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Base isolation is, in recent times, an accepted design philosophy as an earthquake resistant strategy 
for structural systems and sensitive instruments. Predicting the behavior of laminated rubber bearings, 
usually obtained from Haringx’s theory, has been developed by many researchers. They have proposed 
a nonlinear, mechanical model for multilayer elastomeric bearings. However, in past theoretical and 
experimental studies, the effects of rotation in the bottom and top ends of bearings have been 
neglected. In this study, an analytical method is presented and formulated by considering the rotation 
of the top and bottom ends of multilayer rubber bearings, as new boundary conditions. According to 
these rotations, the horizontal stiffness of laminated rubber bearings, which is the one of the most 
important characteristics of bearings, will change. Comparisons of theoretical and experimental results 
show that the present analysis model has a good accuracy for analyzing laminated rubber bearings. 
Examples are presented to demonstrate the validity of the development method in predicting the 
horizontal stiffness of laminated elastomeric bearings with specified geometric parameters. The results 
of this study have shown that the horizontal stiffness of laminated rubber bearings will increase or 
decrease according different boundary conditions. 
 
Key words: Seismic isolation, earthquake engineering, base isolation, elastomeric bearing, laminated rubber 
bearing, horizontal stiffness. 

 
 
INTRODUCTION 
 
The use of isolation equipment has been widely used and 
accepted as a technical approach for engineering 
applications during seismic and cycling loads. The most 
recent and interesting application of these bearings has 
been in the seismic isolation for buildings and bridge 
structures. Seismic isolation is an innovative technology 
for reducing the effects of earthquake ground motion by 
uncoupling the structure from horizontal components of 
the earthquake motion. Base isolation reduces not only 
the effects of earthquake acceleration transmitted to the 
structure, but it also protects the contents of the building, 
while simultaneously supporting the gravity weight of the 
structure (Kelly and Aiken, 1991; Koh and Kelly, 1988). 
The seismically isolation lengthens the fundamental 
period of the isolated building rather than  same  building,  
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if conventionally founded and the dominant period has a 
strong ground motion (Kelly and Takhirov, 2007). 

The laminated rubber bearing is one of the most useful 
devices for seismically isolation. They are composite 
elements consisting of thin layers of natural or synthetic 
rubber, bonded to steel plate. Therefore, the multilayer 
elastomeric bearing has very high compression stiffness, 
while retaining the characteristics of the low-shear 
stiffness of rubber (Chang, 2002; Ravari et al., 2011). 
The great advantage of elastomeric bearings is that they 
have no moving parts; they are not subject to corrosion 
and they are reliable, cheap to manufacture and need no 
maintenance (Simo and Kelly, 1984). 

In base-isolated buildings, the multilayer elastomeric 
bearings, being as protectors of the superstructure, 
should sometimes be protected from failure or instability 
because the failure of rubber bearings may result in 
serious damage to superstructure. The evaluation of the 
collapse conditions is an essential step in designing the 
elastomeric bearing. The collapse of the device can occur  
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either by global failure, due to buckling or roll-out of the 
device (Naeim and Kelly, 1999; Kelly, 1997), or by local 
rupture, due to tensile rupture of the rubber, through 
detachment of the rubber from the steel or steel yielding 
(Shariati et al., 2011; Simo and Kelly, 1984). Therefore, it 
is necessary to have an accurate knowledge of the global 
characteristics and behavior of the device under 
maximum lateral displacement with various boundary 
conditions. 

In the study of the laminated elastomeric isolation 
bearings, Haringx (1949) first treated the bearing as an 
equivalent column with a constant cross sectional area, 
homogeneous and isotropic material, and an equivalent 
height that included the rubber layers and steel shims. By 
Haringx’s theory, the P–∆ effect on the influence of 
horizontal stiffness of the bearings under an axial 
compressive loading was studied. Haringx’s theory has 
shown fairly good agreement with experimental results 
for moderate amounts of shear strains (Gent, 1964; Tsai 
and Hsueh, 2001). Haringx’s theory was then applied to 
study stability problems (Stanton et al., 1990) and was 
used to identify material properties of laminated rubber 
bearings (Tsai and Hsueh, 2001). Kelly (1997) and Koh 
and Kelly (1988) proposed a simple mechanical model 
and Iizuka (2000) suggested a macroscopic model to 
study the mechanical behaviors and the stability analysis 
of multilayer elastomeric isolation bearings. Nagarajaiah 
and Ferrell (1999) and Buckle et al. (2002) verified the 
simple mechanical model using experimental results. 
Kelly and Takhirov (2007) investigated tension buckling 
and related it with compression buckling in the multilayer 
elastomeric bearings. 

As mentioned earlier, many theoretical investigations 
and experimental efforts in the laminated rubber bearing 
concept have been based on the model of Haringx’s 
equivalent column. However, all researchers use the 
same boundary conditions. Thus, movement and rotation 
equations for a column of bearing have been obtained 
from Haringx’s theory, has following boundary conditions 
(Kelly, 1997): 
 

y(0)=0, θ1=0, θ2=0, y(h)=ymax 
 

Where y(0) is displacement at the bottom end and θ1 and 
θ2 are initial rotation at the bottom and top end of a 
laminated rubber bearing, respectively (h is the height of 
equivalent column of bearing). 

For this reason, at this study, the movement and 
rotation equations of multilayer rubber bearing have been 
formulated with supposing the measurable initial rotation 
of the bottom and top end of a bearing under the 
following three boundary conditions: 

 
i. Equal rotation at the bottom and top end of a bearing, 
ii. Rotation only at the bottom end of a bearing, 
iii. Rotation only at the top end of a bearing. 
 
According to the  boundary  conditions,  variations  in  the  

 
 
 
 
horizontal stiffness of laminated rubber bearings have 
been investigated as a result of this study. 
 
 
GOVERNING EQUATIONS 
 
In the standard approach, the bearing is assumed to be a 
beam, and plane section, normal to the undeformed axis 
before deformation and is assumed to remain plane but 
not necessarily normal after deformation (Tsai and Kelly, 
2005). According to Figure 1, which shows the 
deformation of a bearing, the lower end of the column is 
fixed against any displacement, whereas the upper end is 
allowed to move horizontally and vertically.  The lower 
and upper end can also rotate and these rotations are 
dependent on the measurable and constant values of θ1 
and θ2. 

The deformation pattern is defined by two independent 
variables: y(x) is the lateral displacement on the middle 
line of the column, and θ(x) is the rotation of a plane 
originally normal to the x axis, where the x is the central 
axis of the undeformed rubber column shown in Figure 
1(a). The overall shear deformation, γ, is the difference 

between the rotation of the horizontal axis,  and 

the rotation of normal face, θ(x). Figure 1(b) shows the 
internal and external forces on the bearing in the 
deformed position. 

When the upper end of the column is subjected to a 
constant compressive force P and a varied horizontal 
force V, it will induce the bending moment M(x) and shear 
force V(x) at the cross-section of the height x as shown in 
Figure 1(b). The constitutive equations for bending 
moment M(x) and shear force V(x) in surface x can be 
expressed as: 

 

     ������ = ���������������
���� )                                                                                                (

             (1) 
 

     ������ = ���������� ⟹ ������ = ������             (2) 
 

Where E is Young’s modulus, G is shear modulus, Is is 
the moment of cross-sectional inertia and As is the shear 
area of the laminated elastomeric bearing. The 
parameters of EIs and GAs which are the mechanical 
characteristics of a laminated rubber bearing will 
explained in the study. 

When rotations θ(x), θ1 and θ2 are small, the equations 
of equilibrium for bending moment and shear force in the 
deformed state, shown in Figure 1(b), and using 
Equations (1) and (2) are: 

 

     ���������������
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        (3) 
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Figure 1. Loading and deformation of laminated rubber bearing at (a) full configuration; (b) bottom part. 

 
 
 
The derivative of Equation (3) and substituting into 
Equations (3) and (4), we obtain two different equations 
as follows: 
 

     
��2������

����2 + ��2������ = ��2�����1 − ��1���
���+ ��1��1� − ��2��1���+ ��1��1�                                               

       (5) 
 

     
��2������

����2 + ��2������ = ��2 �����1 − ��1�
���+ ��1��1� + �����1 − ��1����1��1�

���+ ��1��1��������+ ����
   (6) 

 

Where the parameter α is defined by: 
 

     ��2 = �������+ ������+ ��1��1�
������������                                                                            

            (7) 
 

The most general solution for the two differential 
equations in Equations (5) and (6) are: 
 

     ������ = �������������� + �������������� + �����1 − ��1���
��+ ��1��1 − ��1��+ ��1��1   (8) 

 

   ������ = ������������������ − ������������������ + �����1 − ��1�
��+ ��1��1 + �����1 − ��1����1��1�

���+ ��1��1��������+ ����
                                                                                      (9) 
 
 

Boundary conditions 
 
The Constants A and B, and parameters M1 and ymax can  
be determined  from  boundary  conditions.  As  shown  in  

Figure 2, the laminated rubber bearing is constrained 
against displacement at the bottom and is free to 
measurable rotation at its lower and upper end; however 
the multilayer rubber bearing in its top end has a lateral 
displacement (ymax). 

According to Figure 2, which shows the boundary 
condition of a laminated rubber bearing, we can find the 
constants of Equations (8) and (9) under the following 
three different conditions: 

 

I. Equal rotation at the bottom and top end of a bearing 
[y(0)=0, θ1=θ2=variable ], 
ii. Rotation only at the top end of a bearing [y(0)=0,    
θ1=0,  θ2= variable ], 
iii. Rotation only at the bottom end of a bearing [y(0)=0,    
θ1= variable,   θ2=0 ]. 
 

Horizontal stiffness is one of the most important 
parameters of multilayer rubber bearings. Kelly (1997) 
stated that if the load carried by a bearing is comparable 
to the buckling load, then the simple formula for 

horizontal stiffness, , may need to be 

modified. During lateral loading, when the resulting 
displacement at the top end of a bearing (ymax) is 
computed according the earlier given equations, the 
horizontal stiffness, KH is given by: 
 

     ���� = ��
��������     

            (10) 
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Figure 2. Boundary condition for a bearing (a) before loading (b) after loading. 

 
 
 
PROPERTY IDENTIFICATION 
 
As mention earlier, the mechanical properties of 
multilayer rubber isolators, including GAs and EIs as 
shear and bending stiffness of the composite system, 
must be recognized and verified. 
 
 
Shear stiffness of a multilayer rubber bearing (GAs) 

 
For recognizing the shear stiffness of composite bearings 
(GAs), the total shear area, A, of a bearing would be 
defined by the following basis (Chang, 2002): 

 

     ��= ��1 + ��2
��������+ ����           (11) 

 
Where A1 is the area of steel shims and A2 is the cross 
sectional areas of the rubber cover. The A1 and A2 have 
been shown in Figure 4. The shear area of the cover is 
included because of its bonding with the end plates. 

Multiplying the shear area by factor of , is needed to 

account for the fact that the steel shim does not deform in 
the composite system (Kelly, 1997; Tsai and Hsueh, 
2001), where h is the total height of bearing (rubber plus 
steel) and tr is the total thickness of rubber. Therefore, 
the shear stiffness of multilayer rubber isolators is 
obtained as follows: 

 

     ������= �����1 + ��2
��������+ �����

ℎ
����                     (12) 

 
Bending stiffness of a multilayer rubber bearing (EIs) 
 

For a single circular rubber layer bonded between two 
rigid plates, the flexural stiffness for a circular rubber 
layer of radius R, proposed by Gent (2001) is: 
 

     ������������ = �����1 + 2
3 ��2�                                                                                       

          (13) 
 

Where E is the Young’s modulus, I is the effective 

moment of inertia of the cross section ( ) and S 

is shape factor of bearing defined as:  
 

                      (14) 

 

Shape factor (S) is a dimensionless parameter of the 
aspect ratio of the single layer of elastomer. For a circular 

elastomeric bearing, the shape factor is  where R is 

the radius of steel shim and t is the thickness of each 
layer of rubber. 

The rubber is assumed to be an incompressible 
material (E=3G), where G is shear modulus of a 
laminated rubber bearing. For multilayer rubber bearings, 
the stiffness must also be modified and increased to 
account for the presence of the steel shims. This is 
shown as follows: 
 

           (15) 

 
 

Numerical example and bearing properties 
 
In this study, a computer  program  has  been  written  for  
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Figure 3. Typical circular multilayer rubber bearing. 

 
 
 

calculating the variations in horizontal stiffness of 
laminated rubber bearings. The program can cover 
different boundary conditions for circular bearing. Circular 
multilayer elastomeric isolation bearings, as shown in 
Figure 3, are used in the following numerical study. For 
the bearing, the following dimensions are considered: the 
steel shim radius R1=140 mm, with an additional 10 mm 
of protective rubber covering, for a total radius of R2=150 
mm, the number of rubber layers nr=20 with thickness 
tr=10 mm, the total rubber thickness is t=200 mm, the 
number of steel shims ns=19 with thickness ts=2 mm, and 
each one of the top and bottom end steel plates is 21 
mm. The shear modulus of the rubber material G is 0.611 
MPa. A vertical compressive force P and a horizontal 
force V2 are applied at the top surface, to be given in 
each case (Figure 2). 
 
 
EFFECTS OF INITIAL ROTATIONS ON THE 
VARIATIONS OF HORIZONTAL STIFFNESS 
 
According to the properties mentioned previously, the 
results of numerical study have been shown as follows, 
with the results also being compared with experimental 
data. According to the various boundary conditions, the 
effects of the consideration of the initial rotation on the 
horizontal stiffness of multilayer rubber bearings have 
been investigated as a result of this study. 

It is known that the P-∆ effect causes the horizontal 
stiffness to decrease, with an increase in the 
compression force (Kelly, 1997; Tsai and Hsueh, 2001; 
Chang, 2002). In the past, researches in the stability 
issue of laminated rubber bearings show that the 
variation in the horizontal stiffness has been calculated 
without any initial rotation on the ends of a bearing. A 

theoretical curve, calculated from Haringx’s theory and 
experimental data presented by Tsai and Hsueh (2001) is 
shown in Figure 4. With consideration of θ1=θ2=0 in the 
earlier equations, this figure reinforced that the presented 
results are in good agreement with the theoretical curve 
and are consistent with experimental data. 

Figure 4 clearly shows the effects of considering the 
rotation as a boundary condition on the horizontal 
stiffness of a bearing. The variation of horizontal stiffness 
has been shown due to the three different initial rotations 
including: 1-θ1=θ2=0.02(rad) 2-θ1=0, θ2=0.02(rad) 3-
θ1=0.02(rad), θ2=0. This figure reveals that the amounts 
of horizontal stiffness is increased or decreased, although 
buckling load and horizontal stiffness without 
compression force are proportionately equal due to the 
different boundary conditions. Figure 4 shows that by 
considering of 1-θ1 = θ2= variable and 2-θ1 = 0, θ2 = 
variable, as two boundary conditions, an increase in the 
horizontal stiffness is the result. However, when 
consideration of 3-θ1=variable, θ2=0 has been made, the 
results show a decrease in the horizontal stiffness rather 
than condition of θ1 = θ2 = 0. 

It is known that the shear force-displacement curve 
goes through a maximum as the horizontal displacement 
increases, under constant axial load. The shear force and 
horizontal displacement, at which the maximum occurs, 
decreases with an increasing axial load (Nagarajaiah and 
Ferrell, 1999; Buckle et al., 2002). The effects of rotation 
as a boundary condition on the horizontal displacement 
of a laminated rubber bearing, under variation amounts of 
shear force and constant axial force, are clearly evident 
in Figure 5. In this analysis, for showing the effects of 
rotation, the axial load is considered as 350 kN and the 
rotations as 0.02 Radian. According to Figure 5, 
considering of 1-θ1 = θ2 = variable  as boundary  condition  
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Figure 4. Comparisons of theoretical and experimental results of horizontal stiffness with different boundary conditions. 

 
 
 

 
 
Figure 5. Shear force-displacement curves of bearing with different boundary conditions. 

 
 
 
does not have any obviously difference towards to the 
base condition, including θ1=θ2=0. Whereas the boundary 

condition of 2-θ1=0, θ2=variable causes an increase in the 
horizontal displacement and in contrast with consideration 



 

 
 
 
 
of 3-θ1=variable, θ2 = 0 is made considerable decrease 
on the horizontal displacement rather than condition of θ1 
= θ2 = 0.    
 
 
CONCLUSION 
 
An analytical model of multilayer elastomeric isolation 
bearings has been developed based on the Haringx’s 
theory. Using the initial rotations of a bearing as a new 
boundary condition, allowed the movement and rotation 
equations of bearings to be formulated. The variations in 
horizontal stiffness of laminated rubber bearings have 
been investigated as a result of this study. Three 
statements of the initial rotation are considered in the 
ends of bearings as boundary conditions including: 1-θ1 = 
θ2 = variable, 2-θ1 = 0, θ2 = variable and 3-θ1 = variable, θ2 

= 0 and the results are compared with basic condition: θ1 

= θ2 = 0. 
The developed numerical analytical model satisfactorily 

predicts the behavior observed in the test results of the 
bearings. The important conclusions of this study are as 
follows. The consideration of 1-θ1 = θ2 = variable and 2-θ1 

= 0, θ2 = variable, as two boundary conditions have 
resulted in an increase in the horizontal stiffness, 
whereas consideration of 3-θ1 = variable, θ2 = 0 has 
resulted in a decrease in the horizontal stiffness rather 
than condition of θ1 = θ2 = 0. It has also been shown that 
the buckling load and horizontal stiffness without 
compression force have insignificantly been changed by 
using different boundary conditions. It is shown that a 
consideration of the variables in the initial rotations is 
necessary for effectively predicting the maximum 
displacement of bearings.  The calibration and verification 
of the analytical model is based on a limited set of test 
results; hence further investigations are needed. 
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