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A variety of exact solutions for the Kadomtsov-Petviashvili- Benjamin-Bona-Mahony (KP-BBM) 
equation, nonlinear Zakharov-Kuznetsov- Benjamin-Bona-Mahony (ZK-BBM) equation and the 
generalized ZK-BBM equation are developed by means of the extended Jacobi elliptic function 
expansion method. Soliton and triangular periodic solutions can be established as the limits of Jacobi 
doubly periodic wave solutions. 
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INTRODUCTION  
 
The Benjamin-Bona-Mahony equation (BBME) was first 
introduced by Benjamin et al. (1972) as an improvement 
of the Korteweg-de Vries equation (KdV) for modeling 
long waves of small amplitude in 1+1 dimensions. They 
show the stability and uniqueness of solutions to the 
BBME equation. We study in this paper three versions of 
the BBME, they are the nonlinear dispersive Kadomtsov-
Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation 
(Song et al., 2010; Wazwaz, 2005a, 2008a; Abdou, 
2008a), nonlinear Zakharov-Kuznetsov–Benjamin-Bona-
Mahony (ZK-BBM) equation and the generalized ZK-BBM 
equation (Wazwaz, 2005b; Abdou, 2007; Mahmoudi et 
al., 2008; Song and Yang, 2010; Wazwaz and Helal, 
2005). 
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Nonlinear problems are of interest to engineers, 
physicists and mathematicians because most physical 
systems are inherently nonlinear in nature. Nonlinear 
partial differential equations (NPDEs) are difficult to solve 
and give rise to interesting phenomena such as chaos. 
The exact solutions of these NPDEs plays an important 
role in the study of nonlinear phenomena. In the past 
decades, many methods were developed for finding 
exact solutions of NPDEs such as Hirota's bilinear 
method (Wazwaz, 2008b), new similarity transformation 
method (Beavers and Denman, 1974), homogeneous 
balance method (Wang et al., 1996; Zhang, 2003), sine-
cosine method (Wazwaz, 2006a; Tang et al., 2009), tanh 
function methods (Khater et al. 2010 Malfliet and 
Hereman, 1996; Wazwaz, 2006b), Riccati equations 
expansion method (Gepreel and Shehata, 2012; Liu et 
al., 2001), Exp-Function Method (Bhrawy et al., 2012; 
Mohyud-Din et al., 2010), Jacobi and Weierstrass elliptic 
function method (Liu et al., 2001; Zhao et al., 2006a b; 
Wen and Lü, 2009; Zhang and Xia,  2011)...etc. 

In this paper, we extend the extended JEF method with 
symbolic computation to such special equations for 
constructing their interesting Jacobi doubly periodic wave 
solutions. It is shown that soliton solutions and triangular 
periodic solutions can be established as the limits of 
Jacobi doubly periodic wave solutions. In addition the 
algorithm  that   is   used   here   is  also  a  computerized 
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method, in which an algebraic system is generated. Two 
key procedures and laborious to do by hand, but they can 
be implemented on a computer with the help of 
mathematica. The outputs of solving the algebraic system 
from a computer comprise a list of constants. In general if 
any of the parameters is left unspecified. We only 
consider the expansion in terms of the Jacobi functions 

sn  and cn . Further studies show that different 

Jacobi function expansions may lead to new periodic 
wave solutions. 
 
 
MATERIALS AND METHODS 

 
Extended Jacobi elliptic function method 

 
Here, we introduce a simple description of the extended JEF 
method, for a given partial differential equation  
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 We like to know whether travelling waves (or stationary waves) are 
solutions of Equation (4). The first step is to unite the independent 
variables x, y and t into one particular variable through the new 
variable.  
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where  is the wave speed, reduce Equation (4) to an ordinary 

differential equation (ODE)  
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Our main goal is to find exact or at least approximate solutions, if 
possible, for this ODE. For this purpose, using the extended Jacobi 

elliptic function expansion method, )(U  can be expressed as a 

finite series of JEF, sn ,  
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The parameter N is determined by balancing the linear term(s) of 
highest order with the nonlinear one(s). And  
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where cn  and dn  are the Jacobi elliptic cosine function 

and the JEF of the third kind, respectively, with the modulus m   
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Normally N is a positive integer, so that an analytic solution in 
closed form may be obtained. Substituting Equations (6) to (10) into 
Equation (5) and comparing the coefficients of each power of

sn  in both sides, to get an over-determined system of 

nonlinear algebraic equations with respect to ,  ia  and ia , 

Ni ,1,=  . Solving the over-determined system of 

nonlinear algebraic equations by use of Mathematica. We can get 
other kinds of Jacobi doubly periodic wave solutions. 

When m 1, the Jacobi functions degenerate to the hyperbolic 

functions, 
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When 0m , the Jacobi functions degenerate to the 

triangular functions, 
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RESULTS  
 
Kadomtsov-Petviashvili-Benjamin-Bona-Mahony 
equation 
 
We first consider the KP-BBME in the following form:  
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 If we use the transformations  
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 It carries Equation (11) to the ODE.  
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 Where by integrating twice we obtain, upon setting the 
constant of integration to zero,  
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 Balancing the term 
'U  with the term 

2U  we obtain 

2=N  then  
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Substituting Equation (15) into (14) and comparing the 

coefficients of each power of )(sn  in both sides, 

getting an over-determined system of nonlinear algebraic 
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equations with respect to , ia ; 0=i , 1 , 1, 2 , 2 . 

Solving the over-determined system of nonlinear 
algebraic equations using Mathematica, we obtain three 
groups of constants:  
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We find the following solutions of the ordinary differential  
 

Equation (14) 
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 Then the solutions of the KP-BBME (11) are:  
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The modulus of solitary wave solution 1u  (Equation 22) 

and 2u  (Equation 23) are displayed in Figures 1 and 2 

respectively, with values of parameters listed in their 
captions.  
 
 
Zakharov-Kuznetsov-Benjamin-Bona-Mahony 
equation 
  
We consider the ZK-BBME in the following form:  
 

             (25) 
 
 If we use the transformations  
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 It carries Equation (25) to the ODE  
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Where by integrating once we obtain, upon setting the 
constant of integration to zero,  
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 Balancing the term 
'U  with the term 

2U  we obtain 
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 Proceeding as in the previous case we obtain 
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We find the following solutions of Equation (28) 
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Then the solutions of the ZK-BBME (25) are: 
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Figure 1. The modulus of solitary wave solution 
1u  (Equation 22) where .0.5==== akm  

 
 
 

 
 

Figure 2. The modulus of solitary wave solution 2u  (Equation 23) where .0.5==== akm   
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Generalized Zakharov-Kuznetsov–Benjamin-Bona- 
Mahony equation  
  
We consider the GZK-BBME in the following form: 
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 If we use the transformations  

 
  

Figure 1. The modulus of solitary wave solution 1u  (Equation 22) where .0.5==== akm  

 
  

Figure 2. The modulus of solitary wave solution 2u  (Eq. 23) where .0.5==== akm   
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 It carries Equation (39) to the ODE  
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Where by integrating once we obtain, upon setting the 
constant of integration to zero,  
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Proceeding as in the previous case we obtain   
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We find the following solutions of Equation (42) 
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Then the solutions of the GZK-BBME (39) are:  
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DISCUSSION 
  
The investigation of exact solutions is the key of 
understanding the nonlinear physical phenomena. It is 
known that many physical phenomena are often 
described by NLPDEs.  Many methods for obtaining 
exact travelling solitary wave solutions to NLPDEs have 
been proposed. By introducing appropriate 
transformations and using extended Jacobi elliptic 
function expansion method, we have been able to obtain 
in a unified way with the aid of symbolic computation 
system-mathematica, a series of solutions including 
single and the combined Jacobi elliptic function. 
Moreover, it is shown that soliton solutions and triangular 
periodic solutions can be established as the limits of 

Jacobi doubly periodic wave solutions.  For 1m , the 

above solutions are obtianed using the hyperbolic and 

extended hyperbolic functions method. Where 0m , 

these solutions are equivalent to these obtianed using the 
triangular and etended triangular functions method.  
 
 
Conclusion 
 
We extend the extended JEF method with symbolic 
computation to three equations for constructing their 
interesting Jacobi doubly periodic wave solutions. It is 
shown that soliton solutions and triangular periodic 
solutions can be established as the limits of Jacobi 
doubly periodic wave solutions. When m 1, the Jacobi 

functions degenerate to the hyperbolic functions and 
given the solutions by the extended hyperbolic functions 

methods. When 0m , the Jacobi functions degenerate 

to the triangular functions and the solutions given by 
extended triangular functions methods. Moreover, we can 

find a several solutions by replacing sn   in the 

expansion (6) with other kinds of Jacobi functions and 
repeating the same process as before. 
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