
Scientific Research and Essays Vol. 6(6), pp. 1186-1199, 18 March, 2011 
Available online at http://www.academicjournals.org/SRE 
DOI: 10.5897/SRE10.384 
ISSN 1992-2248 ©2011 Academic Journals 
 
 
 
 

Full Length Research Paper 
 

Nonlinear analysis of cable systems with point based 
iterative procedure 

 

Ayhan Nuhoglu 
 

Department of Civil Engineering, Ege University, Izmir, Turkey. E-mail: ayhan.nuhoglu@ege.edu.tr.  
Tel: +90-232-388-6026. Fax: +90-232-342-5629. 

 
Accepted 12 July, 2010 

 

Geometric nonlinear static analysis of structural systems with cable elements is carried out using point 
based iterative procedure. In all sub systems as cable systems, constituted for each node having at 
least one degree of freedom that is idealized by finite elements, successive calculations are performed. 
In the analysis part, based on finite element displacement method, to the maximum number of unknown 
displacements required for each sub-system calculation is limited with three. Tangent stiffness matrix, 
including pre-stressed internal forces as well as varying geometries with respect to different external 
force applications, is utilized. The convergence procedure is adapted into the method to prevent 
excessive displacements through the calculations. In the present study, a computer program has been 
developed to present a very effective calculation method. Different numerical applications have been 
considered and the results were compared with the literature results.  
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INTRODUCTION 
 
Structural analysis of systems having cable elements is 
relatively complex than other structural systems. The 
reasons can be summarizd as follows: 
 
1. Displacements are large as a reason of flexibility. 
2. The system cannot work for shear, axial pressure 
forces and bending moments. 
3. Pre-stress is applied to the system in order to increase 
the rigidity. 
4. Divergence of calculation occurs rather frequently. 
 
Therefore, cable systems do not exhibit typical nonlinear 
behavior. Consequently, in the analysis of such systems, 
iterative methods that can handle geometric 
nonlinearities are necessary.  

Many researchers studied these types of systems in 
the past. Differential equations (Sinclair and Hodder, 
1981), flexibility (O’Brien, 1967), energy (Monforton and 
El-Hakim, 1980; Pietrzak, 1977), dynamic relaxation 
(Lewis et al., 1984), and rigidity (Baron and Venkatesan, 
1971) methods are used commonly for cabled structures. 
In summary, nonlinear analysis is conducted in two main 
steps. In the first step, equilibrium equations that involve 
unknown internal forces or displacements are developed. 

In the next step, a numerical methodology is applied to 
solve the equations of the equilibrium.  

In the recent years, the finite element stiffness method 
based calculation methods are commonly preferred 
(Desai et al., 1988; Eisenloffel and Adeli, 1994). 
Geometric nonlinear numerical analysis based methods 
comprises of successive iterative process. Newton-
Raphson numerical method, in which entire the external 
forces are applied altogether, is utilized in many studies. 
In the analysis, in which the forces against the equilibrium 
are considered, a divergence problem is often 
encountered. In order to avoid this, gradually increasing 
external forces are applied to the bearing system by 
increasing it step by step. In the both methods, tangent 
stiffness which varies at each step is used as a result of 
nonlinear load-displacement relationship.  

In the present study, a simple and effective approach is 
presented to analyze pre-stressed cable systems. In the 
method, which is referred to as point-based iterative 
procedure, sub-systems consisting of nodal points are 
successively calculated instead of calculating the entire 
system. Palkowski and Kozlowska (1988) adopted the 
only elastic axial rigidity to the cross method in which 
frame   structures   are  applied.  In   this   study,  tangent 
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Figure 1. Sample idealized cable system. 

 
 
 

stiffness matrix of the finite element displacement method 
is used. A sub system is constituted for a node having at 
least one degree of freedom. Neighboring nodes of sub-
systems consisting of elements that are only connected 
to node are taken into consideration as the points that are 
fully supported. As a result, maximum three equilibrium 
equations are developed for the analysis of three 
dimensional systems. Therefore the number of the 
calculated displacements is limited to 3. In this regard, 
there is no need for the constitution of the global stiffness 
matrix of the entire system.  

Especially, for the analysis of cable systems having 
high nonlinearity degree, the problems of divergence or 
slow convergence are usually encountered. This situation 
occurs by the continuous increase in displacement 
values. In this study, a simple convergence procedure is 
adapted in to the method by checking the displacement 
increments after each iteration step and also checking 
those ones that decreasing excessive. 
 
 

PROCEDURE OF POINT BASED ITERATIVE 
ANALYSIS 
 

In the proposed method, which involves nonlinear 
geometric analysis, calculations are based on direct 
stiffness rules of the finite element matrix displacement 
method. The cable system is idealized by linear finite 
elements connecting nodes in the systems. Behaviour of 
the material is assumed linearly-elastic, homogeneous 
and isotropic.  

Tangent stiffness matrix, which consists of the sum of 
elastic and geometric stiffness, is used for the 
development of equilibrium equations. Cables are only 
subjected to axial tensile forces. In addition,  elements  of 

cross-section areas are assumed constant and external 
forces are applied only on nodal points. 

Calculation steps of the method are explained on 
illustration cable net system depicted in Figure 1. In 
Figure 1, a, b, c,… stand for nodes, 1, 2, 3,… stand for 
cable elements and Pa, Pb, Pc,… represent the external 
forces applied by the nodes on the idealized bearing 
system with finite elements. At the beginning, 
displacements and external forces of the elements is 
equal to zero, if the system has not been pre-tensioned. If 
pre-stress exists, pre-stress forces are considered as the 
internal forces at the beginning.   

Iterative calculation begins from a random node having 
at least, one degree of freedom. Fully restraint support 
nodes, such as r and s, are not required to be computed. 
Calculations successively continue with respect to the 
sequence of nodal points. For example, a sub system is 
constituted for the calculation of node “a” (Figure 2a). The 
sub system of node “a” is formed by cable elements 1, 5, 
6 and 10. Neighboring points of the sub system are b, e, 
o and t which fully restraint its support. Consequently, 
only Pa exhibits external forces applied on point “a” in this 
sub-system.  

The sub-system of node “a”, having 3 degree of 

freedom, ∆Xa, ∆Ya and ∆Za displacements occurred with 
respect to applied load Pa. Equilibrium equations can be 
calculated using a standard methodology. In this study, the 
finite element displacement procedure is preferred for its 
advantages: 
 

Qa = KTa .∆a →
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Figure 2. Sub-systems, constituted for a, b and c nodes, respectively. 

 
 
 

Where, ∆a is X, Y and Z directional global unknown 
displacements of point “a”. KTa is the global tangent 
stiffness matrix, which consists of the sum of global 
stiffness of the each element of this node’s sub-system. 
The sum of the elastic (KE) and geometric (KG) stiffness 
matrixes give the global tangent stiffness matrix of each 
element for only the node of element: 
   
KT = KE + KG = 
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where E is the modulus of elasticity, A is cross sectional 
area, L is the length of the element and F is axial internal 
force of the cable element. l, m and n are direction cosine 
values of the angles between local x axes and global X, Y 
and Z axis, respectively. Geometric stiffness matrix (KG), 
which depends on the axial force and the length of the 
element, is zero at the beginning, if no pre-stress exists. 
In case of pre-stress, it is considered in the system by 
means of geometrical stiffness matrix. Qa is unbalanced 
load vector and is presented by: 
 
Qa = Pa - Fa             (3) 
 
where, Pa is external force vector applied to the node “a”. 
Fa is the internal force vector of the elements in the sub-
system. If no pre-stress exits, Fa is zero at the beginning. 
At the successive iteration steps or if a pre-stress exists, 
the reactions of internal forces at the node “a” is accounted 
as external forces to the node “a”. Global displacements 

(∆a) of node “a” are obtained by the solution of linear 
Equation (1): 
  

∆a = [ ∆Xa , ∆Ya , ∆Za ] 
t
                          (4) 

As can be derived from Equation (4), the maximum 
number of unknown displacements for the calculation of a 
sub-system constituted by cable elements with axial forces 
is limited with three. In this step, geometry and internal 
force distribution of the system is changed. New location of 
the node “a” is calculated by the consideration of obtained 
displacements as follows: 
 

( Xa , Ya , Za )
new

 = ( Xa , Ya , Za )
old

 + (∆Xa , ∆Ya , ∆Za )  

                                                                                                (5) 
 
Where, Xa , Ya and Za are global coordinates of the 
processing node “a”. Superscript “new” is the coordinates 
obtained after point-based calculation step. Superscript 
“old” exhibits previous coordinates. With respect to the 
displacements, relevant variations in axial internal forces of 
cable elements 1, 5, 6 and 10 are calculated by 
multiplication as follows:  
 

∆∆∆∆F
t
(1, 5, 6, 10) = K(1, 5, 6, 10) . ∆∆∆∆a             (6) 

 
For example, the variation in the end force of element 6 
can be determined as:  
 

∆∆∆∆F
t
 6 = K 6 . ∆∆∆∆a               (7) 

 

Where, ∆F
t
 6, K 6 and ∆a are global end forces, stiffness 

matrix and end displacements of the element 6, 
respectively. Similarly, the procedure is repeated for all 
elements connected to node “a”. Therefore, new axial 
internal forces are found as: 
   

(F(1, 5, 6, 10) )
new

 = (F(1, 5, 6, 10) )
old

 + ∆F(1, 5, 6, 10)            (8) 
 

Axial force of the element is calculated by the vectoral sum 
of end forces in X, Y and Z directions. For example, the 
axial force of the element 6 is: 
 

 F 6 
new

 = F 6 
old

 + ∆F 6              (9) 



 
 
 
 
Analogous computations are made for elements 1, 5, 10, 
which are connected to the node. In a situation where the 
axial force is compressive, the axial force of the element is 
assumed to be zero. Therefore, a cable element is 
restricted in order to expose compression. The method 
presented in this study can be use for geometric nonlinear 
analysis of truss systems. But, in the truss analysis, zero 
compressive load assumption is invalid.   

At this stage, the computations made for system of 
node “a” is completed. Next, new sub-system is 
considered for node “b”. Neighboring nodes are assumed 
to be fully supported. In Figure 2b, sub system of node 
“b” is depicted. The nodal sub-system consists of 
elements 2, 6, 7 and 11, which are connected to the 
node. Neighboring nodes a, c, r and f are supported. Pb is 
the external force that is applied to the system on point 
“b”. Previously mentioned calculations are repeated for 
this node. Firstly, equilibrium equations are establishes 
as follows: 

 

Qb = KTb . ∆b                        (10) 
 
Where, Qb is the unbalanced load vector on node “b” and 
was found by the addition of external forces (Pb) and the 
reactions of internal forces at the node “b” (Fb): 
 
Qb = Pb - Fb            (11) 
 
KTb is the tangent stiffness matrix of sub-system “b”. It 
should be noted that, in order to find out the new location 
of point “b”, revised coordinates of node “a” should be 
accounted in the calculations. Therefore, previous 
calculations are systematically considered in the 
successive computations. Similar rule is applied in the 
internal force calculations.  

Considering the boundary conditions and solving 3 
equilibrium equations, the following displacements are 
computed for node “b”. New coordinates are computed 
for this node: 
 

∆∆∆∆b = [ ∆Xb , ∆Yb , ∆Zb ] 
t
                         (12) 

 

with respect to displacements, new coordinates and 
internal forces was determined by the additions: 
 

( Xb , Yb , Zb )
new

 = ( Xb , Yb , Zb )
old

 + (∆Xb , ∆Yb , ∆Zb )  

                                                                               (13) 
 

( F(2, 6, 7, 11) )
new

 = (F(2, 6, 7, 11) )
old

 + ∆F(2, 6, 7, 11)          (14) 
 
For example, the internal force of element 6 located in “a” 
and “b” sub-systems:  
 

F 6 
new

 = F 6
old

 + ∆F 6             (15) 
 
It should be noted that, the value of F 6 

old
 in this equation  

and the value of F 6 
new

 in Equation (9)  are  the  same  with  
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respect to local axis.  
 
After the calculation of new axial forces in this sub-system, 
the next node (for example, node “c”) is processed. Sub-
system of node “c” is given in Figure 2c and the 
aforementioned explained procedure is applied for node 
“c”.  

The first iteration step is terminated after the 
completion of similar computations for each node having 
at least one degree of freedom. The second iteration step 
begins and the procedure is repeated for each node. 
Numerical analysis is continued until a predefined error 
criterion is reached. Error criterion or tolerance of iterative 
calculation vector is determined by equation (9): 

 
ξ

n
 = [F1

n
, F2

 n
, F3

 n
,…….,Fi

 n
] 

t
 - [F1

n-1
, F2

 n-1
, F3

 n-1
,……., Fi

 n-1
] 

t 
                                                              (16) 

 
where, n is iteration number and i is the number of 
elements in the entire system. ξ

n
 is column matrix 

expressing error amount of the n
th
 iteration step. Basically, 

it is the absolute difference between the axial forces 
calculated at n

th
 and (n-1)

th
 steps. Different tolerance 

values are calculated for different elements. Consequently, 
calculated values for each element must be smaller than 
predefined tolerance value: 
   
ξ

n
 <= ξ

0
             (17) 

 
where, ξ

0
 predefined maximum tolerance vector, indicating 

the global sensitivity. ξ
0
 tolerance vector is determined by 

the user and different values are obtained for various units.  
 
Using iterative procedure as mentioned, results are 
obtained without computing large matrixes. In addition to 
cable elements, systems involving axial compression 
elements or complex structures which are made of cable 
and truss elements can be solved with the presented 
approach. Maximum number of equations is limited to 3 for 
any sub system. This is independent from the number of 
nodes and elements of the entire system.  
 
 
THE CONVERGENCE PROCEDURE 
 
In common practice, divergence and slowly convergence 
problems are mostly encountered in iterative process 
conducted for the geometrical analysis of structural 
systems. Namely, solution divergence results in higher 
deformation or resonance increase, which is avoided in 
target construction designs. The divergence problem, 
which is commonly encountered in the analysis of cable 
systems, can be overcome by several numerical control 
codes applied through the iterations. Incremental load 
procedure, in which external forces are treated by the 
increments applied step by step, is usually preferred by 
analyzers.  On the  other  hand,  another  problem  is  the  
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Table 1. Comparable displacement results at mid span of pre-stressed single cable. 
  

Uniformly vertical distributed 
load (N/m) 

Displacement at mid span point , ∆Y (m) 

Jayaraman and Knudson 
(1981) 

Desai et al. 
(1988) 

Ozdemir 
(1979) 

Point based 

Iterative procedure 

3.50 3.343 3.341 3.343 3.344 

10.50 5.948 5.944 5.867 5.952 

17.50 7.437 7.432 7.315 7.440 

24.50 8.535 8.528 8.407 8.537 

31.50 9.427 9.419 9.347 9.428 
 
 
 

slow convergence of the solution, which consequently 
increases the amount of computational duration. In order 
to avoid this handicap, successive displacements are 
estimated from the displacements calculated at previous 
steps. Therefore, number of iteration steps is minimized 
(Kar and Okazaki, 1973). 

Similarly, divergence problems are also observed 
during the studies carried out in this investigation. In 
detail, divergence increased slowly, for systems that are 
pre-stressed and/or subject to homogeneous loadings. 
Furthermore, if the geometry of the structural system is 
not symmetrical, then divergence speed is increased.  

Analogous to the simple methodology implemented 
here, a simple convergence procedure is adapted to the 
method. In essence, the displacements tending to 
increase is prevented. Namely, increasing displacement 
values obtained at the iteration steps are divided by a 
constant (η) that is greater than 1. The formulation of this 
process is given for the i

th
 step of iteration where the 

divergence began: 
   

(∆∆∆∆
i
)
corrected

 = (∆
i
) 

obtained
 / η

i
                          (18)  

 

In the formulation, (∆
i
) 

obtained 
is the excessive displacement 

(maximum value in the all of them) obtained by the solution 
of equilibrium (Equations 1 and 10).  

(∆
i
)
 corrected

 is the actual displacement value that is 

decreased by η
i
 parameter. The η parameter is 

automatically adjusted with respect to the extent of the 
divergence. The variation is controlled by the software 

routine. Therefore, η correction parameter is automatically 
determined according to the results gathered from 
previous iteration steps. As a consequence of the 
convergence procedure, the number of iterations is 
increased naturally. However, recursive calculations are 
reduced by the procedure drastically. In addition, the 
advances in computer technology make this drawback 
unimportant factor. 
 
 
PROPOSED METHODOLOGY  
 

To demonstrate the proposed methodology, a computer 
program has been developed for the geometric nonlinear 
analysis  of   cable   system  using  the  mentioned  nodal 

iterative and convergence methodology. The simple flow 
chart of the code, which work within the basis of the finite 
element displacement method and direct rigidity 
principles, is given in Figure 3.  

Four applications obtained from the literature are solved 
by the proposed method. The values of the result are 
compared and evaluated. These numerical applications 
include 2D and 3D pre-tensioned cable systems. 
Symmetry is used for all problems if present. The 
relationships between iteration number with displacement 
and tolerance value are shown in diagrams for the 
applications.  

First, a single cable, pre-tensioned between two 
horizontal nodes that are loaded linearly in a uniformly 
distributed vertical load, has been analyzed. Cable system 
and main structural properties are shown in Figure 4. 
Bearing system is idealized by 20 straight cable elements. 
Value of uniformly distributed load q is changed from 3.50 - 
31.50 N/m by 7.00 N/m. Equivalence concentrated loads 
are applied at the points. Cable is pre-tensioned and value 
of initial stress is taken (138000 KN/m

2
).  

The comparable results (Desai et al., 1988; Jayaraman 
and Knudson, 1981; Ozdemir, 1979) of vertical 
displacements are given in Table 1. Correction parameter 
value is taken because divergence problem does not occur 
in this application. Computation duration is approximately 2 
s for 200 - 250 iterative steps, in 3.0 GHz computer. 
Maximum tolerance value is selected to be 0.001 (N-m 
units) for all of the loading conditions.  

The relationships between iteration number with 
displacement for each loaded condition and calculated 
tolerance value for q=31.50 N/m load are shown in Figure 5. 

In the presented application, some data have been 
changed. Pre-stress is canceled and 2000 N vertical single 
load is applied at mid span node (Figure 6). So, the 
present rigid system is transformed into bearing system 
which has high nonlinearity degree. The uniform 
distributed vertical load is 3.5 N/m on the single cable. 
Bearing system is idealized by 20 straight cable elements 
and main structural properties are shown in Figure 6.  

When the cable system is calculated by the point based 
iterative procedure presented in this study, divergence 
problem occurred during the analysis. In order to solve this 
problem, correction parameter is used as a constant value 
of 70. The displacement values  are  divided  by  correction  
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input 

Properties of bearing system: description of elements, global coordinates of nodes, stiffness properties 

of elements, loads, pre-tensions, boundary conditions, calculation tolerance  

If pre-tensions exist, pre-stress forces are assumed as initial element forces. 

Sub-systems are developed for all free nodes. 

Equilibrium equations of sub-system are developed. 

 Q   =   KT  . ∆     

Displacements are calculated by solving equilibrium equations  

and new coordinates are found. 

 ( X , Y ,  Z )
new

 = ( X , Y ,  Z )
old

 + (∆X ,  ∆Y ,  ∆Z )    

New internal forces are calculated with respect to new displacement values 

∆F   =  K   ∆     and     F 
new

 =  F 
old

  +   ∆F 

start  iteration   

Each nodal subsystem is sequentially calculated at each iteration step. 

Stopping criterion is evaluated and the sensitivity (ξ
n
) is found. 

 

                            

 

 

output 

Displacements and internal forces 

convergence   procedure 

If divergence exists, calculated displacements are reduced by (η) parameter.  

 

ξ
n
  > ξ

0
        →     new iteration begins 

ξ
n
  <= ξ

0
     →       terminate the iteration  

 

 
 
Figure 3.The flow chart of the software developed for point-based iterative procedure. 
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parameter and decreased. As a consequence of these 
operations, the number of iterations is increased and 
becomes 61405. Maximum tolerance value is taken into 
consideration (0.001) and analysis duration is 
approximately 3 min when a  3.0  GHz  computer  is  used. 

The relationships between iteration number-vertical 
displacement at node 3 on mid span and iteration number - 
calculated tolerance value are shown in Figure 7.  

Secondly, 3D pre-stressed cable structure, as shown in 
Figure 8, which consist 12 elements  and  12  nodes,  has  
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Figure 8. Plan and profile views of pre-stressed cable roof.  

 
 
 

Table 2. Displacements at node 4 of pre-tensioned cable roof. 
  

Displacements at node 4 (m) 

Node Direction Desai et al. (1988) 
Jayaraman and Knudson 

(1981) 
Saafan 
(1970) 

West and Kar 

(1977) 

Point based 

iterative procedure 

4 

X -0.0401 -0.0396 - -0.0404 -0.0402 

Y 0.0401 0.0402 - 0.0404 0.0402 

Z -0.4460 -0.4463 -0.4483 -0.4480 -0.4464 
 
 
 

been calculated for symmetrically vertical nodal loads. 
Cross-sectional areas and modulus of elasticity are 
0.00014645 m

2
 and 82.8 GN/m

2
 respectively, to all wire 

ropes. External vertical load 35.60 KN (self weigh is 
neglected) is applied simultaneously to the nodes 4, 5, 8 
and 9. The pre-stressing axial forces in horizontal (3, 4, 8 
and 11 numbered elements) and diagonal cables are 
24.29 and 23.70 KN, sequentially.   

Displacements of free nodes are presented in Table 2, 
and compared with the results, which were given in the 
literature (Desai et al., 1988; Kar and Okazaki, 1973; 
Jayaraman and Knudson, 1981; Saafan, 1970). When 
using the presented procedure herein, divergence would 
not occur during the solution, like the first application, as 
a result of symmetric and homogeneous loading and 
geometry.  

Duration of analysis is approximately 1 s on a 3.0 GHz 
computer, if the maximum tolerance value used is 0.0001 
and the total number of iteration steps becomes 41 in this 
application for the point based iterative procedure which  
was presented here.   

Then, pre-stressed orthogonal cable net is illustrated in 
Figure 9, geometrically symmetric about X and Y axes, 
has been analyzed for self weigh and additional external 
loads. The idealized bearing system is constituted by 41 
nodes and 64 finite cable elements. In the net system, 
bearing cables and stabilizing cables are in the direction 
of X and Y axis, respectively. Its surface geometry is of 
hyperbolic parabolic form and the designed equation is 
given by: 

  
Z = ( Cx . X

2 
) / a

2
 - ( Cy . Y

2 
) / b

2
 + f                           (19)  
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Data: 

 

Initial forces 

(F0)horizontal = 222.5 KN (all cables) 

External loads 

(all free nodes) 

Vertical nodal load, PZ=-4.45 KN  

(Additional loads only at node 7) 

Vertical load , PZ=-66.75KN 

Lateral load , PY= 44.5KN 

 

A: 0.0006452 m2 , 

E: 165.54 GN/m
2
 , 

(Units are converted from the original 

papers, 

1 lb= 4.45N, 1 in = 0.0254m) 
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Figure 9. Pre-stressed hyperbolic parabolic cable net under the vertical and lateral loading. 

 
 
 

If the values are Cx = Cy = 3.048
m
, a = b = 148.77

m
, f = 

3.048
m
 taken account in unit in meter, Equation 19 

rewritten as: 
 
Z = 0.00011906 (X

2
 - Y

2
) + 3.048    (20)  

 
The cross-sectional area (0.0006452 m

2
), the modulus of 

elasticity (165540000 KN/m
2
) and the horizontal 

component of pre-stress (222.5 KN) are the same in all 
members. The vertical point load of 4.45 KN is applied to 
all nodes, equivalent of the self weigh loads. In this 
condition, horizontal load of 44.5 KN in the positive Y 
direction and vertical load of 66.75 KN in the negative Z 
direction are applied to node 7. Results for displacements 
and axial forces are presented in Table 3, together with 
the results taken in literature (Monforton and El-Hakim, 
1980; Thornton and Birnstiel, 1967). 

If the results of in this study are compared with the data 
given in the literature, it can be seen that they are in good 

agreement. The solution of this problem with the point 
based iterative procedure is obtained by 68 iterative steps 
for maximum tolerance value which is 0.0001. 
Computation duration is approximately 15 s in a 3.0G Hz 
computer, in those conditions. Very appropriate 
convergence occurred during the analysis, for this 
application. The relationships between iteration number-
vertical displacement at node 7 and iteration number - 
calculated tolerance value are shown in Figure 10.  

Finally, the counter stressed dual cable truss structure 
is studied for different load cases, analyzed in literature 
by Thornton and Birnstiel (1967) and Nishino et al. 
(1989). Firstly, the two dimensional cable system is 
designed under external pre-stressing forces of 44.50 
and 22.25 KN acting at the supports of the parabolic 
shaped tie-down (stabilizing) and load (bearing) cables, 
respectively in this study. These values are the horizontal 
components of axial forces for each straight element at 
the stabilizing and bearing cables. The geometry is  
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Table 3. Displacements and axial forces horizontal component of axial forces.  
 

Vertical displacements (m) Horizontal component of cable axial force (kN) 

 

Node 
number 

Thornton and 

Birnstiel 
(1967) 

Monforton and 

El-Hakim (1980) 

Point based 

iterative 
procedure 

Cable 

number 

Thornton and 

Birnstiel 
(1967) 

Monforton and 

El-Hakim(1980) 

Point based 

iterative 
procedure 

34 0.000 0.000 0.000 1 204.46 204.33 204.45 

1 0.136 0.134 0.136 5 204.95 204.72 204.92 

3 0.417 0.418 0.417 13 205.87 205.77 205.70 

7 1.143 1.144 1.144 25 163.12 162.91 163.14 

13 0.507 0.509 0.508 40 163.22 162.98 163.24 

19 0.293 0.293 0.294 52 163.30 163.00 163.33 

23 0.170 0.171 0.170 60 163.36 163.36 163.37 

25 0.069 0.068 0.069 64 167.79 167.80 163.63 
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Figure 10. Variation of vertical displacement at node 7 and calculated tolerance values under increasing iteration 
number. 

 
 
 

 

 

 

 

 

                 

 

 

 

 

Data 

A= 12.90 10-4 m2 (bearing cable) 

A= 6.45 10-4 m2 (stabilizing cable) 

A= 6.45 10
-5

 m
2
 (hanger) 

E= 165.54GN/m2 , 

 

Initial forces 
F0 = 22.25 KN (bearing cables) 

F0 = 44.50 KN (stabilizing cables) 

 

 (Units are exchanged from 

originally papers, 

1 lb= 4.45N, 1 in = 0.0254m)) 
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Figure 11. Counter stressed dual cable truss structure. 

 
 
 

shown in Figure 11, where the system is pre-stressed 
and fixed at the supports nodes having geometric and 
boundary conditions. Secondly, the system  is  loaded  by 

concentrated vertical loads corresponding triangularly to 
the distributed loading, located at the joints of the 
stabilizing cable,  which  vary  linearly  from  1.335 KN  at  
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Table 4. Nodal coordinates and axial forces for attitude to pre-stressing. 
 

Coordinates (m) Axial forces (KN) 

Node X Z Node X Z Element Forces Element Force Element Forces 

1 -12.194 -4.633 7 -3.048 -3.719 20-2 23.65 21 - 1 45.22 1-2 1.78 

2 -12.194 -1.951 8 -3.048 -2.926 2-4 23.10 1 - 3 44.94 3-4 1.78 

3 -9.144 -4.206 9 0.000 -3.658 4-6 22.69 3 - 5 44.72 5-6 1.78 

4 -9.144 -1.951 10 0.000 -3.048 6-8 22.41 5 - 7 44.58 7-8 1.78 

5 -6.096 -3.901 20 -15.24 -0.000 8-10 22.27 7 - 9 44.51 9-10 1.78 

6 -6.096 -2.560 21 -15.24 -5.182 Not: System is symmetric about to Z axis. 
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Figure 12. Pre-stress loading application to cable truss. 
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Figure 13. Vertically concentrated loading at the pre-stressed cable system. 

 
 
 

joint 1 to 12.015 KN at joint 17. Finally, only node 10 is 
loaded with 50 KN single load, in the direction to Y axis 
when the cable truss is pre-stressed. The modulus of 
elasticity is 165.54 GN/m

2
 and the cross-sectional areas 

are 6.45 10
-5

, 6.45 10
-4

 and 12.90 10
-4

 m
2
 for hanger, 

stabilizing and bearing cables, respectively. 
The axial forces of elements and nodal coordinates 

given in Table 4, are used in the presented study. First of 
all, support nodes 19, 20, 21 and 22 are unconstrained in 
horizontal direction only for applying pre-stress (Figure 
12)   and   these   nodes  are  fixed  after  pre-stressing is 

applied. Then, concentrated vertical external loads are 
placed on nodes in the stabilizing cable and single 
horizontal load is applied at node 10 in the bearing cable 
separately when the system is pre-stressed. According to 
the point based iterative procedure, the element forces 
and nodal coordinates found by calculation of pre-stress 
step are the data inputted for the following geometric 
nonlinear analysis (vertical and horizontal concentrated 
loading cases).  

Table 4 summarizes the starting data for loading cases 
as shown in Figures 13 and 14.  
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Figure 14. Single load in Y direction at node10 and the truss is pre-stressed. 

 
 
 
Table 5. Displacements for vertically concentrated loading, truss is pre-stressed.  
 

Displacements (m) 

Node 

X Z 

Node 

X Z 

Thornton and 

Birnstiel 
(1967) 

Point based 

iterative 
procedure 

Thornton and 

Birnstiel 
(1967) 

Point based 

iterative 
procedure 

Thornton and 

Birnstiel 

(1967) 

Point based 

iterative 
procedure 

Thornton and 

Birnstiel 

(1967) 

Point based 

iterative 
procedure 

1 -0.0213 -0.0219 -0.1106 -0.1128 2 0.0393 0.0402 -0.1113 -0.1143 

3 -0.0259 -0.0268 -0.1466 -0.1512 4 0.0503 0.0518 -0.1460 -0.1508 

5 -0.0232 -0.0237 -0.1253 -0.1301 6 0.0469 0.0484 -0.1234 -0.1286 

7 -0.0198 -0.0204 -0.0668 -0.0695 8 0.0405 0.0420 -0.0631 -0.0676 

9 -0.0204 -0.0192 0.0088 0.0097 10 0.0378 0.0390 0.0137 0.0122 

11 -0.0204 -0.0213 0.0844 0.0884 12 0.0411 0.0423 0.0878 0.0902 

13 -0.0238 -0.0247 0.1408 0.1460 14 0.0485 0.0499 0.1423 0.1469 

15 -0.0253 -0.0259 0.1582 0.1621 16 0.0530 0.0530 0.1579 0.1621 

17 -0.0192 -0.0198 0.1180 0.1207 18 0.0423 0.0433 0.1152 0.1176 

 
 
 

Table 6. Element forces for vertically concentrated loading, truss is pre-stressed. 
 

Axial forces (kN) 

Element 20 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 18 - 19 

Force 118.55 117.04 115.97 114.85 114.63 115.30 116.63 118.90 122.20 126.65 

Element 21 - 1 1 - 3 3-5 5 - 7 7 - 9 9 - 11 11 - 13 13 - 15 15 - 17 17 - 22 

Force 68.53 67.64 66.88 66.26 65.55 64.84 64.04 63.59 63.32 63.19 

Element 1 - 2 3 - 4 5 - 6 7 - 8 9-10 11-12 13-14 15 - 16 17 - 18  

Force 5.79 6.68 7.57 8.41 9.256 10.10 10.99 11.88 12.82  
 
 
 

During the geometric nonlinear analysis of pre-stress 
and vertically concentrated load cases, for 10

-5
 and 10

-6 

maximum tolerance values, 331 and 2668 iteration steps 
are constituted, respectively. The value of correction 
parameter is taken in to consideration as 1 and any 
divergence problem do not occur in the iterative 
calculations. If maximum tolerance value is selected as a 
large value (10

-4
 and 10

-5
), although the number of 

iteration steps  are  reduced  (95  and  1959),  the  results  

differ from actual values.  
The displacements calculated by the presented 

procedure are given in Tables 5, 6 and the vertical 
loading case is shown in Figure 13. The results are 
compared with that of Thornton and Birnstiel (1967) given 
the incremental load method also. 

Sequentially, the displacements and element axial 
forces are given in Tables 7 and 8, obtained for single 
loading case in Y direction at node  10,  shown  in  Figure  
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Table 7. Displacements for horizontal load in Y direction at node 10 and the truss is pre-stressed. 

 

Displacements (m) 

Node X Y Z Node X Y Z 

1 -0.0049 0.1506 0.0463 2 0.0140 0.1914 0.0497 

3 -0.0070 0.2999 0.0856 4 0.0201 0.3850 0.0863 

5 -0.0064 0.4444 0.1164 6 0.0204 0.5867 0.1097 

7 -0.0039 0.5761 0.1448 8 0.0140 0.8105 0.1094 

9 -0.0000 0.6770 0.1948 10 0.0000 1.0866 0.0387 

11 -0.0039 0.5761 0.1448 12 0.0140 0.8105 0.1094 

13 -0.0064 0.4444 0.1164 14 0.0204 0.5867 0.1097 

15 -0.0070 0.2999 0.0856 16 0.0201 0.3850 0.0863 

17 -0.0049 0.1506 0.0463 18 0.0140 0.1914 0.0497 
 
 
 
Table 8. Element forces for horizontally loading to Y direction at node 10, truss is pre-stressed.  
 

Axial forces (kN) 

Element 20 - 2 2-4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 18 - 19 

Force 177.55 173.98 171.34 169.82 169.42 169.42 169.82 171.34 173.98 177.55 

Element 21 - 1 1 - 3 3 - 5 5 - 7 7 - 9 9 - 11 11 - 13 13 - 15 15 - 17 17 - 22 

Force 294.79 297.03 295.22 293.85 293.00 293.00 293.85 295.22 297.03 294.79 

Element 1 - 2 3 - 4 5 - 6 7 - 8 9 -10 11 - 12 13 - 14 15 - 16 17 - 18  

Force 12.50 12.61 12.09 10.00 28.85 10.00 12.09 12.61 12.50  
 
 
 

14. Due to the exceptional loading at the node 10, the 
system behavior is highly nonlinear and the divergence 
problems occur while starting the calculation steps. For 
this reason, the value of correction parameter is taken into 
account as the value of the three. Excessive 
displacements are divided by the correction parameter at 
the end of each iteration steps.  

When the results, obtained for the numerical appli-
cations are evaluated together, the geometrical nonlinear 
analysis procedure presented in this study could be used 
for all types of cable structures successfully. When 
divergence of solution occurred in the iterative analysis, a 
correction parameter value is adapted in to calculation 
automatically. Consequently, total number of iterations 
and duration of analysis are increased. But this situation 
does not create an important problem. Since the 
computer process speeds have reached high values, in 
addition, this problem can be minimized by utilizing the 
professional programming techniques.  
 
 
Conclusion 
 

The geometrical nonlinear analysis of cable systems is 
carried out using point-based iterative procedure. Within 
the analysis performed with finite element direct stiffness 
principles, pre-stress forces are applied using tangent 
stiffness matrix. The maximum number of equilibrium 
equations and unknown displacements are limited with 
three.   Because  numerical  calculations  are  carried  out 

only for sub-structures established for nodal points. A 
simple and effective convergence procedure is adopted 
in the method to avoid divergence problem. The 
convergence procedure intervenes with the excessive 
displacements in order to restore normal iteration steps. 

A computer program has been developed and 
presented in accordance with the point-based iterative 
method. The outcomes of the analysis of the developed 
program are consistent with the data given in the litera-
ture. Even though the number of iterations is excessive 
for the presented methodology, the memory required is 
drastically decreased. In additional solution, divergence 
problem prevailed and are controlled practically.  
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