

Vol. 8(9), pp. 352-358, 4 March, 2013

DOI 10.5897/SRE12.059

ISSN 1992-2248 © 2013 Academic Journals

http://www.academicjournals.org/SRE

Scientific Research and Essays

Full Length Research Paper

Field-Programmable Gate Array (FPGA) Implementation
of Lapped Biorthogonal Transform for JPEG XR

Compression

Muhammad Riaz ur Rehman and Gulistan Raja*

Department of Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan.

Accepted 15 November, 2012

This paper describes the hardware implementation of Lapped Biorthogonal Transform (LBT) on Field-
Programmable Gate Array (FPGA) for JPEG XR Image compression. The implementation is based on
dividing image into 128×128 dimension tiles with each tile processed independently. Two main
operations that is, overlap pre-filtering and forward core transform are applied on each tile. The
proposed design has small memory requirement due to fix 128×128 tile size processing. The hardware
design is tested on Xilinx Virtex-II Pro FPGA. The design utilizes 262,144 memory bits, 5824 number of
slices and maximum speed is 107.308 MHz.

Keywords: Lapped Biorthogonal Transform (LBT), Field-Programmable Gate Array (FPGA), image
compression, implementation.

INTRODUCTION

High quality imaging devices are used in applications like
medical imaging, surveillance and space imaging. These
applications demands high quality images which requires
large storage. Therefore, compression is required to
reduce the size of stored image. JPEG and JPEG 2000
are most commonly used image compression standards
(Queiroz and Fleckenstein, 2000; Liu et al., 2005),
however, both have some drawbacks. JPEG produces
blocking artifacts at low bit rates and JPEG 2000 is
computationally intensive technique. To address the
limitation of currently used image compression standards,
a new image compression technique JPEG eXtended
Range (JPEG XR) is introduced (ITU-T, 2009; Dufaux et
al., 2009). JPEG XR (ITU-T T.832 | ISO/IEC 29199-2)
mainly targets to increase the capabilities of exiting
coding techniques and provides high performance at low

computational cost. JPEG XR uses Lapped Biorthogonal
Transform (LBT) to convert image samples from spatial
domain to frequency domain (Xu et al., 2010; Maalouf
and Larabi, 2009). To use Lapped Biorthogonal transform
in real time embedded environment, its hardware
implementation is needed (Chien et al., 2009).
Application specific hardware for LBT provides excellent
performance. Due to sequential nature of LBT, it requires
large amount of memory in case of pipeline
implementation (Groder and Hsu, 2008; Chien et al.,
2008; Pan et al., 2008). We propose a hardware design
and implementation of LBT on FPGA that requires less
amount of memory. Rest of the paper is organized as
follows: In this paper an overview of LBT is described,
and the proposed architecture of LBT elaborated.
Thereafter the implementation results are discussed and

*Corresponding author. E-mail: gulistan.raja@uettaxila.edu.pk.

Rehman and Raja 353

Figure 1. Areas between block boundaries.

Figure 2. Lapped Biorthogonal Transform stages (Rehman and Raja,
2012).

the paper concluded.

OVERVIEW OF LAPPED BIORTHOGONAL
TRANSFORM (LBT)

The image is divided into tiles and tiles into macro blocks
in JPEG-XR. Each macro block is collection of 16 blocks.
A block is a collection of 16 image pixels. The image size
should be multiple of 16, if not, we extend height or width
of image by replicating the image sample values at
boundaries. Areas of 4×4, 4×2 and 2×4 between image
block boundaries are shown in Figure 1.

Lapped Biorthogonal Transform consists of two key
operations: Overlap Pre Filtering (OPF) and Forward
Core Transform (FCT) as explained below:

Overlap Pre Filtering (OPF)

Its main purpose is to exploit the correlation and
redundancy across block boundaries. It also helps
migrating blocking artifacts in compressed image
especially at low bitrates. This operation is optional in
LBT and can be switched off to reduce computational
complexity at cost of reduce in compressed image
quality.

354 Sci. Res. Essays

Figure 3. Hardware implementation architecture of LBT.

Forward Core Transform (FCT)

This operation is similar to Discrete Cosine Transform
(DCT) which is used in original JPEG compression
standard. It exploits the spatial correlation within blocks,
and also has the same drawbacks of DCT. This operation
is compulsory in LBT processing. The details of
operations in LBT are shown in Figure 2 (Rehman and
Raja, 2012).

1) In stage 1, Overlap pre filter (OPF_4pt) is applied to
2×4 and 4×2 areas between blocks boundaries.
Additional filter (OPF_4×4) is also applied to 4×4 area
between block boundaries.
2) A forward core transform (FCT_4×4) is applied to 4×4
blocks. This will complete stage 1 of LBT.
3) Each block has one DC coefficient. As macro block
contains 16 blocks so we have 16 DC coefficients in one

macro block. Arrange all 16 DC coefficients of macro
blocks in 4x4 DC blocks.
4) In stage 2, Overlap pre filter (OPF_4pt) is applied to
2×4 and 4×2 areas between DC blocks boundaries.
Additional filter (OPF_4×4) is also applied to 4×4 area
between DC block boundaries.
5) Forward core transform (FCT_4×4) is applied to 4×4
DC blocks to complete stage 2 of LBT. This results in one
DC coefficient, 15 low pass coefficients and 240 high
pass coefficients per macro block.

PROPOSED ARCHITECTURE AND IMPLEMENTATION
OF LBT

The proposed architecture of LBT is shown in Figure 3.
The implementation consists of On-Chip Memory (OCM)
for storing tile data, Register banks, two overlap pre

Rehman and Raja 355

Figure 4. OPF 4pt processing block diagram.

filtering blocks and Forward core transform processing
blocks. Minimum input image size is 128×128 and the
image tile of size 128×128 is loaded in OCM. Block RAM
(BRAM) of FPGA is used as OCM. OCM is also used to
store intermediate process data.

Since memory used in design can only read or write at
one time against a particular memory address, register
banks are used that will buffer 16 image samples and

passes these image samples to processing blocks in
parallel. For processing of LBT, image tile data is loaded
into OCM by selecting MUX A. Then overlap pre-filtering
is performed on image tile boundary area of size 4×2 and
2×4. Four image samples are buffered in Register Bank A
by selecting DEMUX A and DEMUX B. These image
samples are processed by OPF 4pt. OPF 4pt block
diagram is shown in Figure 4.

356 Sci. Res. Essays

Figure 5. OPF 4x4 processing block diagram.

OPF 4pt performs a series of mathematical operation
such as addition, subtraction, multiplication and logical
shifting. OPF 4pt is applied on tile boundary areas of size
4×2, 2×4 along vertical and horizontal dimensions of tile.
After OPF 4pt, processed image samples are loaded in
Register Bank B and written back to OCM by selecting
MUX B and MUX E. OPF 4×4 operation is performed on
block boundary areas of size 4×4. For this operation, 16
image samples are loaded in Register Bank A from OCM.
These 16 image samples are processed by OPF 4×4
block. Operational block diagram of OPF 4×4 is shown in
Figure 5.

After OPF 4×4, processed image samples are load in
Register Bank C and written back to OCM by selecting
MUX C, MUX D, MUX E. After operation of OPF 4×4,
FCT is applied on image blocks. This operation results in
one DC coefficient per image block. This completes the
stage 1 of LBT. Similar to OPF 4×4, FCT processed
image samples are written back to OCM. Block diagram
of FCT processing is shown in Figure 6. For stage 2 of
LBT, DC coefficients are arranged in blocks of size 4×4.
Same operations of stage 1 of LBT are applied on these
DC blocks. OPF 4pt is performed on DC block
boundaries of 4×2, 2×4 areas. After that operation OPF
4×4 is applied on DC block boundary area of size 4×4.
Thereafter FCT is applied on 4×4 DC block and stage 2
of LBT is completed. This result in 1 DC coefficient, 15

low pass coefficients and 240 high pass coefficients per
macro block.

SIMULATION RESULTS

In order to implement our design, Xilinx ML310
development board is used which has Xilinx Virtex -II pro
FPGA. It contains 30,816 logic gates, 2,448 kb Block
RAM (BRAM). Functionality of design is verified
according to the specifications described in JPEG XR
(ITU-T T.832 | ISO/IEC 29199-2) standard (ITU-T, 2009).
Functionality of each module of LBT is tested by writing
test benches in ModelSim 6.5. The processing of image
on tile data basis in proposed design reduces the
memory requirements for operation of LBT. As a result,
memory required by our design to store tile of size
128×128 is 262,144 bits. Input image size does not affect
the memory usage because image size greater than
128×128 will be divided into fix size tiles that is, 128×128.
Due to less memory requirement, it is suitable for low
cost embedded applications. The implementation
resource utilization is shown in Table 1. The
implementation utilizes 5824 number of slices, 6381
number of slice flip flops and 9508 number of 4-input
LUTs to map proposed architecture on FPGA. The
number of BRAMs used is 16. Design uses 6695 16 bit

Rehman and Raja 357

Figure 6. FCT processing block diagram.

Table 1. FPGA implementation results.

Technology Xilinx Virtex-II Pro

Number of slices 5824

Number of slice flip flops 6381

Number of 4 input LUTs 9508

OCM 262,144 bits

Number of BRAMs 16

Number of MULT18X18s 4

16 bit Adders/Subtractors 66, 95

Maximum frequency 107.308 MHz

adders/ subtractors. OCM required for LBT operation is
262144 bits. The design can operate on maximum
frequency of 107.308 MHz.

Conclusion

In this paper we have proposed architecture for
processing of LBT in hardware for the state-of-art image

compression algorithm JPEG XR. The proposed
implementation is based on On-Chip Memory that is used
for storing and processing image tiles. Input image is
divided into tiles of fixed size that is, 128×128. The
independent processing of each tile of image can isolate
errors in tiles that may occur during transmission of
image over channel. Proposed architecture is tested on
Xilinx Virtex -II pro FPGA. The design can operate at
maximum frequency of 107.308 MHz. Architecture of this
design is simple and required optimum resources of
FPGA. Proposed design also reduces the amount of
memory required for processing of LBT. The design can
be used in low cost embedded system.

REFERENCES

Chien CY, Huang SC, Pan CH, Fang CM, Chen LG (2009). Pipelined

arithmetic encoder design for lossless JPEG XR encoder. In Proc.
IEEE 13th Int. Symp. Consum. Electron. pp. 144-147.

Chien CY, Huang SC, Lin SH, Huang YC, Chen YC, Chou LC, Chuang
TD, Chang YW, Pan CH, Chen LG (2008). A 100 MHz 1920×1080
HD-photo 20 frames/sec JPEG XR encoder design. In Proc. 15

th

IEEE Int. Conf. Image Process. pp. 1384-1387.
Dufaux F, Sullivan G, Ebrahimi T (2009). The JPEG XR image coding

standard. IEEE Sig. Process. Mag. 26(6):195-199.

358 Sci. Res. Essays

Groder SH, Hsu KW (2008). Design methodolgy for HD photo

compression algorithm targeting a FPGA. In Proc. IEEE Int. Conf.
SOC. pp. 105-108.

ITU-T (2009). JPEG-XR image coding system – Image coding
specification. ITU-T Recommendation T.832.

Liu L, Meng H, Zhang L, Wang Z (2005). An ASIC implementation of
JPEG2000 codec. In Proc. IEEE Custom Integrated Circuits Conf. pp.
691-694.

Maalouf A, Larabi MC (2009). Low-complexity enhanced lapped
transform for image coding in JPEG XR / HD Photo. In Proc. IEEE
Intl. Conf. Image Process. pp. 5-8.

Pan CH, Chien CY, Chao WM, Huang SC, Chen LG (2008).
Architecture design of full HD JPEG XR encoder for digital
photography applications. IEEE Trans. Consum. Electron. 54(3):963-
971.

Queiroz D, Fleckenstein RL (2000). Very fast JPEG compression using

hierarchical vector quantization. IEEE Sig. Process. Lett. 7(5):97-99.
Rehman MR, Raja G (2012). A processor based implementation of

lapped biorthogonal transform for JPEG XR Compression on FPGA.
Nucleus. 49(3):181-186.

Xu JZ, Wu F, Liang J, Zhang W (2010). Directional lapped transforms
for Image coding. IEEE Trans. Image Process. 19(1):85-97.

