
Scientific Research and Essays Vol. 7 (10), pp. 1103-1112, 16 March, 2012 
Available online at http://www.academicjournals.org/SRE 
DOI: 10.5897/SRE11.1792 
ISSN 1992-2248 ©2012 Academic Journals 
 
 
 
 

Review 

 

A Bayesian networks-based security risk analysis 
model for information systems integrating the observed 

cases with expert experience 
 

Nan Feng and Jing Xie* 
 

College of Management and Economics, Tianjin University, 300072 Tianjin, China. 
 

Accepted 2 December, 2011 
 

In the process of security risk analysis for information systems, establishing an appropriate model 
suitable for the target security risk problem is a crucial task that will ultimately influence the 
effectiveness of risk analysis results. For inducing a representative model for observed information 
systems, a security risk analysis model is proposed based on the knowledge from observed cases and 
domain experts. In this model, a Bayesian network (BN) is developed by integrating the database of 
observed cases with domain expert experience and knowledge. Based on the BN, the model facilitates 
the visibility and repeatability of the decision-making process of security risk analysis. Finally, the 
model is further demonstrated and validated via a case study. 
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INTRODUCTION 
 
Nowadays, security risk management is of vital 
importance for an enterprise to keep its information 
systems secure at an acceptable level, the key issues 
focus on both how to reduce the probability of risk 
occurrence and decrease the loss of risk consequence. 
The main tasks for the implementation of such 
requirements involve the determination of the causes of 
security risk, the estimation of risk occurrence probability, 
and the evaluation of risk consequence severity, which 
are all included in the security risk analysis. 
Nevertheless, the security risk analysis for information 
systems is a very critical challenge due to technical 
difficulties as well as, changes of environment. 

In the process of security risk analysis for information 
systems, models are built in order to analyze and better 
understand the security risk factors and their causal 
relationships in real-world information systems. 
Establishing an appropriate model suitable for the target 
security risk problem is a crucial task that will ultimately 
influence the effectiveness of risk analysis  results.  In  the 
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existing literature, all the approaches either assumed that 
the structure of the model was provided by domain expert 
experience and knowledge, or assumed that the structure 
was chosen from some general well-known class of 
model structures, thus, the results of security risk analysis 
were relatively subjective (Cavusoglu et al., 2009). 

To overcome these drawbacks, not only expert have 
the experience and knowledge that needs to be taken 
into account, but also, the database of observed cases 
from information systems should be utilized in the 
process of modeling.  

Therefore, how to fuse the database of observed cases 
with domain expert experience and knowledge for 
inducing a representative model for observed information 
systems is a critical issue in security risk analysis. In this 
paper, we propose a security risk analysis model based 
on the knowledge from observed cases and domain 
experts. In this model, through structure learning and 
parameter learning, a Bayesian network (BN) is 
developed to simultaneously define the risk factors and 
their causal relationships. The effectiveness and 
accuracy of the model are demonstrated through a case 
study, which indicates that the model is able to improve 
the accuracy and efficiency of security risk analysis for 
information systems. 
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Figure 1. BN example. 

 
 
 
LITERATURE REVIEW 
 

Related work 
 

In recent years, the security risk analysis for information 
systems has attracted much attention of researchers in 
the field of security risk management (Peltier, 2007; 
Karabacak and Sogukpinar, 2005). As information 
systems have become more complex in an organization, 
neither quantitative nor qualitative approaches can 
properly model the assessment process alone. Therefore, 
the comprehensive approaches combining both the 
quantitative and the qualitative approaches are needed 
(Alter and Sherer, 2004; Salmela, 2008). The approach 
based on the fuzzy comprehensive evaluation (FCE) 
(Yang et al., 2008; Ding and Chou, 2011) is a 
mathematical method to comprehensively evaluate the 
ISS risks by using fuzzy set theory of fuzzy mathematics. 
Although, this approach is good at processing the 
ambiguous information by simulating the characteristic of 
humans in making the judgment not capable to provide 
the graphical relationships among various ISS risk factors 
using flow charts or diagrams. Afterwards, Sun et al. 
(2006) proposed an evidential reasoning approach under 
the Dempster–Shafer theory for the risk analysis of 
information systems security. This approach provided a 
rigorous, structured manner to incorporate relevant 
security risk factors, related countermeasures, and their 
interrelationships when estimating security risk in 
information systems. In addition, sensitivity analyses 

were performed to evaluate the impact of important 
parameters on the model’s results in this approach. Fan 
and Yu (2004) developed a Bayesian belief networks 
based procedure to provide an objective and visible 
support for risk analysis. This approach facilitated the 
visibility and repeatability of the decision-making process 
of risk management. 
 
 

Bayesian networks 

 
According to Jensen (2001), a BN N = (X, G, P) consists 
of: 
1) A Directed Acyclic Graph (DAG) G = (V, E) with nodes 
V = {v1, , vn} and directed links E. 
2) A set of discrete random variables, X, represented by 
the nodes of G. 
3) A set of conditional probability distributions, P, 
containing one distribution, P (Xv |Xparents(v)), for each 
random variable Xv  X. 

 
To solve a BN N = (X, G, P) is to compute all posterior 

marginal probabilities given a set of evidence , that 

is; )|(XP  for all X ∈ X. If the evidence set is empty, that 

is; , then the task is to compute all prior marginal 

probabilities, that is; P(X) for all X ∈ X. Figure 1 is a 

simple example, where Exchange of information (EI) is 
influenced by Communication secrecy (CS) and 
Communication integrity (CI). The Conditional Probability 
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Table 1. CPT of P (EI|CS, CI). 
 

CS CI EI = secure EI = insecure 

Effective Effective 1.0000 0 

Average Effective 0.8652 0.1348 

Ineffective Effective 0.3943 0.6057 

Effective Average 0.8199 0.1801 

Average Average 0.5581 0.4419 

Ineffective Average 0.1856 0.8144 

Effective Ineffective 0.3359 0.6641 

Average Ineffective 0.1092 0.8908 

Ineffective Ineffective 0 1.0000 

 
 
 
Table (CPT) for Exchange of information is shown in 
Table 1. 

In general, a BN models the constructor’s belief. Based 
on this belief, it provides mathematical calculation and 
prediction. BNs have been widely applied in the field of 
medical diagnostics, classification systems, and software 
agents for personal assistants, multi-sensor fusion, and 
legal analysis of trials (Kjaerulff and Madsen, 2008). 
 
 
SECURITY RISK ANALYSIS MODEL 
 

The procedure of the proposed security risk analysis 
model is defined through three phases (Figure 2), which 
are the BN development, BN probabilistic inference, and 
security risk monitoring. In Figure 2, Database1 (DB1) 
contains the basic information about the BN nodes. 
Database2 (DB2) stores the case data of the BN nodes, 
and Database3 (DB3) has current observation data. 
 
 
BN Development 
 
It is assumed that some underlying process in the 
security risk management has generated a database of 
observed cases as well as domain expert experience and 
knowledge. The task of BN development is to fuse these 
information sources in order to induce a representative 
model of the underlying process. If the underlying 
process follows a probability distribution P0, the goal of 
BN initialization is to identify a model representation of P0. 
The probability distribution P0 is assumed to be a DAG-
faithful probability distribution with underlying DAG G0. 
That is, we assume that the distribution P0 can be 
represented as a BN. 

The faithfulness assumption says that the distribution P 
induced by N = (X, G, P) satisfies no independence 
relations beyond those implied by the structure of G. A 
Bayesian network is faithful if and only if for every 
diverging connection there is a corresponding conditional 
dependence. The underlying probability distribution P0 is 
assumed to be DAG-faithful with DAG G0. 

The database of cases generated by the underlying 
and unknown process is denoted D = {c

1
, . . . , c

N
} where 

N is the number of cases in the database. We assume D 
consists of independent and identically distributed data 
cases drawn at random from the probability distribution 
P0, that is, we assume cases are drawn at random and 
independently from the same probability distribution P0. 
Each case i

n

ii xxc ,,1   in D specifies an assignment 

of a value i

jx  to each variable Xj ∈ X.  

We consider learning a BN as the task of identifying a 
DAG structure G and a set of conditional probability 
distributions P with parameters  on the basis of D = {c

1
, 

. . . , c
N
} and possibly some domain expert background 

knowledge. 
Greedy hill climbing (GHC) is one of the most 

competitive algorithms in terms of structural quality and 
runtime performance (Tsamardinos et al., 2006). In the 
implementation of GHC (Figure 3), it is conducted with a 
tabu list using the parameters of the original authors: the 
algorithm keeps a list of the last 100 structures and 
allows only changes that lead to a structure not contained 
in the list. 

Based on the BN’s structure, the set of conditional 
probability distributions of the BN can be defined. The 
parameters of this set of distributions may be set 
manually, but more often the parameters of the 
distributions will be estimated from the same database of 
cases as used by the structure learning algorithms. 

In this study, we utilize the EM algorithm to realize the 
BN parameter learning, because it has been proven that 
it is an efficient approach for dealing with incomplete 
information when building statistical models (Little and 
Rubin, 1987). The EM algorithm is an iterative procedure 
to compute the Maximum Likelihood (ML) estimate in the 
presence of missing or hidden data. In ML estimation, we 
wish to estimate the model parameter(s) for which the 
observed data are the most likely. Each iteration of the 
EM algorithm consists of two processes: The E-step, and 
the M-step. In the expectation, or E-step, the missing 
data are estimated, given the observed data and current 
estimate of the model parameters. This is achieved using 
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Figure 2 The procedure of security risk analysis mode 

Security risk factors and their 
causal relationships 

Occurrence probabilities 
of security risks 

Sources of security risks 

Phase1 BN development 

Phase2 BN probabilistic 
inference 

Phase3 Security risk monitoring 

DB1 
Node pool 

DB2 

Historical database 

DB3 

Real time database 

Security risk treatment 
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Figure 3 The procedure of security risk analysis mode 

Algorithm GHC: 

Input: Set of all/candidate edges 

Output: Bayesian network 

1. Gtotal = empty graph; 

2. G = empty graph; 

3. TL : tabu list (FIFO) with last 100 structures; 

4. repeat 

5.     choose best action for G with resulting graph not 

in TL (possible actions: add, remove, revert); 

6.     apply best action to G; 

7.     add G to TL; 

8.     S: score G - score Gtotal; 

9.     if ( S>0) then 

10.        Gtotal = copy of G; 

11. until Gtotal has not changed last 20 times; 

12. return Bayesian network with structure Gtotal 

 
 
Figure 3. The procedure of security risk analysis mode. 



 
 
 
 
the conditional expectation, explaining the choice of 
terminology. In the M-step, the likelihood function is 
maximized under the assumption that the missing data 
are known. The EM algorithm is discussed as shown: let 
X be random vector which results from a parameterized 
family. We wish to find  such that P (X| ) is a 

maximum. This is known as the Maximum Likelihood (ML) 
estimate for . In order to estimate , it is typical to 

introduce the log likelihood function defined as:
 

 

ln |L P X .                                                          (1) 

 
The EM algorithm is an iterative procedure for 
maximizing L ( ). Assume that after the nth iteration the 

current estimate for  is given by n . Since the objective 

is to maximize L ( ), we wish to compute an updated 

estimate  such that: 

 

nL L                                                                    (2) 

ln | ln |n nL L P X P X .                          (3) 

 
Considering the unobserved or missing variables, the 
Equation (4) can be rewritten as: 
 

ln | , | ln | ,n n

z

L L P X z P z P X       (4) 

 
Where, z is the hidden variables. According to McLachlan 
and Krishnan (1996), we have: 
 

|n nL L .                                                  (5) 

 
For convenience, we define 
 

| |n n nl L ,                                             (6) 

 

So that the relationship between L ( ) and | nl  can 

be made explicit as | nL l . 

In addition, we can also have: 
 

| |

| , |
| , ln

| , |

| ,
| , ln

| ,

| , ln1

n n n n n

n n

n n

z n n

n

n n

z n

n n

z

n

l L

P X z P z
L P z X

P z X P X

P X z
L P z X

P X z

L P z X

L

 (7) 
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So, for n   | nl and L ( ) are equal. Therefore, 

any  which increases | nl  will also increase L ( ). 

In order to achieve the greatest possible increase in the 
value of L ( ),  the  EM  algorithm  calls  for  selecting    

such that | nl  is maximized. We denote this updated 

value as 1n . 

Formally, we have: 
 

1

| ,

arg max |

arg max ln , |
n

n n

z X

l

E P X z
.                            (8) 

 
The EM algorithm can thus be conveniently summarized 
as: 
 
1. E-step: Determine the conditional 

expectation | , ln , |
nz XE P X z . 

2. M-step: Maximize this expression with respect to . 
 
 

BN Probabilistic Inference 
 
Whenever the new evidence is available in this phase, it 
should be plugged in the BN to update previous 
estimates by probabilistic inference. In BNs, probabilistic 
inference can be defined as the task of computing all 
posterior marginals of non-evidence variables given the 
evidence. 

In this phase, we develop an inference engine based 
on junction tree (also known as a join tree or a Markov 
tree) (Jordan, 1999) to compute the posterior marginal P 
(X | ε) of a variable X approximately, given the evidence 
ε. A junction tree representation T of a Bayesian network 
N = (X, G, P) is a pair T = (C, S) where C is the set of 
cliques and S is the set of separators. The clique set C 
indicates the nodes of T, whereas the separators S 
annotate the links of the tree. Each clique C ø C 
represents a maximal complete subset of pair wise 
connected  variables  of  X  that  is;  C  X.  Once  the 

junction tree T = (C, S) has been constructed, a 
probability potential is associated with each clique C ø C 
and each separator S ø S between two adjacent cliques 
Ci and Cj where S = Ci ∩Cj. The inference engine is 
performed using a message passing algorithm on the 
junction tree (Kjaerulff and Madsen, 2008). Its process 
involves the following steps: 
 
(1) Each item of evidence must be incorporated into the 
junction tree potentials. For each item of evidence, some 
potential containing the variable in target problem is 
modified to reflect the evidence. 
(2) A clique of the junction tree is selected. This clique is 
referred to as the root of the inference. 
(3) Then messages are passed towards the selected root.  
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Figure 4 The procedure of security risk monitoring 
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Figure 4. The procedure of security risk monitoring. 

 
 
 
The messages are passed through the separators of the 
junction tree (that is along the links of the tree). These 
messages cause the potentials of the receiving cliques 
and separators to be updated. 
(4) The messages are passed in the other direction (that 
is, from the root towards the leaves of the junction tree). 
(5) At this point, the junction tree is said to be in 
equilibrium: The probability P (X | ε) can be computed 
from any clique or separator containing X. The result will 
be independent of the chosen clique or separator. 
 
Prior to the initial round of message passing, for each 

variable Xv ∈ X we assign the conditional probability 

distribution P(Xv | Xpa(v)) to a clique C such that Xpa(v)  

C. Once all conditional probability distributions have been 
assigned to cliques; the distributions assigned to each 
clique are combined to form the initial clique potential. 
 
 
Security risk monitoring 
 
We categorize the BN nodes into two groups: Risk-Factor 
Nodes (RFN) and Risk Nodes (RN). Risk probability 
threshold for every risk node can be assigned by expert 
knowledge. In this phase, whenever new evidences are 
obtained, they are plugged into the BN to update 
estimates. A chronological record of such inputs and 
estimates are kept as a security risk profile saved in the 
security risk database. In other words, a risk profile can 
be viewed as historical snapshots of these BN’s images. 

In the process of security risk monitoring, if the average 
probability of the previous N time units of the profile 
records for RNi exceeds the threshold for it, that is; 

)())(( iNi RNthresholdRNPAVG , the sources of RNi 

will be traced. Since a BN’s structure can visually model 
cause consequence relations, the observed RNi can be 
traced to its ancestors interactively with the user to 
identify the sources of the security risk. The procedure of 
security risk monitoring is given in Figure 4.  After the 
security risk treatment, new evidences are plugged into 
the BN to update previous estimates. Therefore, BN 
calculation can also be used to predict the effectiveness 
of risk treatment decisions. 
 

 

CASE ANALYSIS 
 
Here, the proposed model is applied to a real company’s 
information systems, which has been in service for six 
years to manage its security risks.  

The details of the case study are discussed next. Six 
domain experts, two of whom are also security managers 
of the Company were interviewed to select the security 
risk related variables, that is, the nodes in BN which are 
verified to significantly affect the security risk of 
information systems based on their experience. The 
information of risk nodes and risk factor nodes is 
described in Table 2. 

Based on the application architecture of the proposed 
security risk analysis model, the BN structure was
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Table 2. Information of nodes in the BN. 
 

Risk node State space Risk factor node State space 

Physical and environment  

security risk 
High; medium; low 

Physical entry controls 
High level; average; need to be 
improved 

Secure areas Secure; average; insecure 

Cabling security level High; medium; low 

Equipment maintenance Regular; irregular 

Equipment security level High; medium; low 

    

 High; medium; low 

Network connection control Effective; average; ineffective 

Network routing control Effective; average; ineffective 

Network access control Effective; average; ineffective 

Network intrusion protection Effective; average; ineffective 

Network security audit Comprehensive; incomprehensive 

    

Termination security risk High; medium; low 

Termination access control Effective; average; ineffective 

Termination security audit Comprehensive; incomprehensive 

Termination intrusion protection Effective; average; ineffective 

    

Operation security risk High; medium; low 

Documented operating procedures Good; not good; bad 

Change management Effective; average; ineffective 

Segregation of duties Clear; unclear 

Operational procedures and 
responsibilities 

Very standard; standard; non-
standard 

Exchange of information Secure; average; insecure 

 
 
 
developed. In the BN structure learning, we tested 
different number of iterations and found that the 
performance of GHC did not improve significantly with the 
number of iterations larger than 150. Thus, the maximum 
number of iterations was set to 150. Taking the network 
security risk for example, the BN structure of network 
security risk is shown in Figure 5. 

Based  on  the  BN  structure,  we  adopted  the  EM  
algorithm to perform the BN parameter learning. Then, 
we verified the validity of the BN parameter learning from 
two aspects of the algorithm calculation accuracy and the 
algorithm convergence. KL distance (Kullback et al., 
1987), a natural distance function from a "true" probability 
distribution to a "target" probability distribution, is used to 
test the calculation accuracy of the EM algorithm. Take 
note of network access control as an example. Figure 6 
illustrates the KL distance of the node’s parameter 
learning. 

In Figure 6, we observe that the KL distance is 
narrower when the sample number increases. Therefore, 
it proves that the result of parameter learning is precise. 

For the algorithm convergence, the reaching 
relationship between the cycle number and the likelihood 
function is applied to analyze the convergence of the 
algorithm.  

As presented in Figure 7, the maximum likelihood 
function is assumably estimated through 75 cycles in the 

algorithm, which indicates that the convergence of the 
algorithm is good. The new evidence was obtained from 
real time database, which gives updated information 
about each observable node in the BN as inference 
evidence. Based on the principle presented in the phase 
of BN probabilistic Inference, we compute the posterior 
probability of the nodes in the BN based on the evidence. 

For the risk nodes in the BN, the probabilities of risk 
occurrence and the severities of risk consequence 
estimated by security risk assessment are shown in 
Table 3. In Table 3, the severity of each security risk 
consequence was investigated based on its influence to 
the customer, economy and internal environment, such 
as the duration of service interruption, economic loss, 
interference with users’ work, and the cost of service 
recovery. Expert rating method and statistic analysis are 
adopted to determine the security risk consequences in 
information systems. From Table 3, we observed that the 
probability  of  network  security  risk  is  higher  than  the 
threshold 0.4 set by experts in advance. Based on the 
phase of security risk monitoring, the potential source of 
this problem was traced to be the nodes of network 
routing control and network connection control. And then, 
security risk treatment was performed to reduce the 
security risk level. After above activities, we performed 
the BN probabilistic inference again, and found that all 
the occurrence probabilities of the risk nodes in the BN 
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Figure 5. BN structure of network security risk. 
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Figure 6. KL distance of parameter learning. 
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Figure 7. The reaching relationship between the cycle number and the likelihood 

function. 
 
 
 

Table 3. The probabilities of risk occurrence and the severities of risk consequence. 
 

Risk nodes State Probability Severity 

Physical and environment security risk 

High 0.1988 

0.9 Medium 0.5159 

Low 0.2853 

    

Network security risk 

High 0.5816 

0.8 Medium 0.2933 

Low 0.1251 

    

Termination security risk 

High 0.2552 

0.7 Medium 0.4571 

Low 0.2877 

    

Operation security risk 

High 0.3201 

0.8 Medium 0.4798 

Low 0.2001 
 
 
 

were lower than the threshold set by experts in advance. 
It is thus, verified that the model proposed in the study 
was valid on real data. 
 
 
CONCLUSION 
 
In this paper, a security risk analysis model is proposed  

to induce a representative model for observed 
information systems. In the model, a Bayesian network is 
developed by integrating the database of observed cases 
with domain expert experience and knowledge. Based on 
the BN, the model can facilitate the visibility and 
repeatability of the decision-making process of security 
risk analysis. The effectiveness and accuracy of the 
model  are  demonstrated  through  a  case  study,  which  
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indicates that the model is able to improve the accuracy 
and efficiency of security risk analysis for information 
systems. 

Future researches will focus on applying the proposed 
model to other practice situations, and incorporating more 
sophisticated constraints into the model to enhance the 
handling of more complex problems.  
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