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Quite recently Savas (2008) has proved a theorem on
k

A - summability factors of an infinite series. The 

present paper deals  with a further generalization of it. 
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INTRODUCTION 
 

Savas (2008)  obtained sufficient conditions for  n na   

to be summable 
k

A , 1k  .  In this paper a theorem on 

,
k

A  -summability methods has been proved. A 

sequence  nb of positive numbers is said to be -quasi-

monotone, if 0nb 
 
ultimately  and n nb    , where 

 n is a sequence of positive numbers (Savas, 2008). 

Let A be a lower triangular matrix,  ns a sequence. 

Then, 
 

 0

: .
n

n nv v

v
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A series 
na  is said to be summable 

k
A , 1k  if; 

 

                                           

(1) 

 

and it is said to be summable ,
k

A  , 1k  and  0    if  

 

(Flett, 1957): 
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We may associate with A, two lower triangular matrices 

A  and Â  defined as follows: 
 

, ,    : , 0,1,2,...
n

n v nr

r v

a a n v


      and 

 

1,
ˆ      1,2,3,....nv nv n va a a n     

 
A triangle is a lower triangular matrix with all non-zero 

main diagonal entries. A positive sequence  nd is said 

to be almost increasing if there exist a positive increasing 

sequence nc and two positive constants A  and B  such
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that n n nAc d Bc  for each n. 

 
 
RESULTS 

 
We have the following theorem: 

 
Theorem 1.  Let A be a lower triangular matrix with non-
negative entries satisfying: 
 

i)  0 1,na        

 

ii) 
   

 

iii) 
(1),nnna O

 
 

 

iv)   

    

  

v) 

 
 

If  nX is an almost increasing sequence such that, 

n
n

X
X O

n

 
   

   

and 0n   as .n  Suppose that 

there exists a sequence of numbers  nA  such that it is 

 -quasi monotone with n nnX    , n nA X  is 

convergent and n nA   for all n. If; 

 

vi)  

 

 

vii)   
 

then the series  n na   is summable ,
k

A  , 1k  ,

0  . 

 
We need the following lemmas for the proof of  Theorem 
1. 
 

Lemma 1. Under the conditions of the theorem (Savas, 
2008), we have that: 
 

(1)   (1).n nX O 
 

 

Lemma 2. Let nX   is  an  almost  increasing  sequence 

 
 
 
 

such that n
n

X
X O

n

 
   

 
(Savas, 2008). If  nA is  -

quasi monotone with n nnX    , n nA X  is 

convergent,  then, 
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(3)   (1).n nnA X O  

 
Proof: 
 

Let  ny  be the nth term of the A-transform of 
0

.
n
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Then, 
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We may write: 
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To complete the proof it is sufficient, by Minkowski’s 
inequality, to show that: 
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Using Hölder’s inequality and  (iii), 
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From condition  (1) of Lemma 1,  n  is bounded, and 

(v); 
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Again, using the hypothesis of the theorem and Lemma 
1. Using Hölder’s inequality: 
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From (Rhoades and Savas, 2006): 
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Using (iii); 
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We may write: 
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Using summation by parts and (vii); 
 

 

 

2

1 1 1

1

1 1
: (1) (1)

    (1) (1) .

m v m
k kk k

v r m r

v r v

m

v v m m

v

I O v t r O m t r
r r

O v X O m X

  

 

  



    

    

  



 



 

350          Sci. Res. Essays 
 
 
 
Using (vii), the properties of Lemma 1, and the fact that 

 mX  is almost increasing: 

 
1

2 1 1

1 1

: (1) (1) (1)

    (1).

m m

v v v v m m

v v

I O v A X O A X O m A X

O



 

 

   



   

 

Using the hypothesis of the theorem 1, Hölder’s 
inequality, summation by parts: 
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Finally, using (iii) and the hypothesis of the Theorem 1, 
we have: 
 

 

 
 
 
 

As in the proof of 1I . Setting 0   in the theorem yields 

the following Corollary. 
 
 

Corollary 1 
 

Let A be a triangle satisfying conditions (i) to (iii) of 

Theorem 1 and if  nX is an almost increasing sequence 

such that, n
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(Savas, 2008). Suppose that there exists a sequence of 

numbers  nA such that, it is  -quasi monotone with 
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Corollary 2 
 

Let  np  be a positive sequence such that: 
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then the series 
n na  is summable 

, , , 1    0 1/ .
k

N p k for k   
 

 
Proof 
 
Conditions (iii) and (iv) of  Corollary  2  are,  respectively, 
conditions (vi) and (vii) of Theorem 1. Conditions (i) and 
(ii) of Theorem 1 are automatically satisfied for any 
weighted mean method. Condition (iii) of Theorem 1 
become condition (i) of Corollary 2 and conditions (iv) 
and (v) of Theorem 1 becomes condition (ii) of Corollary 
2. 
 
 
CONCLUSION 
 

Let 
Va  denote a series with partial sums ns . For an 

infinite matrix A, the nth term of the A-transform of  ns  

is denoted by: 
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Recently, Savas (2008), obtained an absolute 
summability  factor theorem for lower triangular matrices. 

A summability factor theorem for  summability  ,
k

A    as 

defined in (Flett, 1957) has not been studied so far. The 
present paper is filled up a gap in the existing literature. 
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