inference in not far future.
(ii) We implemented our approach in the invariant
inference tool CIDF.

PROPOSED CONDITIONAL INVARIANT DETECTION

FRAMEWORK

In this part of the work, we propose our idea in details.
First, we provide predicates for each execution of
program point and then invariant detector uses these
predicate to extract the rules. Program points are usually
function entries and exits. Function entries and exits are
called Enter point and Exit point of function. For Enter
point, all values of global variables and parameters
participate while for exit all values of global variables and
parameters as well as their prior values participate. With
having more variety of invaluable predicates, more
beneficial invariants are produced. Extracted rules show
behavior of program point in conditional form. In the
following part of this work, we discuss the classes of
predicates and clarify all predicates.

For better understanding of the process, Figure 4
schematically shows the algorithm flowchart of
employing association rule mining in extracting
conditional invariants step by step. Each data trace file in
Figure 4 contains possible predicate of a program point.

Classes of predicate

Here we present all classes of predicates which might be
used by invariant detector. By the help of an association
rule mining tool, we can extract conditional invariants.
We try to provide a terse set of predicates to have an
acceptable potential result but definitely there are some
predicates which are missed. The following lists classes
of predicates which CIDF computes, where x and y are
variables:

(a) Predicates over any numeric variable:

(i) IsNonZero: when the variable is never set to 0
(ii) IsOne: when the variable is always equal to 0
(iii) IsMinesOne: when the variable is always equal to -1
(iv) IsEven: when the variable is always even
(v) IsPowerOfTwo: when the variable is always power of
two

(b) Predicates over any string variable:

(i) IsNull: when the variable is always null
(ii) IsEmpty: when the variable contains no characters

(c) Predicates over two numeric variable:

(i) Ordering comparison: x < y, x ≤ y, x > y, x ≥ y, x = y, x
≠ y

270 Sci. Res. Essays

Fig.1. Algorithm flowchart of employing association rule mining in extracting conditional invariants.

Source Code

Extratcted Possible

Predicates

Decision Tree

Learning Model

Post-Processing

Valid Conditional

Invariant Set

DFTi is ith Datatrace File

Ej is jth Execution of a program

point
PPj is jth Possible Predicate

Association Rule

Mining Model

Figure 4. Algorithm flowchart of employing association rule mining in extracting conditional invariants.

(ii) Functions: y = fn(x) or x = fn(y), for fn a built-in unary
function (absolute value, negation, bitwise complement)

(d) Predicate over two string variable:

(i) Equality: x = y when two strings are equal
(ii) Substring: y=sub(x) when y is substring of x
(iii) Reversal: y=rev(x) or y=rev(x) when x is the reverse
of y

(e) Predicates over a array:

(i) Element relationship: when the array elements are
equal or sorted by (=>,>,<,<=)
(ii) IsNonZero: when none of array elements are equal to
0

(f) Predicate over an array and a numerical variable:

(i) Membership: xy (x and y are common type arrays)

(g) Predicate over two arrays:

(i) Comparison: x < y, x ≤ y, x > y, x ≥ y, x = y, x ≠ y
(ii) Sub-array: y=sub(x) when y is sub-array of x
(iii) Reversal: y=rev(x) or y=rev(x) when x is the reverse
of y

Presented predicates are produce for each program
point. Each presented predicates have Boolean values.
In other words this predicates might be true or false. By
performing association rule mining on these predicate we
would have some rules with specific support and
confidence. In the following part of this work we discuss
about association rule mining and the domination of this
technique whether support our aim.

Using association rule mining on defined predicates

In the previously discussed heading “classes of
predicate” we defined all predicates which are interfered
with for each program point variable. In other words we
bring forward any possible predicates in a specified
program

Parvin et al. 271

Table 6. Related transaction for Figure 2.

Transaction orig(x)orig(y) orig(x)orig(y) x=orig(x) y=orig(x) x=orig(y) y=orig(y)

T1 true false true false false true

T2 false true false true true false

T3 false true false true true false

T4 true false true false false true

T5 true false true false false true

T6 false true false true true false

point. The obtained predicates, all, have Boolean values.
These values can easily be used for mining association
rules as described under the heading “Association rule
mining”. Each time for each predicate as consequent, we
check other predicates which make relations with the
other predicates. Consider we have predicates P1, P2, P3,
… , Pq. We start with Pq we check all predicates if they
have relation with Pq. It means we check if P1 as the
antecedent can result Pq otherwise we conjunct P1 and
P2 and check if now they result Pq and so forth. Then we
will perform these steps for Pq-1.

Closely looking at our paper tendency we consider the
presented function in Figure 2. We discussed this
function and its Exit program point conditional invariants.
Now we demonstrate the steps to create these rules.
First we must prepare our database and transactions.
Each record shows one executing of function. We
instrument the code so that in each execution, predicates
between all variables are stored in a file. The result is
presented in Table 6.

Table 6 shows neither all transaction nor all predicates
but it presents just some of them to manifest the method.
The minimum support and minimum confidence
respectively are 50 and 100%. Two large itemsets which
are inferred from Table 6 is:

(i) orig(x)>orig(y), x=orig(x),y=orig(y)
(ii) orig(x)<orig(y), y=orig(x), x=orig(y)

And the following rules are archived:

(i) orig(x)>orig(y) x=orig(x)

(ii) orig(x)>orig(y)y=orig(y)

(iii) orig(x)<orig(y)y=orig(x)

(iv) orig(x)<orig(y)x=orig(y)

(v) x=orig(x)orig(x)>orig(y)

(vi) x=orig(x)y=orig(y)

(vii) y=orig(y)orig(x)>orig(y)

(viii) y=orig(y)x=orig(x)

(ix) y=orig(x)orig(x)<orig(y)

(x) y=orig(x)x=orig(y)

(xi) y=orig(y) orig(x)<orig(y)

(xii) y=orig(y) y=orig(x)

All presented rules are true and obey minimum support

and minimum confidence but only four first one are
tangible and others must be filtered. The four first rules
are the same as rules we represent in Figure 2. These to
conditional invariant describe the behavior of compute ().
One thigh which is important to say is in this method
rules' Consequent part contains only one predicate and
we do not have compound consequences. In whole the
process of Association Rule Mining Model box in the
Figure 3 is illustrated in the Figure 5.

Time order

Here in, we check our approach time order. It is
necessary we check the time order because we want to
see if it is affordable. Assuming we have m variables in a
program point. Each two variable make a predicate so
overall we have q predicates. q is obtained via Equation
(1):

 (1)

So we have predicates P1, P2, P3, … , Pq. To have a rule
with Pq as the consequent, our association rule mining
tool must check if each of P1, P2, P3, … , Pq-1 has
relationship with Pq then it has to check if two of P1, P2,
P3, … , Pq-1 have relationship and so forth. Consequently,
for having a rule with Pq as the consequent, our tool has
to handle (2) number of checks:

 (2)

Totally, the association rule mining tool must handle (3)
number of checks:

 (3)

For example assuming we have 7 variables in one of our
program points. The total number of checks might be
2097152. If we have 10 variables the total number of

272 Sci. Res. Essays

Figure 5. Association Rule Mining Model

checks might be 3518437208832. As can be seen, the
time order is exponential. This time order is not
acceptable at all. Of course we should pay attention that
all these check is not handled because if for example P1
has relationship with Pq other sets of predicates which
contains P1 will not be checked anymore and will not be
interfered, but it does not affect the time order so much
and overall time order is exponential.

Another issue which is worthwhile to emphasize again
is that, in generating rules left-hand part or antecedent

must be in the shortest state. For example if P1 Pn

rules such as P1, P2 Pn is not valuable.

Using decision tree

As discussed before, in decision tree, we can find a
relationship between one attribute called goal or class
and other attributes. In other words we can predict the
goal by having other attributes. Two properties of
decision tree are:

(I) Approximately lowest number of antecedents
(ii) Feasible highest confidence of the rule

These two properties might be so much helpful for
generating association rules by the contribution of
decision tree because our main purpose is to have some

rules with lowest number of antecedents with high
confidence. For employing this technique we should
consider each predicate as the goal and try to capture
the predicates which result our goal. Consider we have
predicates P1, P2, P3, … , Pq. We start with a predicate
such as P1 as our goal or class. We make the decision
tree for P1 and then we try to figure out other predicates
which defined P1's result. As mentioned before if we go
upward from leaves to root in obtained tree, they can be
rules which show when P1 is true and when it is false.
Then we obtain the P2's tree and so forth.

Using decision tree for obtaining the rules is so much
faster than normal association rule mining. Because by
employing decision tree we do not have to check all the
predicates to each other but we split our source into
some smaller subsets and then classify each predicate
lonely.

Figure 6 demonstrates the process of Decision Tree
Learning Model box in the Figure 3.

CONCLUSION AND FUTURE WORK

Here in this subject, different properties of program are
checked in different program points. These properties
usually show the behavior of that program point.
Invariants are always true with a specified confidence so
they can not represent those behaviors which are true

Parvin et al. 273

Fig.12. Decision Tree Learning Model

TF=Pi

SF = All - TF

Train DTi(SF) learn

TF from SF

TF=TF+1

i = 1

DT1, DT2,…, DTr

All = {P1, P2,…, Pr}
Pj is jth Possible Predicate

DTi is decision tree learnt Pi from SF
Post-Processing and

converting DTs to Rules

Figure 6. Decision Tree Learning Model.

with assuming a condition. Conditional invariant solve
this problem because via these kinds of invariants we
would have predicate which are true while another
predicate is also true. We tried to generate the
association rules by ordinary association rule mining and
by repeated checks. The time order in via these methods
is exponential and is not acceptable at all. So we brought
up the decision tree and try to obtain rules with this
technique. We check each predicate as a goal and try to
find the related predicates which result to the goal.

For future work, we can try to obtain the rules by the
help of Bayesian network. Bayesian network is another
data mining technique which creates a model to predict
the value of the goal based on other input variables.
Bayesian networks are very efficient when the features
(or predicates in our work) do not have correlation. By
Bayesian network and its related methods we can detect
the conditional invariant from presented predicates in
each program point.

REFERENCES

Boshernitsan M, Doong R, Savoia A (2006). From Daikon to Agitator:

Lessons and challenges in building a commercial tool for developer

testing. ISSTA pp. 169–179.

Csallner C (2008). DySy: Dynamic symbolic execution for invariant

inference. In: Proceedings of ICSE.

Ernst MD (1999). Dynamically discovering likely program invariants to

support program evolution. In Proceedings of ICSE 1999, ACM pp.

213–224.

Ernst MD, Cockrell J, Griswold WG, Notkin D (2007). Dynamically

discovering likely program invariants to support program evolution. IEEE

TSE 27(2):99–123.

Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz M S,

Xiao C (2006). The Daikon System for Dynamic Detection of Likely

Invariants, Science of Computer Programming.

Hangal S, Lam MS (2002). Tracking down software bugs using automatic

anomaly detection. In: ICSE, pp. 291–301.
Jones N D, Nielson F (1995). Abstract interpretation: A semantics-based

tool for program analysis. In Abramsky S, Gabbay DM, Maibaum TSE

(Year). Editors, Handbook of Logic in Computer Science, Oxford

University Press, 4:527–636.

Krkay I, Brunx Y, Popescuy D, Garciay J, Medvidovic N(2010). Using

dynamic execution traces and program invariants to enhance behavioral

model inference. ICSE NIER.

Vanmali M, Last M, Kandel A(2002). Using a neural network in the

software testing process. Int. J. Intell. Syst. 17(1):45–62.

WeiB B (2007). Inferring invariants by static analysis in KeY. Diplomarbeit,

University of Karlsruhe.

