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This paper examines impacts of random scrap rate on production system in supply chain environment 
with a specific n+1 distribution policy. The purpose of introducing such a specific shipping policy is to 
cut down inventory holding costs for both producer and customer in vendor-buyer supply chain 
environment. Mathematical modeling along with Hessian matrix equations is used to simultaneously 
determine the optimal policies for production lot-size as well as number of shipments first. Then impacts 
of random scrap rate on the proposed system are analyzed. Numerical example is provided to show its 
practical usage and to demonstrate impacts of scrap rate on the system. 
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INTRODUCTION 
 
In manufacturing processes, random scrap items 
produced are inevitable (Nahmias, 2009). Impacts of 
scrap on production system must be studied specifically in 
order to achieve optimization of manufacturing system in 
terms of total production costs. Rosenblatt and Lee (1986) 
studied an economic production quantity (EPQ) model 
that deals with imperfect quality. They assumed that at 
some random point in time the process might shift from an 
in-control to an out-of-control state, and a fixed 
percentage of imperfect quality items are produced. 
Approximate solutions of optimal lot size were derived by 
them. Schwaller (1988) examined economic order 
quantity model by adding both fixed and variable 
inspection costs for finding and removing a known 
proportion of defective items in incoming lots. Wee (1993) 
developed and formulated an economic production policy 
for deteriorating items with partial back-ordering. Two 
numerical examples are used to illustrate the theory  and  
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computational results indicated that the proposed policy 
leads to lower cost. Cheung and Hausman (1997) 
presented an analytical model of preventive maintenance 
(PM) and safety stock (SS) strategies in a production 
environment subject to random machine breakdowns. 
Trade-off between investing in the two options (PM and 
SS) were examined, and optimality conditions under 
which either one or both strategies should be 
implemented are provided to minimize the associated cost 
function.  

Kim et al. (2001) investigated optimal production run 
length and inspection schedules in a deteriorating 
production process. They assumed that a production 
process is subject to a random deterioration from the 
in-control state to the out-of-control state and thus 
produces some proportion of defective items. An optimal 
production run length and an optimal number of 
inspections that minimize total costs are derived 
accordingly. Grosfeld-Nir and Gerchak (2002) considered 
multistage production systems where defective units can 
be reworked repeatedly at every stage. They showed that 
a multistage system where only one of the stages requires  



 

 
 
 
 
a set-up can be reduced to a single-stage system. They 
proved that it is best to make the "bottle-neck" the first 
stage of the system and they also developed recursive 
algorithms for solving two- and three-stage systems. Chiu 
(2003) studied optimal lot size for an imperfect quality 
finite production rate model with rework and backlogging 
(Barlow and Proschan, 1965; Chiu and Chiu, 2006; Chiu 
et al., 2007; Koçyiǧit et al., 2009; Wazed et al., 2009; 
Chen et al., 2010; Chiu, 2010; Chiu et al., 2010a; Wazed 
et al., 2010a and b; Chen and Chiu; 2011). 

In real-life supply chains environment, multiple 
deliveries of finished products are commonly used by 
vendor to supply items to its buyer. Goyal (1977) 
examined an integrated production-inventory model for 
single supplier-single customer case. He proposed a 
method that is typically applicable to those inventory 
problems where a product is procured by a single 
customer from a single supplier. An example was 
provided to illustrate his proposed method. Many studies 
have since been carried out to address various aspects of 
supply chain optimization. Schwarz et al. (1985) treated 
the system fill-rate of a one-warehouse N-identical retailer 
distribution system as a function of warehouse and retailer 
safety stock. Approximation model was developed from a 
prior study to maximize system fill-rate subject to a 
constraint on system safety stock. Properties of fill-rate 
policy lines are suggested and they can be used to 
provide managerial insight into system optimization. Hill 
(1996) examined a model in which a manufacturing 
company purchases a raw material, manufactures a 
product (at a finite rate) and ships a fixed quantity of the 
product to a single customer at fixed and regular intervals 
of time, as specified by the customers, while minimizing 
total cost of purchasing, manufacturing and stockholding. 
Sarker and Khan (1999) considered a manufacturing 
system that procures raw materials from suppliers in a lot 
and processes them into finished products which are then 
delivered to outside buyers at fixed points in time. A 
general cost model was formulated considering both raw 
materials and finished products. Then, using this model, a 
simple procedure was developed to determine an optimal 
ordering policy for procurement of raw materials as well 
as the manufacturing batch size, to minimize the total cost 
of meeting customer demands in time. Abdul-Jalbar et al. 
(2005) studied a multistage distribution/inventory system 
with a central ware- house and N retailers. Customer 
demand arrives at each retailer at a constant rate. The 
retailers replenish their inventories from the warehouse, 
which in turn orders from an outside supplier. It is 
assumed that shortages are not allowed and lead times 
are negligible. The goal was to determine policies which 
minimize the overall cost in the system. A heuristic 
procedure to compute near-optimal policies is presented 
with computational results on several randomly generated 
problems. Sarker and Diponegoro (2009) studied optimal 
policy for production and procurement in a supply-chain 
system with multiple non-competing suppliers, a producer  
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and multiple non-identical buyers. They assumes that 
manufacturer procures raw materials from suppliers, 
converts them to finished products and ships the products 
to each buyer at a fixed-interval of time over a finite 
planning horizon. Their objective was to determine the 
production start time, the initial and ending inventory, the 
cycle beginning and ending time, the number of orders of 
raw materials in each cycle, and the number of cycles for 
a finite planning horizon so as to minimize the system cost 
(Goyal and Nebebe, 2000; Sarker and Khan, 2001; Chiu 
et al., 2009a,b,c; Chiu and Ting, 2010; Diponegoro and 
Sarker, 2006; Chiu et al., 2010b,c,d,e; Chen et al., 2011). 

This paper reexamines and extends model of Chiu et al. 
(2009b) by simultaneously determining the optimal 
production lot size as well as optimal number of 
shipments for such a specific supply chain system with 
scrap and a cost lessening n+1 delivery policy. The joint 
effects of the random scrap rate and n+1 delivery policy 
on the production system are investigated. 
 
 
MATERIALS AND METHODS 
 
Description and mathematical modeling 

 
Suppose in a supply chain environment, a vendor-buyer integrated 
production system may produce x portion of random scrap items at 
a production rate d. Under regular operating schedule, the constant 
production rate P is larger than the sum of demand rate λ and 
production rate of defective items d. That is: (P-d-λ)>0; where d can 
be expressed as d = Px. Cost parameters in this study include unit 
manufacturing production cost C, setup cost K per production run, 
vendor’s unit holding cost h, buyer’s unit holding cost h2, disposal 
cost per scrap item CS, delivery cost CT per item and a fixed delivery 
cost K1 per shipment. Additional notation is listed as follows: 
 
n = number of fixed quantity installments of finished batch to be 
delivered to customer during t2, one of the decision variables to be 
determined for each cycle, Q = replenishment lot size, another 
decision variable to be determined for each cycle, T = cycle length, 
H = the level of on-hand inventory in units for satisfying product 
demand during manufacturer’s regular production time t1, 
H1=maximum level of on-hand inventory in units when regular 
production ends, t = the production time needed for producing 
enough perfect items for satisfying product demand during the 
production uptime t1, t1 = the production uptime for the proposed 
model, t2 = time required for delivering the remaining perfect quality 
finished products, tn = a fixed interval of time between each 
installment of products delivered during t2, I = demand during 
production time t, that is,. I = λt. D = demand during production 
uptime t1, that is, D = λt1. 
I(t) = on-hand inventory of perfect quality items at time t, TC(Q,n) = 
total production-inventory-delivery costs per cycle for the proposed 
model, TC1(Q,n) = total production-inventory-delivery costs per 
cycle for the special case model, E[TCU(Q,n)] = the long-run 
average costs per unit time for the proposed model, E[TCU1(Q,n)] = 
the long-run average costs per unit time for the special case. 

Figure 1 depicts the producer’s on-hand inventory of perfect 
quality items of the proposed model. Under the proposed n+1 
delivery policy, an initial installment of finished products is delivered 
to customer for satisfying the demand during uptime t1. At the end of 
production, fixed quantity n installments of the rest of finished items 
are delivered to customer at a fixed interval of time. Figure 2 models 
illustrates customer’s on-hand inventory levels  of  the  proposed
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Figure 1. Vendor’s on-hand inventory of perfect quality items for the proposed model with random scrap rate and (n+1) 
delivery policy (Chen et al., 2011). 

 
 
 
TC(Q,n) of the proposed model consists of the setup cost, variable 
manufacturing cost, variable disposal cost, (n+1) fixed and variable 
shipping cost, holding cost for perfect quality items during t1, holding 
cost for scrap items during t1, vendor’s holding cost for finished 
goods during the delivery time t2 (Figure 1), and buyer’s holding cost 
(to Figure 2). 
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For derivation of the very last term (that is, the inventory quantity 
associated with buyer’s holding cost h2), one can refer to Figure 2, 
and first considers the area in the largest triangle, then areas in n 
pieces of trapezoids. 

Taking into account of the randomness of scrap rate x, one can 
use the expected values of x in cost analysis, and with further 
derivations one obtains E[TCU(Q,n)] as: 
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Convexity of the total cost function 

 
In order to derive the optimal production-shipment policy for the 
proposed model, one must first prove E[TCU(Q,n)] is convex. The 
Hessian matrix equations (Rardin, 1998) are employed here to verify 
whether the following condition (that is, Equation 3) holds or not.  
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Figure 2. Buyer’s on-hand inventory level for the proposed model with random scrap rate and (n+1) 
delivery policy. 
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From Equation (2), one obtains the following terms: 
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Substituting Equations (4) to (8) in (3), one has: 
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Equation (9) is resulting positive, because K, K1, λ, (1-E[x]), and Q 
are all positive. Hence, E[TCU(Q,n)] is a strictly convex function for 
all Q and n different from zero. Convexity of E[TCU(Q,n)] is proved 
and the minimum of E[TCU(Q,n)] exists. 
 
 
RESULTS 
 
Simultaneous determination of the 
production-shipment policy 
 
Once convexity of E[TCU(Q,n)] is proved, for deriving the 
optimal lot size Q* and the optimal number of shipments 
n* one can differentiate E[TCU(Q,n)] with respect to Q 
and with respect to n, and solve the linear system of 
Equations (4) and (6) by setting these partial derivatives 
equal to zero. With further derivations one obtains Q* and 
n* respectively as follows: 
 

( )

( )
( )

( )
( ) ( )

1

3 2
2

3 2

*

2
2 22

22 2 2

2 1
 

1 22 1
1

1

2 2 1 1
1 1

1

 

n K K

E x
h E E x

P x P P
Q

h h
E x h E E x

n P P P x P P

λ

λλ λ

λ λ λ
λ

+ +  

 −     ⋅ − + − −     −   =
−      

+ − − + + ⋅ − − +           −    

  

(10) 

 
And 



 

3502            Sci. Res. Essays 
 
 
 

( )( ) ( ) ( )

( )
( )

( )

2
2

1 2 2

*

3 2
2

3 2

1

2

2 2 2

2
1 1

 
1 22 1

 1
1

2 1 1
1

1

K K h h E x E x
P P

n
E x

h E E x
P x P P

K

h E E x
P x P P

λ λ

λλ λ

λ
λ

 
+ − − − − +       

 =
  −    ⋅ − + − −      −       
     

  + − − +      −     

  (11) 

 
One notes that optimal number of shipments n* only takes 
on integer value, while Equation (11) results likely in real 
number. One should use 2 adjacent integers from the 
original result of Equation (11), plugging into Equation (10) 
to obtain their corresponding Qs. Then substituting each 
pair of Q and n in E[TCU(Q,n)] (that is, Equation 2) to 
compare and select whichever integer n (and its 
corresponding Q) that gives the minimal value of total cost 
as our optimal production-shipment policy. 
 
 
DISCUSSION 
 
Analysis of the similar model without considering 
random scrap rate 
 
Suppose random scrap rate is not considered, then one 
has E[TCU(Q,n)] as: 
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Similarly one proves convexity of E[TCU(Q,n)] as follows: 
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Equation (13) is resulting positive, because K, K1, λ, and 
Q are all positive. Hence, E[TCU(Q,n)] is a strictly convex 
function for all Q and n different from zero.  Again, with 
further derivations one can derive jointly the optimal lot 
size Q* and optimal number of shipments n* as follows: 
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To cope with the integer value of n, similar solution 
procedure (as stated earlier) should be applied to this 
special case for deriving the optimal (Q*,n*). 
 
 
Numerical example with further discussion 
 

To enable comparisons of the models with/without random 
scrap, and n versus n+1 delivery policy, the same 
example as in Chiu et al. (2009b) is used here. Assuming 
a manufacturing system has an annual production rate of 
60,000 units, and a flat demand rate of 3,400 units per 
year. During the production, a random scrap rate is 
assumed to be uniformly distributed over interval [0, 0.3]. 
Cost parameters include K = $20,000 per run; C = $100; 
CS = $20 per scrap item; h = $20 per item per year; K1 = 
$4,400 per shipment; CT = $0.1 per item delivered; and h2 
= $80 per item kept at the customer’s end per unit time. 
  From computation of Equation (11) one obtains n* = 
3.84. To determine the optimal integer value of n, two 
adjacent integer numbers and its corresponding lot-sizes 
(Equation 10) are plugged in Equation (2) respectively. 
Results are E[TCU(Q = 3073,n = 3)] = $509,702 and 
E[TCU(Q = 3455,n = 4)] = $509,012. Therefore, one 
obtains the optimal production lot size Q* = 3455, the 
optimal number of deliveries n* = 4, and the long-run 
expected cost E[TCU(Q*,n*)] = $509,012. 

Impact of random scrap rate on production system is 
analyzed as follows. Suppose that scrap rate x = 0. From 
computation of Equation (15) one obtains n* = 3.91. To 
determine the optimal integer value of n, two adjacent 
integer numbers and its corresponding lot-sizes (Equation  
14) are plugged in Equation (12) respectively. Results are 
E[TCU(Q = 2609,n = 3)] = $437,803 and E[TCU(Q = 
2938,n = 4)] = $436,987. Therefore, one obtains the 
optimal production lot size Q* = 2938, the optimal number 
of deliveries n* = 4, and the long-run expected cost 
E[TCU(Q*,n*)] = $436,987. 

This study proposes a (n*+1 = 5) delivery policy versus 
n* = 4 as was used in Chiu et al. (2009b), where they had 
optimal Q*=2652 and the long-run expected cost 
E[TCU(Q*,n*)] = $512,047. In theory, one would think that 
it costs more to have one extra shipping cost. However, 
total savings on inventory holding costs (both from vendor 
and buyer) offsets this extra expense. As a result, 
excluding the variable production cost (λC) and set up 
cost, there is a total saving of 2.1%. 

Comparing the proposed model with versus without 
random scrap rate, one realizes that a total savings of 
$72,025 when there is no scrap rate in production. It is a  



 

 
 
 
 
reduction of 14.15% in total cost.  
 
 

Conclusions 
 
This paper investigates the impacts of random scrap rate 
on production system in supply chain environment with a 
specific n+1 distribution policy. Mathematical modeling 
along with Hessian matrix equations is used to 
simultaneously determine the optimal policies for 
production lot-size as well as number of shipments first. 
Impacts of random scrap rate on the proposed system are 
then analyzed. Numerical example is provided to show its 
practical usage. 

The research results depict that the n+1 delivery policy 
can outperform n shipping method in terms of savings in 
stock holding costs from both ends of vendor and buyer. 
Further, impacts of random scrap rate on production 
system are significant in terms of extra expenses in 
assuring product’s quality. In summary, such a real-life 
system must be specifically studied in order to obtain 
more insights of the system parameters. 
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