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Quite recently Savas (2008) has proved a theorem on |A|k - summability factors of an infinite series. The

present paper deals with a further generalization of it.
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INTRODUCTION

Savas (2008) obtained sufficient conditions for Zanxin
to be summable |A|k ,k>1. In this paper a theorem on
|A, 5|k—summability methods has been proved. A
sequence (bn)of positive numbers is said to be o -quasi-
monotone, if b, >0 ultimately and Ab, >—6,, where
(5n)is a sequence of positive numbers (Savas, 2008).

Let A be a lower triangular matrix, {Sn}a sequence.
Then,

n
A =D a,s,.
v=0
A series Zan is said to be summable |A|k Jk >1if;

0

2NTIA =A<, (1)

n=1

and it is said to be summable |A, 5|k, k>1land 6>0 if

(Flett, 1957):

2000 Mathematics Subject Classification: 40F05, 40D25

in5k+k—l|A] _ A1_1|k < o0, (2)
n=1

We may associate with A, two lower triangular matrices
A and A defined as follows:

n
a,=>a, nhv=012. and

r=v

a,=a,—-a.,, h=L23..

A triangle is a lower triangular matrix with all non-zero
main diagonal entries. A positive sequence {dn} is said
to be almost increasing if there exist a positive increasing
sequence{cn} and two positive constants A and B such
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that Ac, <d, < Bc, for each n.

RESULTS
We have the following theorem:

Theorem 1. Let A be a lower triangular matrix with non-
negative entries satisfying:

i a,,,za, for, n2v+1

i) na,, = 0@,

m+1

2. 1A, 0™ a,)

iV) n=v+1
m+1

V) z n’14,,, = 0(Wv™)

n=v+1

If {Xn}is an almost increasing sequence such that,

|Axn|:o(xﬂ) andln—>0 as N —oo. Suppose that
n

there exists a sequence of numbers (Ah) such that it is
0 -quasi monotone with Zané'n <00, ZA1Xn is
convergent and |AZ, | <|A| for all n. If;

| A
2

Vi)

m
Z n&k—l |tn |k

1 n
=0(X_ ), Wheret =——) ka,,
V“) < ( m) n+1; k

then the series Zan/in
020.

is summable |A,5|k, k>1,

We need the following lemmas for the proof of Theorem
1.

Lemma 1. Under the conditions of the theorem (Savas,
2008), we have that:

@ |A4[X, =00.

Lemma 2. Let{Xn} is an almost increasing sequence

such that |AXn|=O(£J (Savas, 2008). If (A1)is 0 -
n

quasi monotone with Zan5n<oo,ZA1Xn is

convergent, then,
2 inxn|M|<w, and
n=1

(3) nA X, =0().

Proof:

n
Let {yn} be the nth term of the A-transform of Z/l,ai.
i=0
Then,

n i

= ganisi :g Ay Zoﬂvav

= Zﬂ\/a\lzani = Zgnvﬂ\/a\/
v=0 i=v v=0
and

Yn = yn B yn—l = Z(anv B an—l,v )/L,av = Zénvﬂva\/ ()

We may write:

we35 e

S

= i A, (_én\v//% jzvl ra, + —é”’ljf” Zn:vaV
r=1 v=1

v=1

n-1 n-1

. v+l . v+l
:Z(Avanv);tv v —t +Zanv+1(Aﬂ\/)_t
v=l v=1
n-1

é‘ A\/+11t +

n,v+1 v

v=l v n
=T +T,+T,+T,, say.

nn-=n-n

(n+1)a, At
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To complete the proof it is sufficient, by Minkowski's

[ lity, to show that: . pokek-t Sk+k-1

inequality, to show tha |, = Z + |Tn2| _Zn ¥
n=2

v+1

Z an v+l Aﬂ\/

1|

mntvﬂ

in(s"*“| | <o, forr=1, 2, 3, 4.

m+1 n
< < Zn5k+k—1 |:Z

n=2 =1

_ O(l)z nék+k -1 |:z

=1

k —O(l)z ok lLZ_l:
) (e
Sl k) ]

v=1

v+1

L

n,v+1

Using Hdlder’s inequality and (iii),

n,v+1
m

Il — z n5k+k -1 |Tn1| _z n5k+k—1

n=1

— O(l)§n5k+k 1(
_O(l)zn5k+k 1( | A

z Ava‘nvﬂ\/ Et

n,v+1

sl |

H

n-.

| nv

n,v+1

’<M

sl -

From (Rhoades and Savas, 2006):

|AZ,| < Ma,,

n v+1

From condition (1) of Lemma 1, {ﬂn} is bounded, and Using (iii);

(V); m+1 K ln—l
1, ::O(l)Zn‘Sk (na,) > |4

| _0(1)2 n* (na,,)" 1Z|AV aJlal el v

j _0(1)2|Aﬂ\’||t| z k(nann)kil n,v+1
_O(l)Z|AZ\/||t| Z §k nv+l

A4

n,v+1

a
m+1 )

~0w¥ " (na,)” [Zw -

vty

“o0S Al 0 na,)
Nt Therefore;
—ouS S 3 s m
e 1, =00 v* [Adlt,|
~00S v e

We may write:

O DAMTEE YA
v=1 r=1 r=1
=0W S ARSI T g Sop v
v=1 r=1 r=1
m-1
=0 |A|X, +0@)|4,|X,
v=1

m k
l, = O(l)Zvﬁ"v|Aﬂv|%.
v=l

Using summation by parts and (vii);

=0(), l, —0(1>ZA( IMI)Z [ r*+Omlaz, IZ ol r
Again, using the hypothesis of the theorem and Lemma —0MS A(VIALN X s0MmIAL X .
1. Using Hoélder’s inequality: ( )é (V| M) HO( )m| m| m
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Using (vii), the properties of Lemma 1, and the fact that
{Xm} is almost increasing:

|2 = 0(1)2V|AA/| XV +O(1)mZ_|A\/+1| xv+l +O(1)m|An| Xm

=0().
Using the hypothesis of the theorem 1, Holder's
inequality, summation by parts:
m+l K m+l n-1 k
znak+k—1 ‘Tna‘ =z n¢$k+k -1 z an - lwl
smzﬂn“*“{"z‘i“‘ 1 }
ma Al K o M‘“
-0 Sl a4 S 2|
1 k-1
70(1)2n’3k nann k 1{2‘2\/%‘“‘ ‘anvﬂ} {z‘ﬂcflq
=1

n,v+1

m-+1 n-1
=0 n*(na,, )MZMM A
n=2 v=1

v

m m+1
—ow3; Blg ) § 0% e, .
v=1

n=v+1l

-oa)z'”m oS4
n=v+1
- 0(1)i—|ﬂ“\vl“|v("k It,[f

=00, (|A4u)X, +O@|4y4| X,

I
IR

=02 (|Au]X, +O@) |2y X,
=0(1).

<

Finally, using (iii) and the hypothesis of the Theorem 1,
we have:

nn’n-n

(n+1)a, At

m K m
Sk+k-1 Sk+k-1
PIL e I I

n=1 n=1

=o<1>in°‘““|amr P

n

= 0(1)2 ™ (nay, )~ a4 [t

= 0(1)2 n*a,, |/1n||tn|
n=1
=0(1).

As in the proof of |,. Setting 6 =0 in the theorem vyields
the following Corollary.

Corollary 1

Let A be a triangle satisfying conditions (i) to (iii) of
Theorem 1 and if {Xn} is an almost increasing sequence

such that, |Axn|:o(xnj and 4, —>0as N—oo
n

(Savas, 2008). Suppose that there exists a sequence of
numbers {A, } such that, it is & -quasi monotone with

annén <OO,ZA]Xn is convergent and |A/1n| S|A]|
for all n. If:

(iv) iM<oo, and
1 N

(v) iih |k =0(X_), where t ::iika,
“n n m n n+1 - k

then the series Zanﬂn is summable |A|k Jk>1.

Corollary 2

Let { pn} be a positive sequence such that:

n
= Z p, — o, and satisfies:
k=0

0 np, =0O(PR,)
ok pn _ ﬂ
(”) Zn PnPn—l _O( R/ )

If {Xn} is an almost increasing sequence such that

|Axn|:o(XnJ and 4, > 0as N—o0. Suppose that
n

there exists a sequence of numbers {A1} such that it is
0 -quasi monotone with Zan5n <OO,ZA1XH is
convergent and |A,|<|A|for all n. If

(i) i@@o, and (i) inék*1|tn|k =0(X,),
n=1 n=1



then the series summable

> a4, is

IN,p,5|, k=1 for 0<5<1/k.

Proof

Conditions (iii) and (iv) of Corollary 2 are, respectively,
conditions (vi) and (vii) of Theorem 1. Conditions (i) and
(i) of Theorem 1 are automatically satisfied for any
weighted mean method. Condition (iii) of Theorem 1
become condition (i) of Corollary 2 and conditions (iv)
and (v) of Theorem 1 becomes condition (ii) of Corollary
2.

CONCLUSION
Let Zav denote a series with partial sums S_ . For an

infinite matrix A, the nth term of the A-transform of {Sn}
is denoted by:

t, = t.S,
v=0

Recently, Savas (2008), obtained an absolute
summability factor theorem for lower triangular matrices.

A summability factor theorem for summability |A,5|k as

defined in (Flett, 1957) has not been studied so far. The
present paper is filled up a gap in the existing literature.
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