Full Length Research Paper

A note on absolute summability factor theorem and almost increasing sequences

Ekrem Savaş
Department of Mathematics, İstanbul Ticaret University, Üsküdar-İstanbul/ Turkey.

Accepted 4 October, 2011

Abstract

Quite recently Savas (2008) has proved a theorem on $|A|_{k}$ - summability factors of an infinite series. The present paper deals with a further generalization of it.

Key words: Absolute summability, almost increasing, weighted mean matrix, summability factor.

INTRODUCTION

Savas (2008) obtained sufficient conditions for $\sum a_{n} \lambda_{n}$ to be summable $|A|_{k}, k \geq 1$. In this paper a theorem on $|A, \delta|_{k}$-summability methods has been proved. A sequence $\left(b_{n}\right)$ of positive numbers is said to be δ-quasimonotone, if $b_{n}>0$ ultimately and $\Delta b_{n} \geq-\delta_{n}$, where $\left(\delta_{n}\right)$ is a sequence of positive numbers (Savas, 2008). Let A be a lower triangular matrix, $\left\{s_{n}\right\}$ a sequence. Then,

$$
A_{n}:=\sum_{v=0}^{n} a_{n v} s_{v}
$$

A series $\sum a_{n}$ is said to be summable $|A|_{k}, k \geq 1 \mathrm{if} ;$

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|A_{n}-A_{n-1}\right|^{k}<\infty, \tag{1}
\end{equation*}
$$

and it is said to be summable $|A, \delta|_{k}, k \geq 1$ and $\delta \geq 0$ if
(Flett, 1957):

2000 Mathematics Subject Classification: 40F05, 40D25
$\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|A_{n}-A_{n-1}\right|^{k}<\infty$.
We may associate with A, two lower triangular matrices \bar{A} and \hat{A} defined as follows:
$\bar{a}_{n, v}:=\sum_{r=v}^{n} a_{n r}, \quad n, v=0,1,2, \ldots \quad$ and
$\hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v} \quad n=1,2,3, \ldots$.
A triangle is a lower triangular matrix with all non-zero main diagonal entries. A positive sequence $\left\{d_{n}\right\}$ is said to be almost increasing if there exist a positive increasing sequence $\left\{c_{n}\right\}$ and two positive constants A and B such
that $A c_{n} \leq d_{n} \leq B c_{n}$ for each n .

RESULTS

We have the following theorem:
Theorem 1. Let A be a lower triangular matrix with nonnegative entries satisfying:
i) $\bar{a}_{n 0}=1$,
ii) $a_{n-1, v} \geq a_{n v}$ for, $n \geq v+1$
iii) $n a_{n n}=O(1)$,
iv) $\sum_{n=v+1}^{m+1} n^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=\mathrm{O}\left(v^{\delta k} a_{v v}\right)$
v) $\sum_{n=v+1}^{m+1} n^{\delta k}\left|\hat{a}_{n v+1}\right|=\mathrm{O}\left(v^{\delta k}\right)$

If $\left\{X_{n}\right\}$ is an almost increasing sequence such that, $\left|\Delta X_{n}\right|=O\left(\frac{X_{n}}{n}\right)$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi monotone with $\sum n X_{n} \delta_{n}<\infty, \sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If;
vi) $\sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|}{n}<\infty$
vii) $\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n}\right|^{k}=\mathrm{O}\left(X_{m}\right)$, where $t_{n}:=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$,
then the series $\sum a_{n} \lambda_{n}$ is summable $|A, \delta|_{k}, k \geq 1$, $\delta \geq 0$.

We need the following lemmas for the proof of Theorem 1.

Lemma 1. Under the conditions of the theorem (Savas, 2008), we have that:
(1) $\left|\lambda_{n}\right| X_{n}=O(1)$.

Lemma 2. Let $\left\{X_{n}\right\}$ is an almost increasing sequence
such that $\left|\Delta X_{n}\right|=O\left(\frac{X_{n}}{n}\right)$ (Savas, 2008). If $\left(A_{n}\right)$ is δ quasi monotone with $\sum n X_{n} \delta_{n}<\infty, \sum A_{n} X_{n}$ is convergent, then,
(2) $\sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right|<\infty$, and
(3) $n A_{n} X_{n}=O(1)$.

Proof:

Let $\left\{y_{n}\right\}$ be the nth term of the A-transform of $\sum_{i=0}^{n} \lambda_{i} a_{i}$. Then,

$$
\begin{aligned}
y_{n} & :=\sum_{i=0}^{n} a_{n i} s_{i}=\sum_{i=0}^{n} a_{n i} \sum_{v=0}^{i} \lambda_{v} a_{v} \\
& =\sum_{v=0}^{n} \lambda_{v} a_{v} \sum_{i=v}^{n} a_{n i}=\sum_{v=0}^{n} \bar{a}_{n v} \lambda_{v} a_{v}
\end{aligned}
$$

and

$$
\begin{equation*}
Y_{n}:=y_{n}-y_{n-1}=\sum_{v=0}^{n}\left(\bar{a}_{n v}-\bar{a}_{n-1, v}\right) \lambda_{v} a_{v}=\sum_{v=0}^{n} \hat{a}_{n v} \lambda_{v} a_{v} \tag{3}
\end{equation*}
$$

We may write:

$$
\begin{aligned}
Y_{n} & =\sum_{v=1}^{n}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) v a_{v} \\
& =\sum_{v=1}^{n}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right)\left[\sum_{r=1}^{v} r a_{r}-\sum_{r=1}^{v-1} r a_{r}\right] \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{v=1}^{n} v a_{v}
\end{aligned}
$$

$$
=\sum_{v=1}^{n-1}\left(\Delta_{v} \hat{a}_{n v}\right) \lambda_{v} \frac{v+1}{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left(\Delta \lambda_{v}\right) \frac{v+1}{v} t_{v}
$$

$$
+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{1}{v} t_{v}+\frac{(n+1) a_{n n} \lambda_{n} t_{n}}{n}
$$

$$
=T_{n 1}+T_{n 2}+T_{n 3}+T_{n 4}, \text { say. }
$$

To complete the proof it is sufficient, by Minkowski's inequality, to show that:

$$
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|T_{n r}\right|^{k}<\infty, \text { for } r=1,2,3,4 .
$$

Using Hölder's inequality and (iii),

$$
\begin{aligned}
I_{1}:= & \sum_{n=1}^{m} n^{\delta k+k-1}\left|T_{n 1}\right|^{k}=\sum_{n=1}^{m} n^{\delta k+k-1}\left|\sum_{v=1}^{n-1} \Delta_{v} \hat{a}_{n v} \lambda_{v} \frac{v+1}{v} t_{v}\right|^{k} \\
= & O(1) \sum_{n=1}^{m+1} n^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=1}^{m+1} n^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \times \\
& \quad \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\right)^{k-1} \cdot
\end{aligned}
$$

From condition (1) of Lemma 1, $\left\{\lambda_{n}\right\}$ is bounded, and (v);

$$
\begin{aligned}
& I_{1}=O(1) \sum_{n=1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
&=O(1) \sum_{n=1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|\Delta_{v} \hat{a}_{n v}\right|\left|t_{v}\right|^{k}\right) \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1}\left|\Delta_{v} \hat{a}_{n v}\right| \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right| \\
&=O(1) \sum_{v=1}^{m} v^{\delta k}\left|\lambda_{v}\right| a_{v v}\left|t_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left[\sum_{r=1}^{v} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}-\sum_{r=1}^{v-1} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
&=O(1) \sum_{v=1}^{m-1} \Delta\left(\left|\lambda_{v}\right|\right) \sum_{r=1}^{v}\left|t_{r}\right|^{k} r^{\delta k-1}+\left|\lambda_{m}\right| \sum_{r=1}^{m}\left|t_{r}\right|^{k} r^{\delta k-1} \\
&=O(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
&=O(1)
\end{aligned}
$$

Again, using the hypothesis of the theorem and Lemma 1. Using Hölder's inequality:

$$
\begin{aligned}
I_{2} & :=\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|T_{n 2}\right|^{k}=\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left(\Delta \lambda_{v}\right) \frac{v+1}{v} t_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|\frac{v+1}{v}\right|\left|t_{v}\right|\right]^{k} \\
& =O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right]^{k} \\
& =O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right] \times \\
& \times\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\right]^{k-1} \cdot
\end{aligned}
$$

From (Rhoades and Savas, 2006):

$$
\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right| \leq M a_{n n} .
$$

Using (iii);

$$
\begin{aligned}
I_{2} & :=O(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{\delta k}\left|\hat{a}_{n, v+1}\right| .
\end{aligned}
$$

Therefore;

$$
I_{2}:=O(1) \sum_{v=1}^{m} v^{\delta k}|\Delta \lambda|\left|t_{v}\right|^{k}
$$

We may write:

$$
I_{2}:=O(1) \sum_{v=1}^{m} v^{\delta k} v\left|\Delta \lambda_{v}\right| \frac{\left|t_{v}\right|^{k}}{v}
$$

Using summation by parts and (vii);

$$
\begin{aligned}
I_{2} & :=O(1) \sum_{v=1}^{m} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{1}{r}\left|t_{r}\right|^{k} r^{\delta k}+\left.O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{1}{r} \frac{t}{r}\right|^{k} r^{\delta k} \\
& =O(1) \sum_{v=1}^{m} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} .
\end{aligned}
$$

Using (vii), the properties of Lemma 1, and the fact that $\left\{X_{m}\right\}$ is almost increasing:

$$
\begin{aligned}
I_{2} & :=O(1) \sum_{v=1}^{m} v\left|\Delta A_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|A_{v+1}\right| X_{v+1}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) .
\end{aligned}
$$

Using the hypothesis of the theorem 1, Hölder's inequality, summation by parts:

$$
\begin{aligned}
& \left.\sum_{n=2}^{m+1} n^{s k+k-1} \mid T_{n 3}\right\}^{k}=\sum_{n=2}^{m+1} n^{s k+k-1}\left|\sum_{v=1}^{n-1}\right| \hat{n}_{n, v+1}\left|\lambda_{v+1} \frac{1}{v} \frac{v_{v}}{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\left.\sum_{v=1}^{n-1}=\left.\frac{\left|\lambda_{n+1}\right|}{v}\left|\hat{a}_{n, v+1}\right|\right|_{v} \right\rvert\,\right]^{k} \\
& =O(1) \sum_{n=2}^{m+1} n^{s k+k-1}\left[\left.\left.\sum_{v=1}^{n-1}\left|\frac{\lambda_{v+1}}{v}\right| t_{v}\right|^{k}\right|_{n, v+1}\right]^{k} \times\left[\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{\mid \lambda_{v+1}}{v}\right]^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} n^{s k}\left(n a_{m n}\right)^{k-1}\left[\left.\sum_{v=1}^{n-1}\left|\frac{\lambda_{v+1}}{v}\right| t_{v}\right|^{k} \hat{a}_{n, v+1}\right] \times\left[\sum_{v=1}^{n-1} \left\lvert\, \frac{\lambda_{v+1}}{v}\right.\right]^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v} v^{\delta k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left(\left|\Delta \lambda_{v+1}\right|\right) X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1}\left(\left|A_{v+1}\right|\right) X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m} \\
& =O(1) \text {. }
\end{aligned}
$$

Finally, using (iii) and the hypothesis of the Theorem 1, we have:

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k+k-1}\left|T_{n 4}\right|^{k} & =\sum_{n=1}^{m} n^{\delta k+k-1}\left|\frac{(n+1) a_{n n} \lambda_{n} t_{n}}{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k+k-1}\left|a_{n n}\right|^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k}\left(n a_{n n}\right)^{k-1} a_{n n}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k} a_{n n}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) .
\end{aligned}
$$

As in the proof of I_{1}. Setting $\delta=0$ in the theorem yields the following Corollary.

Corollary 1

Let A be a triangle satisfying conditions (i) to (iii) of Theorem 1 and if $\left\{X_{n}\right\}$ is an almost increasing sequence such that, $\left|\Delta X_{n}\right|=O\left(\frac{X_{n}}{n}\right) \quad$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ (Savas, 2008). Suppose that there exists a sequence of numbers $\left\{A_{n}\right\}$ such that, it is δ-quasi monotone with $\sum n X_{n} \delta_{n}<\infty, \sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n . If:
(iv) $\sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|}{n}<\infty$, and
(v) $\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$, where $t_{n}:=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$,
then the series $\sum a_{n} \lambda_{n}$ is summable $|A|_{k}, k \geq 1$.

Corollary 2

Let $\left\{p_{n}\right\}$ be a positive sequence such that:
$P_{n}:=\sum_{k=0}^{n} p_{k} \rightarrow \infty$, and satisfies:
(i) $n p_{n}=O\left(P_{n}\right)$
(ii) $\sum n^{\delta k}\left|\frac{p_{n}}{P_{n} P_{n-1}}\right|=O\left(\frac{v^{\delta k}}{P_{v}}\right)$

If $\left\{X_{n}\right\}$ is an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(\frac{X_{n}}{n}\right)$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left\{A_{n}\right\}$ such that it is δ-quasi monotone with $\sum n X_{n} \delta_{n}<\infty, \sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If;
(iii) $\sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|}{n}<\infty$, and (iv) $\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$,
then the series $\sum a_{n} \lambda_{n}$ is summable $|\bar{N}, p, \delta|_{k}, k \geq 1$ for $0 \leq \delta<1 / k$.

Proof

Conditions (iii) and (iv) of Corollary 2 are, respectively, conditions (vi) and (vii) of Theorem 1. Conditions (i) and (ii) of Theorem 1 are automatically satisfied for any weighted mean method. Condition (iii) of Theorem 1 become condition (i) of Corollary 2 and conditions (iv) and (v) of Theorem 1 becomes condition (ii) of Corollary 2.

CONCLUSION

Let $\sum a_{V}$ denote a series with partial sums s_{n}. For an infinite matrix A, the $n t h$ term of the A-transform of $\left\{s_{n}\right\}$ is denoted by:
$t_{n}=\sum_{v=0}^{\infty} t_{n v} s_{v}$.

Recently, Savas (2008), obtained an absolute summability factor theorem for lower triangular matrices. A summability factor theorem for summability $|A, \delta|_{k}$ as defined in (Flett, 1957) has not been studied so far. The present paper is filled up a gap in the existing literature.

ACKNOWLEDGEMENTS

The author wish to thank the referees for their careful reading of the manuscript and for their helpful suggestions.

REFERENCES

Boas (Jr.) RP (1965). Quasi-positive sequence and trigonometric series, Proc. Lond. Math. Soc., 14(A): 38-46.
Flett TM (1957).On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. 7:113141.

Rhoades BE, Savas E (2006). On $|A|_{k}$-summability factors. Acta Math. Hung. 112(1-2):15-23.
Savas E (2005). On a recent result on absolute summability factors. Appl. Math. Lett. 18:1273-1280.
Savas E (2008). A summability factor theorem for absolute summability involving δ - quasi-monotone and almost increasing sequences. Math. Comput. Model. 48:1750-1754.

