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In the present paper, the improved (G’/G) - expansion method combined with suitable transformations is
used to construct many exact solutions involving parameters of a nonlinear equation describing the
nano-ionic currents along microtublues. As a result, hyperbolic function solutions, trigonometric
function solutions and rational function solutions with parameters are obtained. When these
parameters are taken as special values, some solitary wave solutions and the periodic wave solution
are derived from the exact solutions. This method can be employed for many other nonlinear evolution
equations in mathematical physics and engineering. Comparisons between our results and the well-

known results are given.
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INTRODUCTION

Nonlinear phenomena play crucial roles in applied
mathematics and physics. Exact solutions for nonlinear
partial differential equations (PDEs) play an important
role in many phenomena in such as fluid mechanics,
hydrodynamics, optics, plasma and physics and so on.
Many powerful methods have been presented, such as
the inverse scattering transform method (Ablowitz and
Clarkson, 1991), the bilinear method (Hirota, 1971; Ma,
2011), the Painleve expansion method (Weiss et al.,
1983; Kudryashov, 1988, 1990, 19991), the Backlund
truncated method (Miura, 1978), the exp-function method
(He and Wu, 2006; Yusufoglu, 2008; Bekir, 2009, 2010;
Aslan, 2011a; Ma and Zhu, 2012), the tanh-function
method (Abdou, 2007; Fan, 2000; Zhang and Xia, 2008;
Yusufoglu and Bekir, 2008), the Jacobi elliptic function
method (Chen and Wang, 2005; Liu et al., 2001; Lu, 2005),

the (G’/G)-expansion method (Wang et al., 2008; Zhang,
2008; Zhang et al., 2008; Zayed 2009, 2010; Bekir, 2008;
Ayhan and Bekir, 2012; Aslan, 2010, 2011b, 2012a,b), the
generalized Riccati equation mapping method (Zhu,
2008; Zayed and Arnous, 2013; Ma and
Fuchssteiner,1996; Ma et al., 2007; Ma and Lee, 2009),
local fractional variation iteration method (Yang and
Baleanu, 2013), local fractional series expansion method
(Yang et al., 2013) and so on.

The objective of this paper is to apply the improved
(G’/G) - expansion method combined with suitable
transformations to construct many exact solutions
involving parameters of the nonlinear PDE of special
interest in nanobiosciences namely, the following
transmission line model for nano-ionic currents along
microtublues (Sekulic et al., 2011; Sataric et al., 2010):
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where R =0.34x10°Q the resistance of the elementary
rings (ER) L=8x10"°m, C, =1.8x10"F is the total

maximal capacitance of the ER. G, =1.1x10"si is
the conductance of pertaining nano-pores (NPS)
and Z =5.56x10" Q is the characteristic impedance

of the system. The parameters & and y describe the

nonlinearity of ER capacitor and conductance of NPS in
ER respectively. The physical details of the derivation of
Equation (1) can be elaborated in Sataric et al. (2010).
Recently, Equation (1) has been discussed by using the
modified extended tanh-function method (Sekulic et al.,
2011) and by using the improved Riccati equation
mapping method (Zayed et al., 2013) where its exact
solutions have been found. Comparison between our
results and the well - known results obtained in Sekulic et
al. (2011) and Zayed et al. (2013) will be investigated in
the discussions and conclusions part of this work.

DESCRIPTION OF THE
EXPANSION METHOD

IMPROVED (G’IG) -

Suppose that we have the following nonlinear evolution
equation:
F(,u,,u,u,,u,,..)=0 2

where F is a polynomial in u(x, t) and its partial
derivatives, in which the highest order derivatives and the
nonlinear terms are involved. In the following, we give the
main steps of this method (Liu et al., 2001; Lu, 2005) as
follows:

Step 1

We use the traveling wave transformation

u(x,t)=u(s), &=kx+at €)

to reduce Equation (2) to the following ordinary
differential equation (ODE):

P(u,u’,u”,...)=0 (4)

where K,® are constants. Here, P is a polynomial
in U($) and its total derivatives, while the dashes denote
the derivatives with respect to & .
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Step 2

We assume that Equation 4 has the formal solution:

n, (6'(9)
U(f) = q [ j %)
i:z—m G(¢)
where a, (i =—m,...,m) are constants to be determined

later and G(&) satisfies the following linear ODE:

G'(8)+AG' (&) +1G(5) =0, 6)

where A and u are constants.

Step 3

The positive integer m in (5) can be determined by
balancing the highest-order derivatives with the nonlinear
terms appearing in Equation 4.

Step 4

We substitute (5) along with Equation 6 into Equation 4 to

G!
obtain polynomials m( ] (1=0,+1,#2,...) . Equating

all the coefficients of these polynomials to zero, yields a
set of algebraic equations which can be solved by using

the Maple to find the unknowns a,, k,o.

Step 5

Since the solutions of Equation 6 are well-known for us,
then we have the following ratios:

@)IfA* =41 >0, we have

G 4 i 4 ccosh(% 2 - 4y)+c smh( JA 4) e
6@ 2 2 smh(2 2~ 4y)+czcosh( JA 4,u)

(i)f A =44 <0, we have

G'(‘f)__iJr b1 clsm( «/ )+c cos( «f4u—/12)
G 2 2 clcos( J_)+c sm( W)

(8)
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(iiflf A% =44 =0, we have

G _ 2. g

= — 9)
G(g) 2 c+cg

where c; and ¢, are arbitrary constants.

Step 6

We substitute the values of a;, k,® as well as the ratios
(7)-(9) into (5) to obtain the exact solutions of Equation

).

MANY FAMILIES OF EXACT TRAVELING WAVE
SOLUTIONS FOR EQUATION (1)

Here, we apply the proposed method of description of the
improved (G’/G) - expansion method part of this work to
find many families of exact traveling wave solutions of
Equation (1). To this end, we use the wave transformation

1 c

u(x,t) =u($), §=Ex——t (10)
T

where 7 =RC, = 0.6x10°°s, and c is the dimensionless

velocity of the wave, to reduce Equation (1) into the
following ODE:

u”+ Acuu’+(6—Bc)u’+Cu =0 (11)
Where
377 32C,

A=5_(26C,- 4G,), B="—2, C=3(RZ-G,Z).

T
By balancingu” with uu’, we have m = 2. Hence, the
formal solution of Equation (11) takes the form

uié)=a, (%) +a (%] +a, + a_l(%j_ +a, (%’j 12)

a,, a,a,, a,a, are
determined later, such that @, #0 or a, #0. Inserting

(12) with the aid of Equation (6) into Equation (11), we get
the following system of algebraic equations:

where parameters to be

|
o

24,1’ +2a%,uAc =0,

o

@ ol@

24a, +2a2Ac=0,

Qo

S4a_,u’A+6a_u’ + Ac(2a’,4+3a_ja_u) =0,

~

54a,1+64a, + Ac(2a’1+3a,a,) =0,

N R R

L 0|Q o|a

\__/¥_/I¥_/¥_/
IS

40a ,u° +38a ,A2u+12a Au’ + Ac(2a’, +3a @ ,A +a’ u+2a,8 ,u) +2a ,u(6-Bc) =0,

o ola
N— N~

40a,u+38a,4% +12a 1+ Ac(282:+3a,8,4 +a} +24,3,) + 28,(6- Bc) =0,

e e R
~
Y

oD

52a ,4u+8a 1’ +7a Atu+8a,A° + Ac(3a,a, +aa,u+a’ A +2aa 4 +aa u)
+(2a ,A+a,u)(6-Bc)+Ca, =0,

52a,u+8au+7a4" +8a,4° + Ac(3aa,u+a 3, +a’ A +2a,3,A +3,,)

R
QI
—

+(2a,4+4,)(6-Bc)-Ca, =0,

o|Q

-1

J : 16a,u+8a du+lda,A*+a A+ Ac(aa A+’ +2a,a ,+a,a 1)
+(2a,+a ,4)(6-Bc)+Ca , =0,

j : 16,4 +8aAu+14a,A° u+a A’ + Ac(a a1 +a u+2a,a,u+a,a,4)

+(2a,u+8,1)(6-Bc)-Ca, =0,

N VR TN
2l

@lQ

0
j . 6a,A+2a u+a A’ —ad’u—6a,lu’ —2au’
+Ac(aa, —a a,u+aa, —aau) —(au—a,)(6-Bc)+Ca, =0

By solving the above algebraic equations with the aid of
Maple or Mathematica, we have the following cases:

Case 1l
(A*+8u+6) ~12A(B-a,A)
A=A, p=pu c=-2""CT7 g - e Sadi
P HEHC B—a,A % =% & A2 +8u+6)  (13)
_ -12(B-a,A) a,-0,a,-0

T A(A2+8u+6)

Case 2

A1=0, y:y,c::f;GA,ao:aﬂ,q:O,a,Z:%,aA:O,a?:O
(14)

Case 3

120 pm @22 0= s a0

9 B,T
a, :E{zao—az—z(x)} ,a,=0a,#0



Exact solutions of Equation (1) for case 1

Substituting (13) into (12) and using (7) — (9), we have
the following exact solutions for the model (1):

(i)If A>—4u >0 (Hyperbolic function solutions),we have
the exact solution

3(12—4;:)[ B-a,A ] i L M & )

2

|t =ay~
u(x,t)=a, A |\ A2+8u+6 clsmh( - ﬂ)+c cosh( 2 4#)
3#( B-a,A ]
2
A\ A2 +8u+6

(16)

If we set ¢;=0 andC, # 0 in (16), we have the solitary

solution

A +8u+6

ul(x,t)=a0+%( Ba,A j{/’tzsechz(é\/M)Mytanhz(%\/M)}

17)

while if we set c,=0 andC, #0 in (16), we have the
solitary solution

u,(xt)=a, +i[ B-a,A j:—/lz cosech’ (%Mz —4[u)+4yCOthz(§\//12 —4;1)}

A2 +8u+6
(18)

If ¢, #0and ¢} <5, then we have the solitary solution

US(X,t):ao_s(ﬂ_w)[ B—%Aejtanhz(§0+§ [_/12_4y)+3f[ B-a,A j

A (A7 +8u+ A2 +8u+6
(19)

Where &, =tanh™ [ j while if ¢, #0andc} <c3,

CZ
then we have the solitary solution

UA(X,t)=ao—3w_4ﬂ)[ o Jtanhz(§o+§M)+?f[ i }

A | A2+8u+6 A2+811+6
(20)

where & _ coth* (&j
c

(i) If A* =41 <0 (Trigonometric function solutions), we
have the exact solution
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327( B-aA ) 3(4u-1%)( B-aA
uxt)= a°+_[/12+8,u+6J_ A (/12+8/j+6jx
(21)
—clsm( N /12)+c cos( ,/4;1—12) 2
01005(24/4;:—/12)+czsin(§4/4,u—/12)

If we set c,=0 andC, #0 in (21), we have the periodic
solution

B
Lkt =a+ (/12+8a0+6

e 7
(22)

while if we set ¢;=0 andC, #0 in (21), we have the
periodic solution

3( B-aA
U X,'[: +—
a(60) =4 A[/12+8p+6

s vt 7
(23)

If ¢, #0and 012 > Cg , then we have the periodic solution

uy(xt)=a,+ 3’12[ B- %Aj (4IUA/1)(,12+8 J[tan ( \/4#_1 50)}

A2 +811+6
(24)

where & = tan_l[c—z] :
c

while if ¢, #0andc’ >’
solution

3 B-aA ) 34u-1)( B-aA e =7
U,(xt) =2+ [/12+8,u+6] A {12+8y+6)[cm (2,/4,1 A foﬂ
(25)

, then we have the periodic

where & =cot™ (&]

C,

(iii) If A% —4u =0 (Rational function solutions), we have

2
u(x,t)=a,+— [—ZB BA ] 12—4[—02 j (26)
A" +81+6 C,+C,¢
where §=1x— 2*+8u+6\t and ¢, , c, are arbitrary
L B-a,A )z

constants.
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Exact solutions of Equation (1) for case 2

Substituting (14) into (12) and using (7) — (9), we have
the following exact solutions for the model (1):

@) If /12—4,u>0 (Hyperbolic function solutions), we
have the exact solution

B - %A]{c cosh(g\/_)+c smh(g\/_)}
8u+6 )| c,sinh( £y ) +c, cosh (&)

(27)

u(x,t)= a0+12ﬂ{

If we set c;=0 andC, #0in (27), we have the solitary
solution

0 (xt) =2, + 12u[38yao6Ajcoth (\/_g) (28)

while if we set c,=0 andc, #0
solitary solution

12u( B
u,(x,t)=a,+ ﬂ(SyaOG

in (27), we have the

Jtanh (\/_5) (29)

If C, #0and Cf > Cf , then we have the solitary solution

0t =2, + 12#{88ﬂa06AJtanh (§o+\/—_,u§) (30)

where &, =coth™ [&j
CZ

while if ¢, #0andc’ >C
solution

u,(x,t) =2, + lzﬂ(iﬂTQJMMVQé+J?Z§)@D

then we have the solitary

where & = tanhl[c—zj-
G

(i)lf A*—44 <0 (Trigonometric function solutions), we
have the exact solution

(e ssn(EE) o)
u(x,t)=a, [8ﬂ+6j{ clcOS(\/;é?)+CzSin(‘/;§)

If we set c,=0 andC, #0 in (32), we have the periodic

solution
124 B-a,A 2
u,(x,t) =a, - —=| —2— |cot (33)
)=, 2 D8 o g
while if ¢;=0 andC, #0 in (32), we have the periodic
solution
12 B-a,A 5
u,(x,t) =a, ——~| —2— |tan (34)
)=, 2 S
If we set C, #0andc’ >C. then we have the periodic
solution:
12,u B —a,A
u,(x,t) =a, - (8# - jtan (§O+J_§) (35)

C
where & =cot™ (—Zj
Cl

while if ¢, #0andc? >c’
solution

u,(x,t) = ao—lzu[B aOA)tan (§0+\/_§) (36)

then we have the periodic

Bu+

where & = tan_l[&j :

C,

(iii)If A2 —4 1 =0 (Rational function solutions), we have

=, 2B & | @)
’ A ( 8u+6 )|c +Cé
where gzlx_(_&”G jl
L™ (B-aA )z

Exact solutions of Equation (1) for case 3

Substituting (15) into (12) and using (7) — (9), we have
the following exact solutions for the model (1):

@)If A>—4u>0 (Hyperbolic function solutions), we
have the exact solution



o clcosh(\/—_ycf)mzsinh(\/—_uf) i
u(x,t)=a, —a,u clsinh(ﬁf)”zCOSh(\ﬁf) (38)

clcosh(ﬁ§)+czsinh(ﬁ§) *
g clsinh(\/—_yf)mzcosh(ﬁf)

If we set ¢;=0 andcC, #0
solution

u,(x,t)=a, —612;1{tanh2 (Hg) +coth? (ﬁg)} (39)

while if we set c,=0 and C, # 0 in (38) we have the same
solitary solution (39).

in (38) we have the solitary

Gi)If A2 —4.1 <0 (Trigonometric function solutions), we
have the exact solution

—¢,sin([u€) +c, cos([u£) :
¢, cos([u)+c,sin(\[ug) @0
) —¢,sin () +c, cos(u£) N
clcos(ﬁ§)+czsin(\/;§)

If we set c,=0 andC, # 0 in (40) we have the periodic
solution

u(x,t)=a, +a,u

+4a,

u (x,t) =a, +a2y[tan2(\/;§)+cot2(\/;§)} (41)

while if we set ¢;=0 and C, # 0in (40) we have the same
periodic solution (41).

(iii)If A° —4 1 = 0 (Rational function solutions), we have

2 -2

u(x,t)=a,+a, C2 +a, (42)

_ 2 2
c,+C,¢ c, +C,¢

where 521”(12}&
L LA )T
DISCUSSION

In this article, we have applied the improved (G’/G) -
expansion method to find many exact solutions as well as
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many solitary wave solutions and periodic solutions (16)
- (42) of the nonlinear model (1) which are of special
interests in nanobiosciences, namely the transmission
line models for nano-ionic currents along microtublues.
On comparing our results obtained in this article with the
well-known results obtained in Sekulic et al. (2011) and
Zayed et al. (2013) we deduce that some of these results
are in agreement together, while the others are new
which are not discussed elsewhere.
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