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Recently, with rapid development in computer science and technology, artificial intelligent (AI) models 
that emulate human thinking ability and brain structure are increasingly used in hydrological 
forecasting context. Neuro-fuzzy (N-F) models or specifically adaptive neuro-fuzzy inference systems 
(ANFIS) are rapidly becoming conventional in either academic or industrial applications. Although, 
there is a common network structure among ANFIS models, there is no one-fits-all ANFIS architecture 
for every case. Moreover, it is discussed that in many application, theory does not guide in model 
building process by either suggesting the relevant model input variables or correct functional form and 
model configuration. This paper is focused on the application of ANFIS in water resources context and 
reviews the common architecture of ANFIS models been used in this area of research. The aim is to 
familiarize the new researchers with ANFIS application process in water resources studies.  
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INTRODUCTION 
 
In the past decades, vast literature had drawn attention to 
the Box-Jenkins method for modelling of hydrologic 
events. This method in the class of empirical models 
opposes physical models to avoid considering 
complicated physical processes among the hydrological 
variables for modelling a system. Empirical or black box 
models deal with the undertaken system as a black box 
which the input to and output from the box are solely 
taken into account. Acceptable forecasting results have 
been reported for the application of Box-Jenkins or com-
monly said autoregressive integrated moving average 
(ARIMA) models in modelling of water resources systems 
(Ahmed and Sarma, 2007). However, a major problem 
with such models is that they are linear and stationary 
assumption based so that the modelling of a non-linear    
hydrological  phenomenon   will   probably   produce  less 
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accurate and reliable forecasts.  
Recently, artificial intelligent (AI) models that emulate 

human thinking ability and brain structure are increasingly 
used in hydrological forecasting context. Construction of 
these models depends on the data and there is no need 
of prior knowledge of the system under consideration of 
the so called data driven models. However, there has 
been little discussion on computer paradigms, which are 
often highly data dependant and their performance relies 
on model specification and ability to cope with dynamic 
changes of events. Model specification is based on the 
existing knowledge of hydrological system and data 
dependency is referred to the availability of data. One of 
the most significant findings in dealing with the 
aforementioned debate is soft computing technique. This 
technique offers a more flexible, less assumption-
dependent, and potentially self adaptive approach for 
modelling of water-level and other dynamic and nonlinear 
hydrological processes (See and Openshaw, 1999). The 
artificial neural networks (ANN) and neuro-fuzzy (N-F) 
model that is a hybrid method by preserving  the  learning  



 
 
 
 
ability of ANNs and fuzzy reasoning are of the two 
important AI models in which the latter one is considered 
under soft computing class of models. 

ANN in the class of black box models became popular 
among the hydrologists in the recent past. A large 
number of processing elements with their inter-con-
nections constitutes the artificial neural networks. ANNs, 
or shortly neural network (NN), follow the cognition 
process of the human brain. Neural networks are helpful 
and efficient to cope with the systems that the 
characteristics of the processes are difficult to be 
described by deterministic or stochastic equations. It has 
been demonstrated that neural networks do not require 
either a priori detailed understanding of physical 
characteristics of the catchments or extensive data pre-
processing. Moreover, NNs can handle incomplete, noisy 
and ambiguous data (Singh and Deo, 2007; Thirumalaiah 
and Deo, 1998). In recent years, there has been an 
increasing amount of literature on the application of ANN 
models in water resources engineering and manage-
ments and many other aspects of hydrology. Moreover, 
existing literature on rainfall-runoff modelling (Tokar and 
Johnson, 1999), flood forecasting (Toth et al., 2000), 
water quality assessment (Maier et al., 2004), evapo-
transpiration study (Kumar et al., 2002), groundwater 
prediction (Daliakopoulos et al., 2005), soil water 
evaporation (Han and Felker, 1997), and prediction of 
sediment volume (Kisi, 2007) strongly support the 
potential of neural networks in water resources modelling. 
To have a comprehensive review of this technique in 
water resources applications, readers are referred to the 
article of Maier and Dandy (2000). 

On the other hand, N-F models are rapidly becoming 
conventional in either academic or industrial application 
when compared to other nonlinear identification 
techniques. The forte of N-F systems, which has made it 
unique, is that the semantic transparency of rule-based 
fuzzy systems is combined with the learning ability of 
neural networks (Zounemat-Kermani and Teshnehlab, 
2008). Thanks to preserving ANNs ability and fuzzy logic, 
N-F models can be regarded as a gray box technique 
(Babuška and Verbruggen, 2003). The method of 
applying the learning ability of artificial neural networks to 
the fuzzy models or fuzzy inference systems (FIS) is 
called N-F modelling (Jang et al., 1997). Moreover, N-F 
models describe the systems using fuzzy if–then rules, 
represented in an adaptive network structure that is 
trained by a NN learning algorithm. The gray box models, 
N-F models, are more comprehendible to users than 
completely black-box models, such as ANNs. The N-F 
models or generally called adaptive neuro-fuzzy 
inference systems (ANFIS) (Jang, 1993), benefits from 
less training time because of their smaller dimensions 
and the network initialization with parameters relating to 
the problem domain. Such results put emphasis on the 
advantages of combination of fuzzy logic and neural 
network    technology    as    it    provides    an    accurate  
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initialization of the network in terms of the parameters of 
the fuzzy reasoning system (Aqil et al., 2007; Yurdusev 
and Firat, 2009). 

The N-F approach and particularly ANFIS, as a 
multilayer feed forward network with the ability to 
combine the verbal power of a fuzzy system with numeric 
power of a neural system is becoming a powerful 
alternative in modelling numerous processes (Chang and 
Chang, 2006). More recently, literature has found the 
application of ANFIS in many fields, such as, regional 
electricity loads (Ying and Pan, 2008), ophthalmology 
(Güler and Übeyli, 2005), reservoir operation (Dubrovin et 
al., 2002), wind speed (Sfetsos, 2000), evaporation (Kisi, 
2006), river flow (Firat, 2008) prediction, etc. 

Soft computing by combining several different 
computing paradigms, such as ANN, fuzzy-logic (FL) and 
genetic algorithm (GA) tries to find a new well-suited 
model to the system (Zadeh, 1994). Several attempts 
have been made to compare the ANFIS capabilities as a 
soft computing method with model driven methods, such 
as ARIMA models that have been conventionally used in 
water resources forecasting context. Although, literature 
has demonstrated the superiority of ANFIS models 
against ARIMA models (Firat, 2008), its superiority is 
influenced by the case study conditions and in some 
cases it does not outperform the ARIMA models 
(Altunkaynak et al., 2005). Moreover, there is no standard 
model building to cope with all possible case study 
conditions. However, extensive literature has suggested 
that N-F approach can be an effective alternative to the 
real problems when compared with conventionally used 
models (Altunkaynak and Sen, 2007).  

ANFIS models performance in river flow forecasting 
context has shown significant improvement in terms of 
computational speed, forecast errors, efficiency and peak 
flow estimation against ARIMA and ANN models (Shu 
and Ouarda, 2007). ANFIS models beside preserving 
reasonable forecasts accuracy in stream flow prediction 
have shown the capability to estimate peak flows more 
effectively than the low flows (Swain and Umamahesh, 
2004). This investigation was done using two different 
membership functions in fuzzification step of model 
building for peak flows and low flows. In contrary to the 
aforementioned findings, consistent underestimation of 
peak flows is also reported, while low and medium flows 
forecasts have been more accurate (Aqil et al., 2007). 
This contradiction in prediction result implies that ANFIS 
models are case-specific and result may be different at 
various case studies. 

The effectiveness of human knowledge interference in 
ANFIS modelling was investigated by Chang and Chang 
(2006) in a study on prediction of water level at Shihmen 
reservoir, Taiwan. Two different N-F models were 
constructed based on the knowledge of case study. One 
was developed to forecast the water level solely based 
on upstream flow pattern  of  the  reservoir,  while  human 
knowledge interfered model additionally entered current  



2114          Sci. Res. Essays 
 
 
 

 

Input 
 

Output 
 

Database Rule base 

Fuzzification 

interface 

Decision making unit 

Fuzzification 

interface 

Defuzzification 

interface 

Knowledge base 

 
 
Figure 1. Fuzzy inference system (Jang, 1993). 

 
 
 

outflow of the reservoir into the model. Using the same 
ANFIS architecture for both models, results demonstrated 
that expert’s knowledge based model produces consis-
tently superior precision than the other one. The different 
steps in ANFIS modeling is described subsequently. 
 
 
ANFIS   
 
N-F modelling technique benefits from neural networks 
advantages as well as fuzzy inference system (FIS) 
capabilities. Characteristics such as learning capabilities, 
optimization potential and connectionist structure of 
neural networks in conjunction with FIS abilities to follow 
human rule thinking way and ease of utilizing experts’ 
knowledge construct the N-F approach. FIS is a 
framework to establish a simulation of the undertaken 
system behavior as if-then rules using the experts’ 
knowledge or past available data. In addition, it is a 
process of nonlinear mapping from the input variables to 
the output variable using fuzzy logic (Jang, 1993). This 
mapping routine is accomplished using fuzzy if-then rules 
and every rule explains the local behavior of the mapping 
routine. The premise part of if-then rule defines the fuzzy 
region of the input space and the consequent part 
specifies the corresponding output of the system. 
Therefore, the number of fuzzy if-then rules defines the 
FIS efficacy. Practically, a FIS consists of five functional 
components as shown in Figure 1.  

The rule base block contains the fuzzy if-then rules, 
and membership functions (MF) of the fuzzy sets used in 
the fuzzy rules is defined in the database block. Decision 
making unit performs the inference operation upon the 
rules. The fuzzification unit transforms the crisp inputs 
into fuzzy sets. However, FIS is able to take either fuzzy 
or crisp values as model inputs, whereas the output is 
always a fuzzy set; hence, the defuzzification interface 
turns the fuzzy set into a crisp output. Usually, knowledge 
base unit is referred to both rule base and database units 
jointly (Nayak et al., 2005).  

Several types of FIS have been proposed based on the 
specification of consequent part of if-then rules and the 
defuzzification method. Takagi-Sugeno (TS) model and 

Mamdani model are two of the commonly used fuzzy 
inference engines (Swain and Umamahesh, 2004; 
Zounemat-Kermani and Teshnehlab, 2008. TS-FIS using 
a first-order polynomial of the input variables constitutes 
the output function. A TS-FIS with such output function is 
called the first order TS-FIS, whereas if the model output 
is constant then it is named the zero-order TS-FIS 
(Takagi and Sugeno, 1985). 

An ANFIS first introduced by Jang (1993), basically, is 
a multilayer adaptive network that the membership 
functions optimization of antecedent part of TS-FIS is 
done using a feed forward neural network. TS-FIS is the 
inference engine of the ANFIS model. The neuro fuzzy 
approach overcomes the main drawback of fuzzy logic 
modelling in terms of the lack of systematic procedure for 
designing a fuzzy controller, by means of the neural 
networks learning ability (input-output pairs), self 
organizing the structure and adaption in an interactive 
routine (Chang and Chang, 2006). Moreover, both prior 
knowledge and data processing can be used in con-
struction of the ANFIS method. Expert knowledge of the 
nature is involved in the form of fuzzy if-then rules and 
their associated parameters (the membership functions 
and consequent parameters) are fine tuned using data 
processing (numeric power of NNs). It provides the 
possibility to interpret the extracted results from N-F 
models, which is not possible with pure black box models 
such as NNs. In this perspective, an expert can modify 
the rules or even add some rules based on his 
knowledge to expand the validity of the model (Babuška 
and Verbruggen, 2003).  

The relationships between variables of ANFIS models 
are described using if–then rules with ambiguous 
predicates, such as: if today’s water-level is high, then it 
is highly likely that tomorrow’s water-level will be high. 
This rule is rather a qualitative way to define the 
relationship between the today’s water level and 
tomorrow’s water level. To build an operational model, 
the meaning of the terms ‘high’ should be defined more 
precisely. The data that are considered ‘high’ constitute a 
fuzzy set. Membership functions (MF) define a value 
between [0, 1] to the crisp data of the considered fuzzy 
sets (Jang et al., 1997). Therefore,  a  membership  value  



 
 
 
 
of 0 denotes the non-membership, and value 1 denotes 
the complete membership in the fuzzy set; a degree 
between 0 and 1 means partial membership in the fuzzy 
set. There are two commonly used methods to define the 
MFs parameters value, which are the back propagation 
algorithm and hybrid-learning algorithm that provide the 
network optimization (Firat and Güngör, 2007). 

Fuzzy if-then rules or fuzzy conditional statements are 
expressions of the form IF A THEN B, where A (high) and 
B (high) are labels of the fuzzy sets. Fuzzy if-then rules 
are relevant to the imprecise modes of reasoning. In an 
environment of uncertainty and imprecision, fuzzy if-then 
rules facilitate the human expertise to make decision. In 
the aforementioned fuzzy conditional statement, both 
premise part (A) and consequent part (B) are fuzzy sets. 
On the other hand, there are fuzzy if-then rules proposed 
by Takagi and Sugeno (1985) that fuzzy sets are involved 
only in the premise part and the consequent part is 
described by a non-fuzzy equation. Fuzzy if-then rules 
are the core of the fuzzy inference system. In a research 
(Mehta and Jain, 2009), merits of different types of fuzzy 
inference systems were studied. It was demonstrated that 
the ANFIS model that operates using TS-FIS gave better 
results with minimum error. On the other hand, Fuzzy 
Mamdani (FM) model that operates using Mamdani FIS 
provided the capabilities to change the number of 
categories and type of the MF of the developed model if 
there is any drastic change in the present conditions of 
the case study. 

Number and type of membership functions (MF) beside 
the number of rules are two important determinants in 
ANFIS architecture, for which compatibility of model to 
the system under study depends on them. There is no 
standard method for selecting the type and number of 
MFs required at network to minimize the output error 
measure or maximize performance index (Babuška and 
Verbruggen, 2003). These determinant factors may vary 
in each different case study. However, selection of 
appropriate MF at fuzzification part of model building is 
another important debate in model construction. There 
exist literature that introduces the triangular membership 
functions (MF) as a well suited MF to the practical 
applications (Kisi, 2006). Contrarily, there are some 
literature that do not only recommend Gaussian MF but 
have also reported slightly better performance when 
compared with triangular MF in practice (Aqil et al., 2007; 
Shu and Ouarda, 2007; Zounemat-Kermani and 
Teshnehlab, 2008). Overall, fuzzy membership functions 
can take many forms and the one that gives the minimum 
mean square error can be the best choice. 
 
 
Model input selection and data division 
 
The first step to be taken in N-F modelling is the model 
input selection. To date, in many of the artificial 
intelligence applications there is no  confirmed  theory  for  
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model building process to suggest the relevant input 
variables or the correct functional form, thus the input 
selection remained a controversial issue in modelling and 
forecasting events (Zounemat-Kermani and Teshnehlab, 
2008). Some researchers have used previous knowledge 
of their case study to select relevant inputs (Shu and 
Ouarda, 2007) and some by testing the network 
performance at various input structures select the best 
model inputs combination (Firat and Güngör, 2007; 
Nayak et al., 2005). Accurate model input selection can 
simply influence the model architecture, processing 
speed, number of if-then rules and the parameters to be 
estimated. Although, ANFIS as well as neural networks 
has the ability to determine the critical model inputs, 
presenting a large number of inputs to the network 
usually increases the network size with increase in the 
number of rules, so that it decreases the processing 
speed (Nayak et al., 2005). However, this method can be 
useful in the absence of prior knowledge about the 
system. Beside the importance of input selection, the 
problem is more highlighted in time series application 
where appropriate number of lags has to be selected for 
the input.  

In N-F modeling, no rigorous criterion has been 
suggested for input selection. A statistical approach 
which is based on autocorrelation function (ACF) and 
partial autocorrelation function (PACF) between the 
variables has been repeatedly suggested and employed 
for input selection in N-F modelling  (Nayak et al., 2004; 
Sudheer et al., 2002). In modelling of river flow, the 
number of antecedent flow values that have a significant 
influence on the predicted flow value, can be determined 
by placing a 95% confidence interval on each of ACF and 
PACF plots. The graphical interpretation of these plots is 
the same as the traditional statistical methods, whereas 
the model performance is possible to improve in soft 
computing methods. 

The model training and testing are the two inevitable 
steps in model building process. The training subset is 
utilized to optimize the model, and the testing subset is to 
check the performance and consequently the generalize-
tion ability of the built model (Mehta and Jain, 2009). It is 
worth mentioning that testing subset should be 
independent from the training set to check the 
generalization ability of the model beyond the training 
data set. It is stressed that the available training dataset 
should cover all the characteristics of the system under 
study for effective estimation of the event (Mehta and 
Jain, 2009). One of the methods to tackle with this issue 
is to use the k-fold cross-validation method upon the data 
set (Altunkaynak and Sen, 2007). This method randomly 
splits the dataset into several desired subsets. 
Thereafter, an iterative method by holding out one of the 
subsets for the test set, selects the rest of them for the 
training set. Accordingly, several combination of 
training/testing subsets will be created so that the best 
training  set  would  be  selected  based   on   the   model  
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Figure 2. Structure of Hybrid N-F System (Ponnambalam et al., 2003). 
 
 
 

performance (Firat and Güngör, 2007). 
Training, in detail, is a process to calibrate the value of 

modifiable parameters in the network such as connection 
weights and bias via presentation of input-output pairs to 
the network. It is aforesaid that AI models are data 
dependent or data driven, thus in these models, no 
functional relationship is considered between the 
independent and dependent variables in advance. The 
functional relationship is settled by the data in training (or 
calibration) process (Coulibaly et al., 2000). It is argued 
by Wang et al. (2006) that training is basically a matter of 
nonlinear optimization that minimizes the error between 
the constructed network output and the observed output.  

Data preparation has also been a controversial issue in 
the application of artificial intelligence techniques. 
However, N-F models in comparison with traditional 
statistical models have the ability to cope with non-
stationarity and non-linear patterns in the data series. In 
addition, one of the preferences of the ANFIS models is 
that the probability distribution of the data set does not 
have to be identified in advance (Babuška and 
Verbruggen, 2003). In this regard, the successfulness of 
ANFIS models in dealing with non-transformed data, is 
supported in many attempts in water resources modelling 
(Firat and Güngör, 2007; Yurdusev and Firat, 2009). 
 
 
ANFIS architecture and algorithm 
 
The philosophy behind ANFIS is that the adaptive 
network is used to search for suitable fuzzy decision rules 
that function well on the tasks in question. An adaptive 
network is a feed forward structure that by means of 
selection of modifiable parameters determines the overall 
output behavior. Thus, ANFIS methodology is designed 
to create a FIS, using given input-output data set and 
adjust the membership function parameters by either a 
back-propagation algorithm solely or a hybrid algorithm of 

back-propagation and least squares estimator (Swain 
and Umamahesh, 2004). Generally, in hybrid algorithm, a 
NN back-propagation learning algorithm determines the 
membership function parameters and the consequent 
parameters are determined using least square method 
(Shu and Ouarda, 2007). A simple visual structure of 
ANFIS soft computing technique is shown to illustrate the 
hybrid structure of FIS and an adaptive network (Figure 
2). In the illustration of the structure of hybrid N-F system 
for simplicity, only two input variables and one output are 
considered representing forecasting of one-day water 
level using two days before data. It is presumed that 
based on time series analysis, today’s water level has 
relationship with hydrological events of two days before, 
representing in water level. The x1 and x2 are the input 
variables that represent the water level of one and two 
days before the output y, that is, the present water level. 
The connections between the adaptive network and fuzzy 
inference system are demonstrated as shown in Figure 2. 
It shows how the fuzzification and defuzzification 
components as well as fuzzy inference engine work in an 
adaptive network.    

In order to demonstrate the architecture of ANFIS, 
which is a mapping of FIS to neural network structure, a 
first order TS fuzzy model is considered (Figure 3, part a) 
that produces a set of parameters in the consequent part 
with an equation representing the role of each entry on 

the output. For simplicity, two input variables (  as the 

first lag of water level and  as the second one) and one 

output (f) that represent the present water level are 
considered in model architecture explanation. Assuming 
each input variable has two membership functions. 
Figure 3 (part a) shows the TS fuzzy if-then rules 
construction routine that can be expressed as:  
 

Rule 1: If  is  and  is  then 
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Figure 3.  (a) Takagi-Sugeno fuzzy if-then rule and fuzzy reasoning mechanism; (b) 

equivalent ANFIS architecture (Aqil et al., 2007). 
 
 

 

Rule 2: If  is  and  is  then 

 
 

where  are constructing the linear output of fuzzy 

if-then rules. The linguistic labels, A and B, are the fuzzy 
sets defined by MFs of each input variable that may 
represent the cluster of low water levels (A1, B1) and high 
water levels (A2, B2). Therefore, rule number one says 
that, if water level at the previous day is low and water 
level of the second lag is low as well, then the present 
water level is a function of these variables with their 
corresponding parameters. The overall output is weighted 
average of all rules outputs. Since there is no systematic 
way to decide on the type and shape of the MFs that 
have the best performance in the defined FIS, the 
effective method is to use an adaptive neural network 
model trained by given input-output data to optimize the 
MFs. Such method is called ANFIS and its architecture is 
as shown in Figure 3, part b. The ANFIS building with all 
the relationships between the input and output of each 
five layers are described as follows (Figure 3, part b): the 
first layer involves input nodes and every node is an 
adaptive node. The output node is defined based on the 
shape of membership function such as, 
 

                      (1) 

                       (2) 

 

where the crisp water level data (inputs) are  and  to 

the node,  and  are the fuzzy sets defined by 

and  membership functions, respectively. Any 

appropriate membership function regarding the problem 
can be employed in this node. Among the continuous and 
piecewise differentiable MFs, bell-shaped and Gaussian 
MFs due to their smoothness and concise notation are 
more commonly used (Chang and Chang, 2006). 
Assuming a Gaussian MF, the output can be computed 
as (Jang et al., 1997): 
 

                          (3) 

 

and  with generalized bell-shaped MF can be 

computed as (Jang et al., 1997): 
 

                                     (4) 

 
The same function can be applied to define the output 

 with fuzzy set of ,  at any of these  
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MFs with only substituting  by  in each equation. 

Parameters sets of  and  are of the so 

called premise (antecedent) parameters of fuzzy if-then 
rules which define the shape of MFs.  

In the second layer, the output node is a fixed node 
which the degree of fulfillment of each input pair to the 

rule is defined using a fuzzy T-norm operator ( ) that 

describes the fuzzy intersection (AND) operator. Thus, 

each output node  represents firing strength of a rule 

by multiplying incoming signals:  
 

          (5) 

  
The third layer is to calculate the normalized firing 
strength of each rule as: 
 

                           (6) 

 

The contribution of each rule  in the model output is 

determined in forth layer. Thus, the output of this layer is: 
 

                  (7) 

 

where   are the parameters set of the so called 

consequent parameters of the FIS. 
The single node at the fifth layer computes the overall 

output of the ANFIS by summing all the incoming signals. 
The selected operator transforms the fuzzy output into a 
crisp value. The output of this layer can be defined as: 
 

                                             (8) 

 
In other words, the network output is the weighted 
average of all rules outputs (Kazeminezhad et al., 2005). 
Now, the adaptive network is constructed and the next 
step is to approximate the parameters of the FIS and 
train the network based on the supervised learning 
algorithm to be able to find the precise value of the 
aforementioned parameters. 
 
 
Fuzzy clustering 
 
To approximate the FIS parameters in which the number 
of rules is modifiable, it is required to optimize the 
premise parameters that define the shape of MFs and 
consequent parameters that define the final output of 
ANFIS model. In ANFIS model, as input variables can be 
clustered into several class values to construct fuzzy if-
then rules in which the fuzzy rules are built through 
various MF parameters, the number of parameters to be 
determined increase as the number of rules increase 
(Aqil et al., 2007). To keep the ANFIS model as  fast  and  

 
 
 
 
efficient as possible, construction methods based on the 
fuzzy clustering originated from data analysis and pattern 
recognition should be taken into consideration. Basically, 
fuzzy membership shows the degree to which a given 
input is parallel and similar to some prototypical objects. 
An appropriate distance measure efficiently helps to 
acquire the degree of similarity precisely. Therefore, the 
degree of similarity within each cluster improves and 
consequently it may reduce the number of clusters and 
rules.  

The subtractive fuzzy clustering method is one of the 
most efficient and commonly used methods in this 
context. Moreover, it was noted that ANFIS with 
subtractive clustering method operated with better results 
than grid partitioning method in fuzzy inference engine of 
the model (Mehta and Jain, 2009). Subtractive clustering 
method is used to establish the fuzzy rule base, because 
of its capability to determine the number of clusters 
automatically. Each data point is assumed as potential 
cluster centre in this method and its likelihood is 
measured based on the density of its surrounding data 
points. The potential is calculated for the data instead of 
the grid points known in data space, thus, according to 
each cluster potential, the clusters are selected from the 

system training data. Each data point  in 

an n-dimensional space) is considered as candidate for 
the cluster centre. The subtractive clustering algorithm 

approximates the potential of the data point  on the 

basis of its location among the other data points as 
(Nayak and Sudheer, 2008): 
 

                                            (9) 

 

where , and  is the cluster radius to define 

the neighborhood,  is the Euclidean distance. 

Thus, the measure of distance between the data point 
and its surrounding data points is its potential to be a 
cluster centre and thus its value is higher as the more 
neighbor’s data points exist. The data point with highest 
potential among the other data points is considered as a 

first cluster centre. Denoting  and  as the location of 

the first cluster centre and its potential value respectively, 
so as to avoid the first cluster centre neighborhoods to be 
chosen as the second centre, the density measure 
(potential) of every data point is recalculated by 
 

                                   (10) 

 

where  and  so that  is the 

cluster radius to define the neighborhood by means of  

which is a positive constant and is called the squash 
factor. After this reduction, the data point with highest 
potential  value  is  selected  as  the  next  cluster   centre  



 
 
 
 

again, , . The process continues until th cluster 

centre is obtained and each data point’s potential is 
revised using: 
 

                                  (11) 

 

where  is the location of th cluster centre with its 

potential . The process of obtaining the new cluster 

centre follows the given algorithm (Ren et al., 2006): 
 

if  , 

 is accepted as a cluster centre and continue  

else if   

 is rejected and stop the clustering process. 

else let = minimal distances between  and all 

previously found cluster centers.   

if   

 is accepted as a cluster centre and continue. 

else  is rejected and set  to 0. Select the data point 

with the next highest potential as the new  and reset. 

end if  
end if 
 

where  and  are the accept ratio and reject ratio, 

respectively. Founder of this method (Chiu, 1994) has 
suggested the indicative values of the afore-used 

parameters, ( , , , ), which are shown in Table 1. 

Finally, the process is stopped after generating sufficient 
number of cluster centers and each of them can be 
reasonably used in a fuzzy rule, premise part, to describe 

the system behavior. Given an input vector , the degree 

to which rule  is fulfilled is defined as: 

 

                                                      (12) 

 

where  is a constant defined earlier.  
 

 
Estimation of parameters (Network training) 
 
An overall view of the fuzzy clustering reveal that two 
types of parameters need to be estimated for the model 
construction, nonlinear premise parameters of 

membership functions  and linear consequent 

parameters in TS fuzzy model . Usually, the 

estimation of these parameters is done using the ANFIS 
hybrid learning algorithm (Jang, 1993) and is called 
network training that is analogous to model optimization 
in a general view. The  theory  behind  hybrid  learning  is  
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that the model parameters can be divided into two 

subsets , and elements in the second set are the 

only linear parameters. Therefore, for given fixed values 

in , in forward pass least squares method with the 

objective function of minimizing the sum of squared error 
can be employed to estimate the consequent parameters 

in . Thereafter, when  parameters are fixed in 

backward pass, the gradient descent method is used to 

update the premise parameters in ; Table 2 

summarizes the activities in each pass. The objective is 
to train the built adaptive network in order to acquire 
convenient unknown functions from the training dataset. 
For this purpose, it has been shown that the hybrid 
learning algorithm is much faster and reliable to obtain 
the proper values of the parameters rather than either 
strict gradient descent or least square methods (Güler 
and Übeyli, 2005; Swain and Umamahesh, 2004). The 
adaptive network has merely one output which is a 

function of the set of input variables ( ) and the set of 

parameters  (Aqil et al., 2007):   

 

                                                    (13) 

 

Assuming there exists a  function so that the combined 

function of  is linear in some of the elements of , 

then the least-square method can identify these 

elements. Splitting the parameter set  into two subset 

 and  where operator  represent the direct sum so 

that: 
 

                                                               (14) 

 

So, the composite function  in a linear function with 

the elements  and by applying  to the output equation 

is: 
 

                                        (15) 

 

where  is linear in  elements. Now, given 

values of element, assigning  training data into the 

Equation 15, the matrix equation can be obtained as: 
 

                                                                     (16) 

 

where  is the unknown vector whose elements are 

parameters in , the set of linear (consequent) 

parameters. Let , number of linear parameters, 

and  number of training data pairs, then the dimension 

of  , , and  are respectively ,  and 

. Usually, , and therefore, this is an over-

determined   problem  and  generally  there  is  no   exact  



2120          Sci. Res. Essays 
 
 
 
Table 1. Definition and recommended values for parameters in SC (Ren et al., 2006). 
 

Symbol Definition 
Recommend 

value 

 Accept ratio, which specifies a threshold to certainly reject the data point below it.  0.5 

 
Reject ratio which specifies a threshold to accept the data point above it as a definite cluster centre. 0.15 

 
Hypersphere cluster radius in data space which specifies a neighborhood so that the data points off 
radius has little effect upon the potential. 

[0.25, 0.5] 

 
Squash factor  where  defines a neighborhood supposed to have the measurable 

reductions in potential. 
1.25 

 
 
 

Table 2. Hybrid learning procedure for ANFIS. 

 

Parameter Forward pass Backward pass 

Premise  Fixed Gradient descent 

Consequent  Least squares estimator Fixed 

Signals Node outputs Error signals 
 
 

 

solution to Equation 16. Instead, a least-squares estimate 

of  and  can be employed to minimize the squared 

error of . In fact this is a standard problem 

which is taken into account for the preparation of linear 

regression, adaptive filtering and signal processing.  

can be described by pseudo-inverse of : 

 

                                                  (17) 

 

where  is the transpose of  and  is the 

pseudo-inverse of  if  is nonsingular. The recursive 

least-square estimator (RLS) can also be used to 

calculate  (Jang, 1993). 

Now, a neural network back-propagation learning 
algorithm (gradient descent) and least square estimator 
method can be combined to tune up the parameters of 
the constructed adaptive network. As aforementioned, for 
the applied hybrid learning into the epochs, each epoch 
consists of a forward pass and backward pass as 
summarized in Table 2. More specifically, in the forward 
pass, output nodes go forward until layer four and the 
linear (consequent) parameters are determined using the 
least-squares method. In the backward pass, the error 
signals propagate backward and the non-linear (premise) 
parameters are updated using gradient descent 
(Zounemat-Kermani and Teshnehlab, 2008). 
 
 
CONCLUSION 
 
A review of ANFIS models application process in water 
resources studies was organized to explain the 
fundamental actions taken in this technique in a straight 

forward and practical manner. An insight to the ANFIS 
model building process from data preparation and model 
input selection to fuzzy clustering and network training 
was provided for water resources engineers and 
practitioners. Authors aimed to highlight some significant 
conclusions drawn from previous significant researches 
on ANFIS models application in water resources studies. 
It is recommended that care should be taken in FIS 
construction to choose a model with proper number of 
MFs and rules in order to save computation time and 
boost operation speed with an inclusive embrace of case 
study characteristics.  

To this end, although there is optimum values 
recommended to be used in subtractive clustering 
method for FIS construction, it is advisable to test several 
values of the parameters to find the best compatible FIS 
to the case study conditions. Moreover, different MFs 
have different effects on fuzzification of the crisp data and 
the degree to be attributed to the crisp values may differ 
at different MFs. Type of functional MFs in different 
applications and different case studies may differ and 
there should be a comparative study to select a suitable 
MF for the available conditions. In general, ANFIS 
models are case-specific and their performance is 
influenced by case study conditions. To build an 
operational model, case study conditions should be fully 
covered by precise model input selection and proper 
network training.  

Randomization of the paired input-output data in 
selection of best training/testing subsets is generally 
recommended. Randomization may help in coverage of 
the all system under study characteristics. Therefore, 
training (optimization) of the model and its generalization 
ability testing are under relatively similar conditions as 
case study.  
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