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In this paper a version of the optimal homotopy asymptotic method (OHAM) has been proposed and 
applied to nonlinear oscillators with discontinuities. The main objective was to obtain highly accurate 
analytical solutions for a particular antisymmetric constant force oscillator using this new procedure. 
The proposed procedure proved to be very effective and accurate and did not require linearization or 
small parameters in the equation. It was found that OHAM works very well for whole range of initial 
amplitudes since an excellent agreement of the approximate frequencies and periodic solutions with 
the numerical ones has been demonstrated. 
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INTRODUCTION 
 
In nonlinear science, there appears an ever-increasing 
interest of scientists and engineers in employing 
analytical asymptotic techniques for solving nonlinear 
problems. The most common and widely studied 
methods for determining analytical approximate solutions 
of nonlinear oscillatory systems are the perturbation 
methods. These methods involve the expansion of the 
solution of an oscillation equation in a series of a small 
parameter. They include, among others, the Lindstedt-
Poincare method (Nayfeh and Mook, 1979; Hagedorn 
1988; Mickens, 1996), the Krylov-Bogoliubov-Mitropolski 
method (Bogoliubov and Mitropolsky, 1963), the multi-
time expansion approximate solutions (Nayfeh and Mook, 
1979; Hagedorn, 1988; Mickens, 1996), some iteration 
procedures (Mickens, 1987; Lim and Wu, 2002), the 
harmonic balance method (Nayfeh and Mook, 1979; 
Mickens, 1996) etc. In general, the obtained approximate 
solutions are valid for small values of oscillation 
amplitude. The so-called small parameter assumption 
greatly restricts applications of some perturbation 
techniques and as it is well known, an overwhelming 
majority of nonlinear  problems,  especially  those  having 
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strong nonlinearity, have no small parameters at all. 
There exist some alternative analytical asymptotic 

approaches, such as some piecewise-linearized methods 
(Ramos, 2006), the Adomian decomposition method 
(Abassy, 2010), some modified Lindstedt-Poincare 
methods (He, 2002; Pakdemirli et al., 2009), some 
iterative methods (Oziş and Yildirim, 2009; Marinca and 
Herişanu, 2011), the homotopy analysis method (Liao, 
2003), the homotopy perturbation method (He, 2000). 

In this paper, a version of an analytical approximate 
technique, called optimal homotopy asymptotic method 
(OHAM) is employed to propose an approach to solve 
nonlinear oscillations. Different from some perturbation 
methods, the applicability and validity of the OHAM is 
independent on whether or not there exists a small 
parameter in the considered nonlinear equations. 

In order prove the capabilities of this technique we 
consider the following antisymmetric constant force 
oscillators with discontinuities: 

 
0)u(signu                 (1) 

 
with the initial conditions: 

 
0)0(u   ,   A)0(u                 (2) 
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The function )u(sign is defined as 

 










0u if  1

0u if     1
)u(sign               (3) 

 
There exists no small parameter in the equation and 
therefore the traditional perturbation methods cannot be 
applied directly. For such problems concerning nonlinear 
oscillator with discontinuities, the homotopy perturbation 
method is employed in (Belendez et al., 2008). A 
modified Lindstedt-Poincare method is used in Liu (2005), 
an analytical approximate technique which incorporates 
salient features of both Newton’s method and harmonic 
balance method is applied in Wu et al. (2000), the 
variational iteration method is employed in Rafei et al. 
(2007), the parameter-expansion method is successfully 
used in Zengin et al. (2008). 

The procedure proposed in this paper proves to be very 
effective, simple, and accurate, providing a convenient 
way to optimally control the convergence of approximate 
solutions. Finally, this work demonstrates the general 
validity and great potential of the OHAM. 
 
 
MATERIALS AND METHODS 
 
In what follows we shortly present the basics of the Optimal 
Homotopy Asymptotic Method. We consider a nonlinear ODE of the 
form: 
 

0))t(u,t(f)t(u                 (4) 

 
where the dot denotes the derivative with respect to time and f is in 
general a nonlinear term. Initial conditions are: 
 

0(0)u   ,   A)0(u                    (5) 

 
The Equation (4) describes a system oscillating with an unknown 

period T. We switch to a scalar time tT/t2  . Under the 

transformation: 
 

t                   (6) 

 
the original Equation (4) becomes 

 

0))(u,(f)(u2                  (7) 

 
where the prime denotes the derivative with respect to τ. 

By the homotopy technique we construct a homotopy in a more 
general form: 

 

0)]p,(),p,([N)p,(h

))p,((L)p1())p,(),p,((H




                                     (8) 

 
where L is a linear operator [ω0 is given by Equation (12)] : 

 

















 )p,(

)p,(
))p,((L

2

2
2
0               (9) 

 
 
 
 
while N is a nonlinear operator: 

 

 

)p,(p))p,(,(f)p,(

)p,(
)p,()p,(),p,(N

2

2
2









                             (10) 

 
where p [0,1] is the embedding parameter, h(τ,p) is an auxiliary 

function so that h(τ,0)=0, h(τ,p)  0 for p  0 and λ is an arbitrary 
parameter. From Equation (5) we obtain the initial conditions: 

 

0
p),(

   ,   A)p,0(
0









             (11) 

 
Obviously when p=0 and p=1 it holds: 

 

 ,1)(  ,  ,0)(  ,  )(u)1,(  ,  )(u)0,( 00   (12) 

where u0(τ) is an initial approximation of u(τ). Therefore, as the 

embedding parameter p increases from 0 to 1,  (τ,p) varies from 

the initial approximation u0(τ) to the solution u(τ), so does Ω(λ,p) 
from the initial approximation ω0 to the exact frequency ω. 

Expanding  (τ,p) and Ω(λ,p) in series with respect to the 

parameter p, one has respectively: 

 

.....)(up)(pu)(u)p,( 2
2

10             (13) 

 

......pp)p,( 2
2

10              (14) 

 
If the initial approximation u0(τ) and the auxiliary function h(τ,p) are 
properly chosen so that the above series converges at p=1, one 
has: 

 

....)(u)(u)(u)(u 210                (15) 

 

....210                 (16) 

 
We propose the auxiliary function h(τ,p) of the form: 

 

....)(Cp...CppC)p,(h m
m

2
2

1              (17) 

 
where Ci could be parameters or functions. We emphasize that it is 
very important to properly choose this function because the 
convergence of the solution greatly depends on that. 

The results of the m th-order approximations are given by: 

 

)(u....)(u)(u)(u~ m10                (18) 

 

m10 ....~                (19) 

 
Substituting Equations (13) and (14) into Equation (10) yields: 

 

....),,,u,u,u(Np

),,,u,u(pN),,u(N),(N

102102
2

10101000




             (20) 

 
If we substitute Equations (20) and (17) into Equation (8) and 
equate the coefficients of various powers of p, we obtain the 
following linear equations: 



 

 
 
 
 

0(0)u   ,   A)0(u  ,   0)u(L 00               (21) 

 

1-m1,2,...,i  ,  0)0(u)0(u    

0),,...,,,u,...,u,u(NC

)u(L)u(L

ii

ji10ji10

i

1j

jij

1ii















                      (22) 

 

0)0(u)0(u   

,   0N)(CNC)u(L)L(u

mm

1m

1j

0mjmj1mm



 




              (23) 

 
Note that ω0, ω1,…. ωm can be determined avoiding the presence of 
secular terms in the left-hand sides of Equations (22) and (23). 

The frequency ω depends upon the arbitrary parameter λ and we 
can apply the so-called “principle of minimal sensitivity” (Amore and 
Aranda, 2005) in order to fix the value of λ. We do this imposing 
that: 
 

0
d

d





                                              (24) 

 
We mention that when only one iteration is used, then λ=0. 

At this moment, the m th-order approximation given by Eq.(18) 
depends on C1, C2,…,Cm-1,Cm(τ). These convergence-control 
constants C1, C2, … Cm-1 and those constants that appear in the 
expression of Cm(τ), can be identified via various methods, for 
example: the collocation method, the Galerkin method,  the least 
squares method etc. 

If R(τ,C1,C2,…,Cq) is the residual obtained substituting the m th-
order approximation (18) into Equation (7), that is: 

 

))(u~,(f)(u~~)C,...C,C,(R 2
q21              (25) 

 
and if the functional J is given by the integral: 

 

  d)C,...,C,C,(R)C,...,C,C(J q21

b

a

2
q21             (26) 

 
where a and b are two values from the domain of the Equation (4), 
then the coefficients C1,C2,…,Cq can be determined from the 
following system of equations: 
 

0
C

J
...

C

J

C

J

q21





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







             (27) 

 
where q is the total number of constants. 

Alternatively, another efficient approach to obtain the optimal 
values of the convergence-control constants Cq is given by solving 
the system: 
 

0),(...),(),( 21  iqii CRCRCR             (27’) 

 

where the residual R is given by Equation (25). 
We remark that OHAM contains the auxiliary function h(τ,p), 

which provides us with a simple way to adjust and optimally control 
the convergence of the solutions. Note that instead of an infinite 
series, the  OHAM  searches  for  only  a  few  terms  (mostly  three 
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terms). A similar procedure has been successfully applied by other 
authors to solve different nonlinear problems (Idrees et al., 2010; 
Iqbal et al., 2010; Iqbal and Javed, 2011; Babaelahi et al., 2010). 

The proposed method will be applied in what follows to the 
antisymetric constant force oscillator. In this respect, the nonlinear 
operator (10) corresponding to Equation (1) is given by the equation 

 

)p,(p)p,()p,(sign

)p,()p,())p,(),p,((N 2



 
                 (28) 

 
Equation (21) can be written as: 

 

0)0(u  ,  A)0(u  ,  0)uu( 0000
2
0            (29) 

 
and has the solution 

 
 cosA)(u0                 (30) 

 
In our example, )u(sign)u(f  , where u is given by Equation (15), 

such as: 

 

......)uppu)(u("f
2

1

....)uppu)(u('f)u(f)u(f

2
2

2
10

2
2

100





                     (31) 

 
But 0...)u("f)u('f 00  and therefore we obtain: 

 
)cosA(sign)u(sign)u(sign 0                (32) 

 
The first term in Equation (20) is given by 

 

000
2
0000 u)u(signu),,u(N               (33) 

 
For i=1 into Equation (22) we obtain the equation in u1: 

 

  0)0(u)0(u  ,  0u)u(signuC

)uu()uu(

11000
2
01

00
2
011

2
0




        (34) 

 
Substituting Equation (30) into Equation (34) and using the identity 

 












 ....7cos

7

1
5cos

5

1
3cos

3

1
cos

4
)cosA(sign  (35)  

 
we obtain the following equation: 

 




































...11cos
11

1
9cos

9

1
7cos

7

1
5cos

5

1

3cos
3

14
cosAA

4
C)uu( 2

0111
2
0

 (36) 

 
Avoiding the presence of a secular term needs: 
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



A

42
0                                                        (37) 

 
With this requirement, the solution of Equation (36) becomes: 

 

   

   

  
















...cos11cos
55

1

cos9cos
30

1
cos7cos

14

1

cos5cos
5

1
cos3cos

6

C
)(u

2
0

1
1

  (38) 

 
If we use only one iteration, the first-order approximate solution will 
be 

 

)(u)(u)(u~ 101                                                    (39) 

 
From Equations (30), (37) and (38), the first-order approximate 
solution of Equation (1) becomes 

 

 

   

    












...cos11cos
55

1
cos9cos

30

1

cos7cos
14

1
cos5cos

5

1

cos3cos
6

C
tcosA)(u~

2
0

1
01

   (40) 

 
where ω0 is obtained from Equation (37) for λ=0: 

 

A

42
0


                                                        (41) 

 
For m=2 into Equation (23) and choosing  

 
 cos4Ccos2CC)(C)(C 4322m                  (42) 

 
the equation in u2 has the form: 

 

)u)u(sign

u)(4cosC2cosCC()uu

uu2(C)uu()uu(

00

0
2
043201

1
2
0010111

2
022

2
2







   (43) 

 

where the term 011
2
0010 uuuu2  was obtained from 

Equation (20) and is ),,,u,u(N 10101  . 

Substituting Equations (30), (36) and (38) into Equation (43), the 
equation in u2 becomes: 

 
 
 
 



011cos
14

C

18

C

11

CC4

330

C
121

9cos
10

C

77

C9

9

CC4

180

C
81

7cos
33

C7

45

C7

7

CC4

84

C
49

5cos
18

C

21

C5

5

CC4

30

C
253cos

14

C

10

C

3

CC4

6

C
9cos

15

C

6

C4

55

1

30

1

14

1

5

1
11

6

C

AA2)uu(

4321
2
1

2
0

4321
2
1

2
0

4321
2
1

2
0

4321

2
1

2
0

4321

2
1

2
0

43

2
0

1

1022
2
0
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























































































































































































































































































   (44) 

 
No secular term in u2(τ) requires that: 

 

342
00

1

0
1 C

2

5
C  ,  1

A13860

C989

2



























           (45) 

 
From Equations (19) and (45) we obtain the frequency in the form: 

 




























2
00

1

0
0 1

A13860

C989

2

~
            (46) 

 
where ω0 is given by Equation (37). 

The parameter λ can be determined applying the “principle of 
minimal sensitivity”. From Equation (24) we obtain: 

 

















 2

1155

C1978
4

A

1 1
             (47) 

 
This result is substituted into Equation (46) and (37) and we have: 

 

















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















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1155

C1978
42

A

1
    ,    

1155

C1978
42A3

1155

C1978
428

~ 12
0

1

1

                                                                          (48) 

 
Substituting Equations (30), (36), (38) and (45) into Equation (44) 
and solving Equation (44), we obtain: 
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30

1

121
39600
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)cos9(cos
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9
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1
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14400

C

)cos7(cos
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7
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1

49
4032

C
)cos5(cos
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C95

5

CC

6

1
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720

C

)cos3(cos
140

C39

3
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2

1

9
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C
)(u
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2
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2
0

2
0

2
13

21

2
0

2
0

2
0

2
1

321

2
0

2
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The second order approximate solution is: 

 

)(u)(u)(u)(u~ 2102              (50) 

 
Using Equations (6), (30), (38) and (49), the second order 
approximate solution of Equation (1) becomes: 
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where  ~, and 0 are given by Equations (47) and (48). 

Substituting Equations (40) and (51), respectively, into Equation 
(25) we obtain two corresponding residuals: 
 

)u~(signu~)CC,C,t(R

),u~(signu~)C,t(R

224322

11
*
11








                        (52) 

 
 

RESULTS 
 
Case 1 
 
In the case of the first-order approximate solution (40), for 
A=1, following the proposed procedure we obtain 
 

-1.3553C*
1   

 

and the explicit first-order approximate solution becomes 
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              (54) 

 

For A=10, we obtain 
 

-0.140281C*
1   

 

In this case, the first-order approximate solution will be 
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       (55) 

 
 
Case 2 
 
In the second case, we consider the second-order 
approximate solution (51). 
 
In the case A=1, from Equation (27) we obtain: 
 

 598628474.0C ,351951443.0C ,815614211.0C 321   

 
From Equations (47) and (48) we obtain 
 

41.11071494~  ,  07247211.1  ,  123043117.0 0   
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The second order approximate solution (51) becomes: 
 

t~11cos001398542.0t~9cos008820567.0

t~7cos009978953.0t~5cos00146585.0

t~3cos033468588.0t~cos030088562.1)t(u~2







         (56) 

 
In the case A=10, we obtain: 
 

 774015449.3C  ,  287986428.5C  ,  815614211.0C 321 

 

50.35123890~  ,  339145459.0  ,  0123043117.0 0   

 
In this case, the second order approximate solution 
becomes: 

 

t~11cos00930889.0t~9cos026982622.0

t~7cos103175516.0t~5cos1745208.0

t~3cos401767921.0t~cos30035768.10)t(u~2







        (57) 

 
 
DISCUSSION 

 
In order to emphasize the accuracy and effectiveness of 
the proposed method, a graphical analysis is performed 
in what follows. 

A comparison of OHAM results with numerical 
integration results obtained by using a fourth-order 
Runhe-Kutta method is presented in Figures 1 to 4 for 
both first-order and second-order approximate solutions 
in two cases. 

Figures 1 and 2 show the comparison between the 
present solutions and the numerical integration results for 
the first-order and second-order solutions, respectively, in 
the case A=1. 

Figures 3 and 4 show the comparison between the 
present solutions and the numerical integration results for 
the first-order and second-order solutions, respectively, in 
the case A=10. 

One can be seen from the above figures that the first-
order approximate solutions obtained by OHAM show 
moderate accuracy, but the second-order solutions are 
very accurate, since they are nearly identical with the 
solutions given by the numerical method, which proves 
the effectiveness of the method. Additionally, we remark 
that the exact values of the frequencies are 
ωex=1.110720735 for the case A=1 and 
ωex=0.351240736 in case A=10, which means that very 
good approximations have been found also for these 
frequencies. 

 
 
Conclusions 

 
In this work, a new approach for finding solutions to some 
nonlinear   oscillations   is   proposed.   A  version  of  the 
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Figure 1. Comparison between the first-order approximate solution 
(54) and the numerical solution for A=1. ______ numerical solution; 
_ _ _ _ approximate solution. 
 
 
 

 

Fig.2 

 

 

 

 
 

Figure 2. Comparison between the second-order approximate 
solution (56) and the numerical solution for A=1. ______ numerical 
solution; _ _ _ _ approximate solution. 

 
 
 

 

Fig.3 

 

 

 

 
 

Figure 3. Comparison between the first-order approximate solution 
(55) and the numerical solution for A=10. ______ numerical solution; 
_ _ _ _ approximate solution. 



 

 
 
 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig.4 
 

 
 

Figure 4. Comparison between the second-order approximate 
solution (57) and the numerical solution for A=10. ______ 
numerical solution; _ _ _ _ approximate solution. 

 
 
 
optimal homotopy asymptotic method is employed to 
propose a new analytic approximate solution for some 
nonlinear oscillations with discontinuities. The validity of 
the procedure is illustrated on an antisymetric constant 
force oscillator. Our procedure is valid even if the 
considered nonlinear equation does not contain any small 
or large parameter. The arbitrary parameter λ is 
determined by applying the “principle of minimal 
sensitivity”. The OHAM provides us with a simple way to 
optimally control and adjust the convergence of solutions 
and can give very good approximations in a few terms. 
The convergence of the approximate solution given by 
OHAM is determined by the auxiliary function h(τ,p). The 
error of the approximate solutions rapidly decreases if the 
number of iterations increases. 

This version of the method proves to be very rapid, 
effective and accurate. We proved the accuracy of the 
results by comparing the solution obtained through the 
proposed method with the solution obtained via numerical 
integration using a fourth-order Runge-Kutta method. 
This work shows one step in the attempt to develop a 
new nonlinear analytical technique in the absence of 
small or large parameters. 
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