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The second law analysis is performed to study the entropy generation rate in a variable viscosity liquid 
flowing steadily through a cylindrical pipe with convective cooling at the pipe surface. The system is 
assumed to exchange heat with the ambient following Newton’s cooling law and the fluid viscosity 
model varies as an inverse linear function of temperature. The analytical expressions for fluid velocity 
and temperature that were derived essentially expedite the expressions for volumetric entropy 
generation of numbers, irreversibility distribution ratio and the Bejan number in the flow field.  
 
Key words: Pipe flow, variable viscosity, convective cooling, irreversibility analysis. 

 
 
INTRODUCTION 
 
Studies related to viscous fluid with temperature 
dependent properties are of great importance in 
industries such as food processing, coating and polymer 
processing (Macosko, 1994; Schlichting, 2000). In 
industrial system, fluid can be subjected to extreme 
conditions such as high temperature, pressure and shear 
rate. External heating such as the ambient temperature 
and high shear rates can lead to a high temperature 
being generated with the fluid. This may have a 
significant effect on the fluid properties. Fluid used in 
industries such as polymer fluids have a viscosity that 
varies rapidly with temperature and may give rise to 
strong feedback effects, which can lead to significant 
changes in the flow structure of the fluid (Makinde, 2008; 
Sahin, 1999; Tasnim and Mahmud, 2002). Due to the 
strong coupling effect between the Navier-Stokes and 
energy equations, viscous heating also plays an 
important role in fluid with strong temperature 
dependence. Elbashbeshy and Bazid (2000) investigated 
the effect of temperature dependent viscosity on heat 
transfer over a moving surface. In their  investigation,  the  
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fluid viscosity model varies as an inverse linear function 
of temperature. Costa and Macedonio (2003) applied the 
temperature dependent viscosity model to study magma 
flows. Makinde (2006) studied the flow of liquid film with 
variable viscosity along an inclined heated plate. The 
effects of temperature dependent fluid viscosity on heat 
transfer and thermal stability of reactive flow in a 
cylindrical pipe with isothermal wall was reported in 
Makinde (2007). 

Moreover, thermodynamic irreversibility in any fluid flow 
process can be quantified through entropy analysis. The 
first law of thermodynamics is simply an expression of the 
conservation of energy principle. The second law of 
thermodynamics states that all real processes are 
irreversible. Entropy generation is a measure of the 
account of irreversibility associated with the real 
processes (Narusawa, 2001). As entropy generation 
takes place, the quality of energy (that is, exergy) 
decreases (Ibanez et al., 2003; Makinde, 2008). In order 
to preserve the quality of energy in a fluid flow process or 
at least to reduce the entropy generation, it is important 
to study the distribution of the entropy generation within 
the fluid volume. The optimal design for any thermal 
system can be achieved by minimizing entropy 
generation  in the systems. Entropy generation in thermal  
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 Figure 1. Schematic diagram of the problem. 
 
 
 

engineering systems destroys available work and thus 
reduces its efficiency.  

The study of entropy generation in conductive and 
convective heat transfer processes had assumed 
considerable importance since the pioneering work of 
Bejan (1995) and his subsequent book on the subject 
(1996). Since then, numerous papers have studied 
entropy generation in heat transfer processes of which 
references (Reddy et al., 2007; Sahin, 1999; Tasnim and 
Mahmud, 2002; Taufiq et al., 2007) are a representative 
sample. Recently, the thermodynamics second law 
characteristics for variable viscosity channel flow with 
convective cooling at the walls were discussed by 
Makinde (2008). It seems to the authors’ knowledge that 
the effect of convective cooling on the entropy generation 
rate in a variable viscosity flow through a cylindrical pipe 
had not been investigated.  

Motivated by the scarcity of such investigations, the 
problem of heat transfer and entropy generation in the 
flow of a variable viscosity fluid through a cylindrical pipe 
with convective cooling was studied.  
 
 
MATHEMATICAL MODEL  
 
The configuration of the problem studied in this paper is 
depicted in Figure 1. The flow is considered to be steady 
in the z -direction through a cylindrical pipe of radius a 
and length L under the action of a constant pressure 
gradient, viscous dissipation, convective cooling at the 
pipe surface. It is assumed that the pipe is long enough 
to neglect both the entrance and exit effects. The fluid is 
incompressible and the temperature dependent viscosity 

( µ ) can be expressed as (Elbashbeshy and Bazid, 2000; 

Tasnim and Mahmud, 2002). 
 

)(1

0

aTTm −+
=

µ
µ ,            (1) 

 

where µ0 is the fluid dynamic viscosity at the ambient 
temperature Ta  
 
Under these conditions,  the  continuity,  momentum  and  
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energy equations governing the problem in 
dimensionless form may be written as (Makinde, 2007; 
Schlichting, 2000)  
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We have employed the following non-dimensional 
quantities in Equations (2) to (6): 
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where ρ is the fluid density, k is the thermal conductivity, 

T is the fluid temperature,  U is the velocity scale, α is 

the viscosity variation parameter, wall temperature, u  is 

the axial velocity, v  is  the normal velocity, cp is the 

specific heat at constant pressure, P  is the pressure, Pr 
is the Prandtl number, Br is the Brinkman number, Bi is 
the Biot number, h is the transfer coefficient, Re is the 

Reynolds number, x  and y are distances measured in 

streamwise and normal direction, respectively.  
Since the pipe is narrow and the aspect ratio 0<ε<<1, 

the lubrication approximation based on an asymptotic 
simplification of the governing Equations (2) to (6) is 
invoked and we obtain, 
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where )1(1 Tαµ += .  

 
The dimensionless corresponding boundary conditions at 
the pipe wall is the usual no slip condition for the fluid 
velocity. The system exchange heat with the ambient, we 
now follow the Newton’s cooling law: 
 

u = 0, BiT
dr

dT
−=             at     r = 1,               (11)        

   
and the regularity of the solution along the pipe centreline 
that is,       
                              

0==
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Solution method 
 
Equations (8) to (10), subject to the boundary conditions 
can be easily combined to give  
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where zPG ∂−∂= /  is the constant axial pressure 

gradient.  
 
Equation (13) with the corresponding boundary 
conditions is solved exactly and we have the solutions for 
fluid velocity and temperature profiles as;  
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Thermal stability criterion 
 
For the temperatures in the flow field to remain finite at 

any given value of α > 0, the denominator of Equation 
(15) should not vanish (Makinde, 2007; Makinde and 
Maserumule, 2008; Squire, 1967). The imposition of this 
restriction leads to the following thermal stability criterion 
 

               (16)

 

 
Equation (16) indicates that the thermal stability of the 
flow system depends not only on the convective cooling 
parameter but also on the viscous heating parameter and 
its pressure gradient as well as the parameter 
characterizing the fluid viscosity variation. 
 
 
Entropy analysis 
 
The general equation for the entropy generation per unit 
volume is given by (Bejan, 1995, 1996; Sahin, 1999; 
Makinde, 2006; Tasnim and Mahmud, 2002): 
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The first term in Equation (17) is the irreversibility due to 
heat transfer and the second term is the entropy 
generation due to viscous dissipation. Equation (17) can 

be easily integrated from  0=r  to ar =  to give the 

total entropy generated in the pipe flow as follows: 
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Using Equations (17) and (18), we express the entropy 
generation number and total entropy generated in 
dimensionless form as, 
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Figure 2. Velocity profile: G = 1; Br = 1; Bi = 1; ______α = 0.1; ooooo α = 2; ++++ α = 4; …….α = 6. 
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In Equation (19), the first term can be assigned as N1 and 
the second term due to viscous dissipation as N2, that is, 
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In order to have an idea whether fluid friction dominates 
over heat transfer irreversibility or vice-versa, Bejan 

(1996) define the irreversibility distribution ratio as Φ = 

N2/N1. Heat transfer dominates for 0 ≤ Φ < 1 and fluid 

friction dominates when Φ > 1. The contribution of both 
heat transfer and fluid friction to entropy generation are 

equal when Φ = 1. In many engineering designs and 
energy optimisation problems, the contribution of heat 
transfer entropy N1 to overall entropy generation rate Ns 
is needed. As an alternative to irreversibility parameter, 
the Bejan number (Be) is define mathematically as  
 

Φ+
==

1

11

Ns

N
Be  .                 (22) 

 
Clearly, the Bejan number ranges from 0 to 1.  Be = 0 is 
the limit where the irreversibility is dominated by fluid 
friction effects and Be = 1 corresponds to the limit where 
the irreversibility due to  heat  transfer  by  virtue  of  finite 

temperature differences dominates. The contribution of 
both heat transfer and fluid friction to entropy generation 
are equal when Be = 1/2. It is important to note that using 
Equations (14) to (15), the explicit expressions for 
Equations (18) to (22) can be easily obtained using any 
computer algebra package like MAPLE or 
MATEMATICA. 
 
 
RESULTS AND DISCUSSION  
 
For the numerical validation of our results, we have 
chosen physically meaningful values of the parameters 
entering into the problem. It is important to note that a 

positive increase in the parameter value of α indicates a 
decrease in the fluid viscosity while the convective 
cooling in the flow system is enhanced by increasing the 
Biot number (Bi). In Figures 2 to 5, the axial velocity 

distributions are reported for increasing values of α, Bi, G 
and Br. Generally a parabolic velocity profile is observed 
with maximum value along the pipe centerline and 
minimum at the wall. The velocity increases with 

increasing values of α, Br and G but decreases with 
increasing values of Bi. Thus, a decrease in the fluid 
viscosity coupled with an increase in the viscous heating 
will enhance the flow velocity, although similar effect is 
observed by increasing the flow pressure gradient. 
However, it is noteworthy that an increase in convective 
cooling slows down the flow process.   

Typical variations of the fluid temperature profiles in the 
normal direction are shown in Figures 6 to 8. Generally, 
the  fluid  temperature  attained  its  peak  value along the  



3734      Sci. Res. Essays 
 
 
 

 
 

Figure 3. Velocity profile: G=1; α = 1; Br = 1; _____Bi = 0.1; oooooBi = 0.2; ++++ Bi = 0.4; 
…….Bi = 0.5. 

 

 

 
 

Figure 4. Velocity profile: Br = 1; α = 1; Bi = 1;  _____G = 1; oooooG = 1.5; ++++G = 2; …….G = 2.5. 
 
 
 

pipe centreline and decreases gradually towards the wall 
due to convective heat exchange with the ambient at the 
wall. However, the fluid temperature increases with 

increasing values of α, Br and decreases with increasing 
values of Biot number Bi.  

In Figures 9 to 11, the entropy generation rates in the 
transverse direction for various parametric values are 
illustrated. It is noteworthy that entropy generation rate is 
at the lowest in the region around the pipe centreline  and 

increases quite rapidly near the wall with maximum value 
at the wall. The zero value of the entropy generation 
along the pipe centreline can be attributed to the axial – 
symmetric nature of the pipe flow with zero velocity and 
temperature gradients along the centreline (Equation 12). 
We observe that a decrease in the fluid viscosity coupled 
with an increase in viscous heating (Br) results into a 
further increase in the entropy generation rate at the wall 
while  an  increase  in Bi due to convective cooling results  
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Figure 5. Velocity profile: G = 1; α = 1; Bi = 1;  _____Br = 1; oooooBr = 2; ++++Br = 3; …….Br = 4. 

 

 

 
 

Figure 6. Temperature profile: G = 1; Br = 1;Bi = 1; ______α = 0.1; ooooo α = 2; ++++ α = 4; …….α = 6. 
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Figure 7. Temperature profile: G=1; α = 1; Br = 1; _____Bi = 0.1; oooooBi = 0.2; ++++ Bi = 0.3; …….Bi = 0.5 

 
 
 

 
 

Figure 8. Temperature profile: G=1; α = 1; Bi = 1; _____Br = 1; oooooBr = 2; ++++ Br = 3; …….Br = 4. 
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Figure 9. Entropy generation rate: G = 1; Br = 1;Bi = 1; ______α = 0.1; ooooo α = 2; ++++ α = 4; …….α = 6. 

 
 
 

 
 

Figure 10. Entropy generation rate: G=1; α = 1; Br = 1; _____Bi = 0.1; oooooBi = 0.2; ++++ Bi = 0.3; …….Bi = 0.5 
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Figure 11. Entropy generation rate: G=1; α = 1; Bi = 1; _____Br = 1; oooooBr = 2; ++++ Br = 3; 
…….Br = 4. 

 
 
 

 
 

Figure 12. Total entropy generation: G = 1; α = 1; ______Bi = 0.1; ooooo Bi = 0.2; 

++++ Bi = 0.3; …….Bi = 0.5. 

 
 
 
into a decrease in entropy generation rate at the wall. 

The total entropy generated within the flow field for 
various parametric values are depicted in Figures 12 to 
14.   It   is   interesting   to   note   that   the  total  entropy 

generation decreases with an increase in convective 
cooling and increases with a decrease in the fluid 
viscosity. Moreover, the total entropy generated within 
the  flow  field  is  also  augmented  by increasing the flow  
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Figure 13. Total entropy generation: G =1; Bi = 1;  ______α = 0.1; ooooo α = 2; ++++ α = 4; …….α = 6. 

 
 
 

 
 

Figure 14. Total entropy generation: α =1; Bi = 1;  ______G = 0.1; ooooo G = 0.2; ++++ G = 0.3; 
…….G = 0.4. 

 
 
 

pressure gradient together with viscous heating. 
In Figures 15 to 17, the Bejan (Be) number is illustrated 

for various parametric values. It is observed that the fluid 
friction irreversibility strongly dominates around the pipe 
centreline region while near  the  wall,  the  effect  of  fluid 

friction irreversibility decreases and the heat transfer 
irreversibility takes over. However, the effect of heat 
transfer irreversibility near the wall further increases with 

increasing values of α and Br but decreases with 
increasing   effect   of   convective   cooling   at   the  pipe  
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Figure 15. Bejan number: G = 1; Br = 1;Bi = 1; ______α = 0.1; ooooo α = 2; ++++ α = 4; …….α = 6. 

 
 
 

 
 

Figure 16. Bejan number: G=1; α = 1; Br = 1; _____Bi = 0.1; oooooBi = 0.2; ++++ Bi = 0.3; …….Bi = 0.5. 
 
 
 

surface. 
 
 
Conclusions 
 
In this paper, the heat transfer and entropy generation 
rate in a temperature dependent viscosity fluid flowing 
steadily in a cylindrical pipe with convective cooling at the 

wall was investigated. The velocity and temperature 
profiles were obtained and used to evaluate the thermal 
stability criterion and the entropy generation number. 
Both the fluid velocity and temperature increases with 
increasing values ofα, G, Br and decreases with 
increasing value of Bi. For all parametric values, the fluid 
friction irreversibility strongly dominates around the pipe 
centreline  while  the  effect  of  heat transfer irreversibility  
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Figure 17. Bejan number: G=1; α = 1; Bi = 1; _____Br = 1; oooooBr = 2; ++++ Br = 3; …….Br = 4. 
 
 
 

increases transversely towards the wall. A decrease in 
the fluid viscosity and an increase in viscous heating will 
enhance total entropy generation in the flow field.  
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