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This paper examines a consequence of spinodal curve condition on the Joule – Thomson inversion 
curves, for van der Waals real gas. To this end, we consider the differential form of Joule – Thomson 
coefficient, and concentrate on the parametrical algebraic equation of the corresponding family of 
curves in a P – V Cartesian frame of reference.  The aim of this work is not the prediction of Joule – 
Thomson inversion curves for the van der Waals Eos, but to derive inequality relations amongst the 
variables T, V and the parameters which appear in this constitutive law. Here, we should clarify 
beforehand that all proposed expressions concern only the intersection points between the set of 
inversion curves and the isothermal spinodal lines, which are drawn in the same P – V frame of 
reference. 
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INTRODUCTION 
 
The Joule – Thomson inversion curve, is defined as the 
locus of thermodynamic states in which the temperature 
of a gas, (identical or real), remains invariant with respect 
to isenthalpic expansion. However, to carry out a direct 
measurement of the inversion curves is a very difficult 
experimental process and may yield unreliable 
conclusions (Colazo et al., 1992).  At near – inversion 
conditions, the vanishing of Joule – Thomson coefficient 
implies that even very large pressure changes will result 
in small temperature differences and therefore extremely 
accurate measurements of temperature are necessary for 
the reliable determination of inversion pressures (Colazo 
et al.,1992; Smith, 1982). 

The Joule – Thomson coefficient depends on the 
volume, specific heat capacity, temperature, and thermal 

expansion coefficient of the gas and generally arises from 
the following expression (Smith, 1982; Caldin, 1958). 
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Where a denotes the thermal expansion coefficient of the 
gas and is given by the following relationship 
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Besides, the enthalpy depends on the specific heat  
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capacity, as well as the temperature and pressure of the 

gas before expansion. For all real gases, TJ  is equal to 

zero at some point called the inversion point. If the gas 
temperature is below its inversion point temperature, the 

coefficient TJ  is positive and if the gas temperature is 

above its inversion point temperature, it is negative. Also, 
the variation of pressure is always negative when a gas 
expands.  Thus, the following two firm conclusions are 
drawn (Caldin, 1958; McGlashan, 1979). 
 
i) If the gas temperature is below its inversion 

temperature the coefficient TJ  is positive and since the 

change of P  is always negative it follows that the gas 
must cool since the change of T must be negative. 
ii) If the gas temperature is above its inversion 
temperature the coefficient µ is negative and since the 

change of P  is always negative the gas heats because 
the change of T must be positive. 
 
Depending on state conditions, the Joule – Thomson 
coefficient may be positive or negative. Positive values 
imply a cooling of the gas as it passes through an 
adiabatic throttle. The curve connecting all state points 

where TJ  is zero is the Joule –Thomson inversion 

curve. Evidently, this is an alternative equivalent 
definition of a J – T curve.  

Francis and Luckhurst (1963) investigated the Joule – 
Thomson coefficient and claimed that the law of 
"corresponding states" fits the isothermal Joule – 
Thomson coefficient but not the adiabatic one, because 
of the specific heat. They also claimed that the law of 
corresponding states conforms not only to pure gases but 
also to their mixtures. Meanwhile, it has been admitted 
that the prediction of the Joule – Thomson inversion 
curve constitutes a very reliable test of an equation of 
state (Colazo et al., 1992; McGlashan, 1979). The 
prediction of adiabatic Joule –Thomson coefficient for the 
type of inert gases, on the basis of numerous 
intermolecular potentials has been carried out by Nain 
and Aziz (Nain and Aziz, 1976).  Up to date, the Joule – 
Thomson inversion curves for several types of real gases 
have been evaluated either numerically or by means of 
molecular simulation methods. In particular, an amount of 
valuable molecular simulation analyses was presented by 
Haghighi et al. (2003, 2004); Matin and Haghighi (2000); 
Colina and Muller (1999); Colina et al. (2002); Chasin et 
al. (1999); Colina and Muller (1997) and  Vrabec et al. 
(2005), whereas prominent numerical techniques were 
performed by Dilay and Heidemann (1986) and Kioupis 
and Maginn (2002). After all, we should elucidate that the 
objective of the present investigation is not to optimize 
the simulative calculation of this coefficient in accordance 
with van der Waals constitutive law, but to obtain some 
further qualitative information in regards to the  
independent variables  T,  V  and  the  parameters  which 
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participate in the aforementioned Eos. 
 
 
ANALYSIS 
 
It is known from the literature, McGlashan (1979) and 
Adkins (1968) that the thermodynamical behavior of any 
van der Waals gas is described by the following Eos 
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The coefficients ba,  are related with the coordinates of 

the critical point ),,( 000 TVP , which characterizes any 

van der Waals gas, as follows: 
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Next, by focusing on one mole of the gas, we can write 
out Equation (3) in the following form: 
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Here, one may also remark that after the necessary 
algebraic manipulation the following equivalent third 
degree polynomial equation arises (McGlashan, 1979; 
Adkins, 1968)   
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Obviously, the above equation cannot be equivalently 
written in the explicit form  
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In continuing, let us return at Equation (3) and solve it for 

T to find 
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Next, by differentiating the latter equation with respect to 
V we obtain 
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Thus, it is evident that the thermal expansion coefficient 
a  for a van der Waals gas is given as 
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Hence, the Joule – Thomson coefficient for a van der 
Waals gas can be estimated as follows 
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Meanwhile, since 
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Thus, the parametric algebraic equation of the inversion 
curves is given as 
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Since the variable of volume cannot be zero, it implies 
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On the other hand, it is known from Equilibrium 
Thermodynamics (Adkins, 1968)  that the spinodal points 

of an arbitrary isothermal curve in a P  – V  frame of 

reference are conveyed mathematically by the following 
expression: 
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Here, we illustrate that the critical points described by 
Equations (3a,b,c) also verify the above equation, even if 
the system of  Equations (3a,b,c)  is not equivalent to 
Equation (13). Thus we infer 
 














0

2

)(

)(

2
3

2

2 a

RT

V

bV

bV

a
 

 32

2
)( V

a

RT
bV                                                                                                                                      













 3
2

2

2
)( V

a

V

ab

V

a
PbPV

bV                                          

 abVaVPbVPVabVabaV 23422 422
 

023 2234  ababVaVPbVPV                  (14)                                  

 
Hence, if one centers his/her investigation on the 
intersection points of the inversion curves with the 
isothermal spinodal lines, which evidently constitute  the 

loci of the isothermal spinodal points , the pressure P  
can be considered as a parameter.  

Apparently, the same consideration concerns the 
intersection points of the inversion curves with the family 
of curves motivated by Equation (14). 
This implies that Equation (12b) can be encountered as a 
single – valued polynomial equation of second order with 

roots 21,rr such that 
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In addition, by considering the pressure P  as a 
parameter, the third degree polynomial on the left 
member of Equation (12a) substantially reduces to a 
single – valued continuous real function in the form, 
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Also, 
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In the sequel, let us assume without violating the 
generality   of   our   mathematical    formalism,   that   the  



 
 
 
 

polynomial function )(Vf  has three distinct real roots. 

Then, as it is known from single – valued Calculus 
(Nikolsky, 1977) the following statement holds 
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Since the root 3r vanishes, Equation (16) yields 
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At this point, one may observe that since 21 rr   the 

following inequality emerges 
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Here, we should denote the above inequality concerns 
the algebraic rates of all the involved quantities, since the 

term )( 21 rr  is not a dimensionless quantity.  

In this context, one may also infer that the algebraic rates 

of the terms 
P

a
and 3

2


Pb

a
agree in sign. Moreover,  

after a combination of (18) with (3a), (3b) and (3a), (3c) 
respectively      the      next      four      inequalities     read 
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Besides, as we have already mentioned, the pressure for 
one mole of a van der Waals gas is given as 
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Hence, (18) with the aid of (20) results in the following 
inequality    
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In continuing, (21) can be combined with (3a,b) and 
(3a,c) respectively to yield  the following two inequalities   
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Here, one may point out that (22a) and (22b) do not 
concern only the algebraic rates of the involved physical 
quantities since all terms in the left member of (22a) 
agree in dimension, fact that  also happens to those 
appearing in the left member of  (22b). We emphasize 
again that these inequalities concern the intersection 
points of the inversion curves with the family of curves 
motivated by Equation (14). Last but not least, it still  may 
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be observed that inequalities (19a, b, c, d) and (22a, b) 
constitute a restriction for the circumstantial rates of the 

pressure P  even if this independent variable has been 
considered as a parameter.  
 
 
DISCUSSION 
 
The application of inequalities (19a, b, c, d) and (22a, b) 

to P – V  – T  thermodynamical systems, premises that 

the localization of the isothermal spinodal lines, where 

obviously the pressure P  is considered as a parameter, 
has been made beforehand. Also, the fact that 
inequalities (22a, b) hold exclusively on a lattice created 
by the intersection between the isothermal spinodal lines 
and the family of inversion curves, indeed constitutes a 
constraint.  Moreover, to derive inequalities (22a, b) we 
have a priori supposed that the third degree polynomial 
function, which arises from Equation (12a) after the 

consideration of P  as a parameter, has three distinct 
real roots. This hypothesis implies automatically that the 
single – valued quadratic function which appears in the 
left member of Equation (14), has two distinct real roots 
and therefore its discriminant should be strictly positive, 

that is, 0124 22  Paba  or equivalently
22 3Paba  . 

The latter inequality, in combination with the group of 
Equations (3a, b, c) which concern any van der Waals 

gas, finally yields: 9
0


P

P
. Actually, the above inequality 

is a necessary condition which should be satisfied 
indispensably, even if the pressure has been considered 
here as a parameter. Thus, a shortcoming of inequalities 
(22a, b) is that the range of their validity depends on the 

maximum value of the ratio

0P

P
. 

 
 
CONCLUSIONS 
 
In this work, the author obtained some additional 
qualitative information about the locus of Joule – 
Thomson inversion curves for the van der Waals real 
gas, with the concurrent consideration of the spinodal 
curve condition. 

The goal of this investigation was not a contribution to 
the prediction of Joule – Thomson inversion curves but 
the obtaining of inequality relations amongst the variables 

T , V  and the parameters which appear in van der 

Waals Eos.  In this context, we concentrated our study on 
the intersection points between the set of the inversion 
curves and the isothermal spinodal lines which were both  

drawn in the same P  – V Cartesian frame of reference. 

Thereupon, the pressure P  was considered as a 
parameter   and   in  the   sequel   by   means   of    some  

 
 
 
 
fundamental statements of single – valued Calculus a 
group of inequalities was derived the validity of which 
concerns any grid being motivated by the possible 
inversion curves. Apparently, these aforementioned 
inequalities may hold whenever the nature of the original 
thermodynamical problem that we investigate enables us 
to assume this variable as a parameter or alternatively to 
consider it as a sequence of distinct rates. 
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