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In the present paper, the improved (G’/G) - expansion method combined with suitable transformations is 
used to construct many exact solutions involving parameters of a nonlinear equation describing the 
nano-ionic currents along microtublues. As a result, hyperbolic function solutions, trigonometric 
function solutions and rational function solutions with parameters are obtained. When these 
parameters are taken as special values, some solitary wave solutions and the periodic wave solution 
are derived from the exact solutions. This method can be employed for many other nonlinear evolution 
equations in mathematical physics and engineering. Comparisons between our results and the well-
known results are given. 
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INTRODUCTION 
 
Nonlinear phenomena play crucial roles in applied 
mathematics and physics. Exact solutions for nonlinear 
partial differential equations (PDEs) play an important 
role in many phenomena in such as fluid mechanics, 
hydrodynamics, optics, plasma and physics and so on. 
Many powerful methods have been presented, such as 
the inverse scattering transform method (Ablowitz and 
Clarkson, 1991), the bilinear method (Hirota, 1971; Ma, 
2011), the Painleve expansion method (Weiss et al., 
1983; Kudryashov, 1988, 1990, 19991), the Backlund 
truncated method (Miura, 1978), the exp-function method 
(He and Wu, 2006; Yusufoglu, 2008; Bekir, 2009, 2010; 
Aslan, 2011a; Ma and Zhu, 2012), the tanh-function 
method (Abdou, 2007; Fan, 2000; Zhang and Xia, 2008; 
Yusufoglu and Bekir, 2008), the Jacobi elliptic function 
method (Chen and Wang, 2005; Liu et al., 2001; Lu, 2005), 

the (G’/G)-expansion method (Wang et al., 2008; Zhang, 
2008; Zhang et al., 2008; Zayed 2009, 2010; Bekir, 2008; 
Ayhan and Bekir, 2012; Aslan, 2010, 2011b, 2012a,b), the 
generalized Riccati equation mapping method (Zhu, 
2008; Zayed and Arnous, 2013; Ma and 
Fuchssteiner,1996; Ma et al., 2007; Ma and Lee, 2009), 
local fractional variation iteration method (Yang and 
Baleanu, 2013), local fractional series expansion method 
(Yang et al., 2013) and so on. 

The objective of this paper is to apply the improved 
(G’/G) - expansion method combined with suitable 
transformations to construct many exact solutions 
involving parameters of the nonlinear PDE of special 
interest in nanobiosciences namely, the following 
transmission line model for nano-ionic currents along 
microtublues (Sekulic et al., 2011; Sataric et al., 2010): 
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where
90.34 10R     the resistance of the elementary 

rings (ER) 
98 10L m  , 

15

0 1.8 10C F   is the total 

maximal capacitance of the ER. 
13

0 1.1 10G si   is 

the conductance of pertaining nano-pores (NPS) 

and
105.56 10Z     is the characteristic impedance 

of the system. The parameters and   describe the 

nonlinearity of ER capacitor and conductance of NPS in 
ER respectively. The physical details of the derivation of 
Equation (1) can be elaborated in Sataric et al. (2010). 
Recently, Equation (1) has been discussed by using the 
modified extended tanh-function method (Sekulic et al., 
2011) and by using the improved Riccati equation 
mapping method (Zayed et al., 2013) where its exact 
solutions have been found. Comparison between our 
results and the well - known results obtained in Sekulic et 
al. (2011) and Zayed et al. (2013) will be investigated in 
the discussions and conclusions part of this work. 
 
 
DESCRIPTION OF THE IMPROVED (G’/G) -
EXPANSION METHOD 
 
Suppose that we have the following nonlinear evolution 
equation: 
 

( , , , , ,...) 0t x tt xxF u u u u u                               (2) 

 

where F is a polynomial in u(x, t) and its partial 
derivatives, in which the highest order derivatives and the 
nonlinear terms are involved. In the following, we give the 
main steps of this method (Liu et al., 2001; Lu, 2005) as 
follows: 
 
 
Step 1  
 
We use the traveling wave transformation  
 

( , ) ( ),u x t u kx t                             (3) 

  
to reduce Equation (2) to the following ordinary 
differential equation (ODE): 

 

( , , ,...) 0P u u u                                         (4) 

 

where ,k   are constants. Here, P is a polynomial 

in ( )u   and its total derivatives, while the dashes denote 

the derivatives with respect to  . 
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Step 2 
 
We assume that Equation 4 has the formal solution: 
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where ( ,..., )ia i m m   are constants to be determined 

later and ( )G   satisfies the following linear ODE: 

 

( ) ( ) ( ) 0G G G        ,                  (6)  

 

where   and  are constants.  

 
 
Step 3 
 
The positive integer m in (5) can be determined by 
balancing the highest-order derivatives with the nonlinear 
terms appearing in Equation 4.  
 
 
Step 4 
 
We substitute (5) along with Equation 6 into Equation 4 to 

obtain polynomials in , ( 0, 1, 2,...)

i
G

i
G

 
   

 
. Equating 

all the coefficients of these polynomials to zero, yields a 
set of algebraic equations which can be solved by using 

the Maple to find the unknowns , ,ia k  . 

 
 
Step 5 
 
Since the solutions of Equation 6 are well-known for us, 
then we have the following ratios: 
 

(i)If
2 4 0   , we have 
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(ii)If
2 4 0   , we have 
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(iii)If
2 4 0   , we have 
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                                            (9)  

 
where c1 and c2 are arbitrary constants. 

 
 
Step 6  

 

We substitute the values of , ,ia k   as well as the ratios 

(7)-(9) into (5) to obtain the exact solutions of Equation 
(2). 

 
 
MANY FAMILIES OF EXACT TRAVELING WAVE 
SOLUTIONS FOR EQUATION (1) 

 
Here, we apply the proposed method of description of the 
improved (G’/G) - expansion method part of this work to 
find many families of exact traveling wave solutions of 
Equation (1). To this end, we use the wave transformation 
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where 
6

0 0.6 10 ,RC s     and c is the dimensionless 

velocity of the wave, to reduce Equation (1) into the 
following ODE: 

 
(6 ) 0u Acuu Bc u Cu                   (11) 
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By balancing u with uu  , we have m = 2. Hence, the 

formal solution of Equation (11) takes the form 

 
2 1 2

2 1 0 1 2( )
G G G G

u a a a a a
G G G G



 

 

          
           

       
     (12) 

 

where 2 1 0 1 2, , , ,a a a a a   are parameters to be 

determined later, such that 2 0a   or 2 0a  . Inserting 

(12) with the aid of Equation (6) into Equation (11), we get 
the following system of algebraic equations: 
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By solving the above algebraic equations with the aid of 
Maple or Mathematica, we have the following cases: 
 
 

Case 1 
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Case 3 
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Exact solutions of Equation (1) for case 1 
 
Substituting (13) into (12) and using (7) – (9), we have 
the following exact solutions for the model (1): 
 

(i)If 
2 4 0    (Hyperbolic function solutions),we have 

the exact solution 
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                                                                                 (16) 
 

If we set c1=0 and 2 0c    in (16), we have the solitary 

solution 
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                                                                                 (17) 
 

while if we set c2=0 and 1 0c   in (16), we have the 

solitary solution 
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If 2 0c  and
2 2

1 2c c , then we have the solitary solution 

 

 
2 2

2 20 0
3 0 0 22 2

3( 4 ) 3
( , ) tanh 4

8 6 8 6

B a A B a A
u x t a

A A

  
  

   

    
       

      

 

                                                                                (19) 

 

Where 
1 1

0

2

tanh
c

c
   

  
 

, while if 1 0c  and
2 2

1 2 ,c c  

then  we have the solitary solution 
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where 1 2
0

1

coth
c

c
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(ii) If  
2 4 0    (Trigonometric function solutions), we 

have the exact solution 
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If we set c2=0 and
1 0c    in (21), we have the periodic 

solution 
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while if we set c1=0 and
2 0c   in (21), we have the 

periodic solution 
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If 1 0c  and
2 2

1 2c c , then we have the periodic solution 
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(iii) If 
2 4 0   (Rational function solutions), we have 
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 and c1 , c2 are arbitrary 

constants. 



1544          Sci. Res. Essays 
 
 
 
Exact solutions of Equation (1) for case 2 
 
Substituting (14) into (12) and using (7) – (9), we have 
the following exact solutions for the model (1): 
 

(i) If  
2 4 0    (Hyperbolic function solutions), we 

have the exact solution 
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If we set c1=0 and
2 0c  in (27), we have the solitary 

solution 
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while if we set c2=0 and 1 0c    in (27), we have the 

solitary solution 
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2c o and
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while if 1 0c  and
2 2

1 2c c   then  we have the solitary 

solution 
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where 1 2
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(ii)If  
2 4 0    (Trigonometric function solutions), we 

have the exact solution 
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If we set c2=0 and 1 0c    in (32), we have the periodic 

solution 
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while if c1=0 and
2 0c   in (32), we have the periodic 

solution 
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If we set 1 0c  and
2 2

1 2c c   then we have the periodic 

solution: 
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(iii)If 
2 4 0   (Rational function solutions), we have 
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Exact solutions of Equation (1) for case 3 
 
Substituting (15) into (12) and using (7) – (9), we have 
the following exact solutions for the model (1): 
 

(i)If 
2 4 0    (Hyperbolic function solutions), we 

have the exact solution 



 
 
 
 

   
   

   
   

2

1 2

0 2

1 2

2

1 2

2

1 2

cosh sinh
( , )

sinh cosh

cosh sinh

sinh cosh

c c
u x t a a

c c

c c
a

c c

 


 

 


 



   
  
   
 

   
 
   
 

   (38) 

 

If we set c1=0 and
2 0c    in (38) we have the solitary 

solution 
 

    2 2

1 0 2( , ) tanh cothu x t a a              (39)  

 

while if we set c2=0 and 1 0c    in (38) we have the same 

solitary solution (39). 
 

(ii)If  
2 4 0    (Trigonometric function solutions), we 

have the exact solution 
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If we set c2=0 and 1 0c    in (40) we have the periodic 

solution 
 

   2 2

1 0 2( , ) tan cotu x t a a      
 

         (41) 

 

while if we set c1=0 and 2 0c  in (40) we have the same 

periodic solution (41). 
 

(iii)If 
2 4 0   (Rational function solutions), we have 
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DISCUSSION 
 
In this article, we have applied the improved (G’/G) - 
expansion method to find many exact solutions as well as 
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many solitary wave solutions  and  periodic solutions (16) 
- (42) of  the nonlinear  model (1) which are of special 
interests in nanobiosciences, namely the transmission 
line models for nano-ionic currents along microtublues. 
On comparing our results obtained in this article with the 
well-known results obtained in Sekulic et al. (2011) and 
Zayed et al. (2013) we deduce that some of these results 
are in agreement together, while the others are new 
which are not discussed elsewhere. 
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