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In health studies, we often face some variable missing. This missingness can happen in either response 
or other covariates. In this paper, the discussion focuses on missing covariates. A method is proposed 
for analysis of logistic regression models in which the response variable is polychotomous and some 
covariates’ values are missing at random. The maximum likelihood function of the model is derived and 
the results are compared with the routine methods based on elimination of missing cases. Both the 
proposed method and the usual method are compared on a real dataset of goiter disease and is shown 
that the proposed method acts significantly better than usual method. 
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INTRODUCTION 
 
Logistic regression is an analytical tool generally applied 
in medical and epidemiological researches (Stuart et al., 
1998). In epidemiological researches, the researcher 
wants to calculate the odds and odds ratio for a disease. 
Since in logistic regression models the estimated para-
meters results in odds ratios, this paper intends to study 
a special case in logistic regression where the response 
variable has more than two categories and the covariates 
have missing values. In many medical datasets we may 
face some missingness in some covariates such as 
denying to respond, lack of information in files and 
incompleteness of study frame. In such cases we deal 
with missing values.  

In this study, it is assumed that the missingness is at 
random and independent of observed values (MAR). For 
example, in analysis of effective factors on Goiter dis-
ease, the variables such as sex, age, place of residence 
and the iodine consumption may be of interest and due to 
reasons just stated, some questions are not answered 
and this missingness is not affected by sex, age and 
place of residence. 

There are different approaches for analysis of such 
data. The simplest method is to eliminate the  cases  with  
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missing values and do the analysis based on the complete 
cases. This approach causes the loss of information and 
in some cases introduces bias to the estimates (Little and 
Rubin, 2002). This method is implemented as the default 
setting in most statistical softwares such as SAS, SPSS 
and SPLUS (Gao and Hui, 1997). The second approach 
is to impute the missing values and the analysis is done. 
This approach has two important problems when there is 
a considerable number of missing values in the data. 
First, this kind of imputation changes the distribution of 
the missing-valued covariate and secondly the mean and 
standard error of the sample statistics is changed.  

In this study, the inference is done by considering the 
missing values in likelihood function. The maximum 
likelihood estimation for both completed data and missing 
imputed data are the same other than that the likelihood 
function for missing data has some changes. Several 
authors have introduced their methods of dealing with 
missing covariates for logistic regression models. Some 
have used the Expectation Maximization (EM) algorithm 
to estimate the model parameters with discrete cova-
riates or a combination of discrete and continuous cova-
riates with missing values (Fuch et al., 1982; Little and 
Schluchter, 1985). The EM algorithm generally needs 
iterations. When a covariate is continuous and follows a 
normal distribution, the maximum likelihood method using 
EM algorithm does not need iterations. In  a  study,  three  
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methods of data analysis (using complete cases, imputa-
tion of missing values and  maximum  likelihood  method 
when one of the two covariates has missing values) were 
compare with the aid of Monte Carlo method and it is 
concluded that the third method did better than the two 
other methods (Blackhurst and Schluchter, 1989). 

Other researchers expanded the method to use the 
alternative covariates for finding information about the 
missing-valued covariates (Sattan and Kupper 1993a; 
Satten and Kupper, 1993b). There has been also some 
improvements in analysis of matched case-control 
studies when there is missing values in covariates (Paik 
and Sacco, 2000). Some researchers considered some 
distribution for missing-valued covariate and with some 
modifications to the likelihood function for conditional and 
unconditional logistic regression models, improved the 
estimates (Satten and Carol, 2000). In addition, a new 
class of estimators was established for modeling the 
distributions of covariates and the type of missingness 
(Rathouz et al., 2003). In all above studies the response 
variable was dichotomous. This paper introduces a 
method of dealing with missing values when the res-
ponse variable is polychotomous. 
 
 

The model 
 

In this section, we present the logistic regression model 
with polychotomous response and missing values in 
some covariate X and show how to estimate the maxi-
mum likelihood of its parameters. 

Let iY  be a response variable taking three values 0, 1 
and 2. Suppose X and Z be two fully observed cova-
riates. In general, in saturated logistic models with 
polychotomous response, the conditional probabilities of 
response values on covariates is defined as follows: 
(Hosmer and Lemeshow Jr. (1999); Kleinbaum and Klein, 
2002). 
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Because iY  is considered to have three values, therefore 
the two odds and two odds ratios are defined as: 
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The purpose of any logistic regression   is estimation of 
model parameters (here 10β , 11β , 12β , 13β , 20β , 21β , 

22β  and 23β ) to describe the relationship between the 

dependent variable Y  and a set of covariates (Armitage, 
1997). In present paper we have considered two 
covariates X and Z. When these two variables are fully 
observed, we use standard methods to estimate the 
parameters. Now suppose some X values are not 
observed, in other words we have some missing values 
for X. In this case we define the indicator variable i∆  as 
follows: 
 
If the value iX  is not observed then 0i∆ =  and when it 

is observed then 1i∆ = . So, the odds and odds ratio in 
absence of the variable X in the model will be:  
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In addition we make the following definitions: 
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( ) ( )zZYxXPZX ==== ,1 1ρ                       (13) 

 
( ) ( )zZYxXPZX ==== ,2 2ρ                     (14) 

  
As can be seen, the probability functions ( )0 |X Zρ , 

( )1 |X Zρ  and ( )2 |X Zρ  are the probability 

distributions of X given 0Y = , 1Y =  and 2Y =  
respectively. Using the Bayes theorem and formulas 12, 
13 and 14, the formulas 8 and 9 will change to:  
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Where the summation is over all possible values of X and 
we also have 
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Now we can construct the likelihood function. 
 
 
Likelihood function incorporating missing values in 
covariates 
 
The likelihood function for logistic regression with 
polychotomous response variable Y and fully observed 
covariates X and Z is 
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Where 
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=�  for every i(Hosmer and Lemeshow Jr,  

1989). 
If some covariate contains missing values, the likelihood 
function will become as follows(Little and Rubin, 2002): 
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Using equations (15) to (19), the likelihood function with 
missing values takes the following shape: 
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On the other side the distribution ( )0 |X Zρ  is unknown. 

When X and Z have limited number of values, we can 
consider a distribution for ( )0 |X Zρ  from the 

exponential family like  
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Which gives interesting results (Satten and Carrol, 2000). 
With the aid of equations (15) to (18) and (23) and 
rewriting (22) we will have a function of parameters 10β , 

11β , 12β , 13β , 20β , 21β , 22β  , 23β , 1γ  and 3γ .  
After taking logarithm of likelihood function and taking 

its first partial derivatives with respect to each parameter 
to solve the, we have a system of 10 equations with 10 
unknowns. Because of nonlinearity of the equations, we 
need some numerical method to estimate the 
parameters. In the following example we show how this 
approach works. 
 
 
Example: The data of this example has taken from the 
National Health Survey in Iran (NHS) in 2001(Noorbala 
AA, Mohammad K 2001) 
 
The data of this example has taken from the National 
Health Survey in Iran (NHS) in 2002. In this study the 
data on thyroid diseases shows that Qazvin province has 
the first rank  with a prevalence rate  of  11.4%.  The  pro- 
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Table 1. Comparison of MLE estimates for logistic model parameters based on the proposed and standard methods in both 
complete data and data with 35% missing in X varible (data has taken from tiroid situation in Qazvin province). 
 
 Full data Data with 35% missing in "Area" 

Logit Variables Parameters New model Standard model New model Standard model 
 
 
 
 
1 

Intercept 
 
 
Sex (Z) 
 
 
Area(X) 
 
 
Area*Sex(X*
Z) 

10β  

 

11β  

 
 

12β  

 

13β  

-0.993 
(0.368) 

 
1.463 

(0.617) 
 

1.190 
(0.542) 

 
-2.263 
(0.835) 

-0.993 
(0.370) 

 
1.463 

(0.670) 
 

1.194 
(0.582) 

 
-2.270 
(0.960) 

-1.035 
(0.386) 

 
1.502 

(0.658) 
 

1.278 
(0.565) 

 
-2.409 
(0.911) 

-0.693 
(0.423) 

 
1.019 

(0.777) 
 

1.281 
(0.706) 

 
-2.308 
(1.136) 

 
 
 
 
 
2 

Intercept 
 
 
Sex (Z) 
 
 
Area(X) 
 
 
Area*Sex(X*
Z) 
 

20β  

 

21β  

 
 
 

22β  

 

23β  

-1.910 
(0.534) 

 
2.497 

(0.719) 
 

2.106 
(0666) 

 
-2.891 
(0881) 

-1.910 
(0.536) 

 
2.497 

(0.773) 
 

2.110 
(0699) 

 
-2.899 
(1.001) 

-1.810 
(0.582) 

 
2.90 

(0.783) 
 

2.067 
(0.719) 

 
-2.813 
(0.981) 

-1.386 
(0.559) 

 
1.792 

(0.854) 
 

1.856 
(0.798) 

 
-2.549 
(1.160) 

 

i. Data from Iran National Health Study. 

ii. Logit 1 and 2 means ( )1ln ,x zθ  and   ( )2ln ,x zθ  respectively 

iii. The numbers in parantheses are standard errors. 
 
 
 
vinces Kurdestan and Yazd have second and third places 
with prevalence rates 10.8 and 9.6% respectively. The 
prevalence rate in rural area of Qazvin is 6.7 while in its 
countryside is around 17.8%. Men with 9.9% have lower 
rate than women with 12.6% (Noorbala and Mohammad, 
2003). In previous NHS study whose results was 
published in 1992, the percent of observable thyroid 
information in Qazvin showed high value of prevalence 
(Zali et al., 1992). This prevalence was chosen for its 
missingness in some variables to see the performance of 
the likelihood function discussed in this paper. After 
analyzing the data by logistic regression model, it turned 
out that the variables sex and place of residence showed 
a significant relationship with the response variable, 
thyroid disease which had three categories (healthy, 1A, 
1B and higher) (Zali et al., 1995). In this province, the 
studied samples were 758 people from whom 60% had 
thyroid disease (Noorbala and Mohammad, 2002). Here 
the value Y = 0, Y = 1 and Y = 2 represent healthy, 1A 
and 1B respectively. Although this variable is an ordinal 
variable, we consider Y as a nominal polychotomous 

variable. Variables sex (Z) and place of residence(X) 
were fully observed. We took a random sample of 120 
and made some values missing and then used the 
likelihood function to estimate the parameters. The 
results are shown in next section. 
 
 
RESULTS 
 

In this section, to reach the study goals, we did several 
stages of analysis. The purpose was only to evaluate the 
new likelihood and our new program. So, the significant 
relationship between covariates and the response 
variable was not of our priority.  

As stated, the response variable had three categories, 
Y = 0 (healthy), Y = 1(1A) and Y = 2(1B) and two cova-
riates sex (Z = 0 for male and Z = 1 for female) and place 
of residence(X = 1 for rural and X = 0 for countryside). 
First a logistic model was fitted to the data and both 
variables remained in the model at level 0.05α = . The 
results are shown in Table 1. The numbers in the Table 1 
are maximum   likelihood estimation of  the  model   para- 



 

 
 
 
 
meters and their standard errors. Columns 1 and 2 show 
the estimates for full data. Comparison of standard 
estimates given by SPSS software with those of our new 
Splus program shows the same values for model 
parameters. After elimination of 35% of the variable X 
(missing at random) and  repeating the analysis by both 
SPSS and our S-plus program, the outputs which are 
placed in columns 3 and 4 in Table 1 shows the 
estimates from our program is  closer to the full data 
estimates than those of SPSS software. To evaluate our 
approach more carefully, we repeated the analysis 10 
times with 20, 25, 30 and 35% of missingness in variable 
X. To confirm our results we did a two-way analysis of 
variance to see the effects of percent of missingness and 
type of the model on estimates. The analysis of variance 
showed that only the model type was significant at 

0.001α =  meaning that the estimates are significantly 
different for two types of models and the estimates of our 
new model are closer to those of full data model. 
 
 
DISCUSSION AND CONCLUSION 
 
Satten and Carrol compared the parameter estimates 
using this approach for a binary response variable and 
concluded that this approach is more efficient than those 
methods that ignore the missing cases. As can be seen 
from Table 1, using the new approach for data in which 
the response variable has three categories, resulted in 
more accurate estimates with lower variances. Addi-
tionally, A Kruskal-Wallis test showed that the variances 
of the estimates in new approach were significantly 
different from the standard model.  
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